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Let

f(2) = D ez = > care™
n=0 n=0

be a function analytic for » = |z| < 1. If for some A >0, the integral
f |f(ret®)| *d@

remains bounded when » > 1, the function f(z) is said to belong to the class
H* If A >1, a necessary and sufficient condition for the function f(z) to
bzlong to the class H*, is that the real part of the series

2 Cn etno
n=0

is the Fourier series of a function of the class Z
H.C.Chow [1] proved that, if f(z2) € H* (1< A=<2), then for almost
every 0

2 o271 (O) —f(e)]* = o(n)

v=0
where & >1/A, 0 < g<A/(A —1) and &%) is the =-th (C,a)-means of the
series

2 Cal.

n=0
In the present note, we shall prove a more precise theorem:

THEOREM. If f(z) € H* (1= A< 2), then

Z a2-3(9) — f(e9)|* = o(n), a.e.

v=0
where & = 1/7,0< g < A/(A—1).
The proof of this theorem depends closely upon the argument of Zygmund
[2]. The following lemmas are proved in the cited Zygmund’s paper. For
the sake of simplicity, we write by () the real part of f(e¥).

LeMMA 1. L2t (@) be a function of thz class LM\ =1), and let U(r,8) be
the Poisson integral of f(6). If

)
f (D) dt| = pl0]  for 16| ==,
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then
M 1,0 < e (1+ O™,
and
0
@ \f nU(rtht, < Culol,
0

where § =1 — 7.

LEMMA 2. Lot € be ‘an arbitrary perfect set of positive measure and of
Deriod 2z, and let (@) denote the function equal to o in € and to d if 0
belongs to an interval contiguous to € and of length d. Then for almost every
point @ € € the integral

"0 + w
f (p'l’z’”au du
is finite for any positive number a.

LemMa 3. L2t Ulr,8) and V(r, @) b2 the Poisson integral of f(0) and the
harmonic function conjugate to Ulr, ) respectivzly. If £ =0, then

| vew| =S oo, |5 vewn = Soow,

where $ =1 —7r.

PrOOF OF THE THEOREM. Let € be a perfect set situated in the interval
( — 7, 7) such that
O+n

;f )| dn| < p|h] for 0 €€ and k] <.
"6

We can assume for simplicity that the point § = 0 belongs to €, and we
investigate for 6 = 0.
Let

f2) = ez,

and ¢%@) ba the n-th (C, @)-m=ans of the power series of f{e®). Further let

1(0) = 02 0) — o%O) = e S AS-e,e,
" v=1

and
1% = 1%0), %= c%0).

Then we have

)
z_‘:aAvtgz = 1= g

and applying the Hausdorff-Young theorem,
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S o Ayt ] o o [T L@ P g
{ga(A J x|ty }”"<{27[f 1= revje d\’"} ,
where 2z = 7¢/¥ and p = g/(g@ — D).
Let § =1 — 7, and by lemma 3
1/4
S ( Aoy | g | aogri | Q{f e g
@iy =51 “adagy |

v=1 -

where
A = (1 — 27 cos Y + 72)L2,
Without loss of generality, we may assume f(€) = 0.
If P,(\[r) is the Poisson kernel, then

U*(r, ¥) ur-ya(r, \[r) 1 i B /e
J Aam(,‘lf) d‘l’ f Au'p ('\I") 2”[ f(u)Pr("I" u)du} d’\ll‘

Since 1/ = A =1, applylng Jensen’s inequality, the last term is less than

o) [ _
c f ) fﬂ(u)w ) dud

=C j JNu)du gﬁ Y“(&;])’)é’l:()}l{ —u) a0,

which we decompose into four integrals, extended over the four squares
0<*+¢¥v=x 0Zxu=m

-

It is sufficient to consider one of them, since the other may be estimated
simillarly_. For instance, let us consider the integral

01 [ e[ LB =0
0 0

3 7z T U/ T
) =JJ+JJ+J£

= Si(7) + Su(7) + Sa(7),

T

say. If we put
. 28 X
f UP-Y%(r, )Py — u) = f + f = A(r,u) + B(r, u),
0 28

Arr ()

then, by the inequalities
AW Z 8, AP =CY 0=V =7)

and lemma 1, we obtain
8
A,y = Cumr-m==s [ Py — it
0

< Cuor=1 o2,
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Since in the interval 0 S p <98, 28<VY < =,

Py —u) =< P,.(% ﬂr) <Cé¥2,

we have, again making use of lemma 1,

B(r: u) é Cf (/""‘r”s_l)":’;z;l/m)8\p‘_2 d’\p‘

= C/szz—l 82—wpf 11,—3 d\‘[l‘
28

= C‘uf”’“l Sz—ar §-2 g C/pr—l 8"'“’,
and hence

@ Si(r) = C p#r=157" f )

0
= C#wp—-ls—ap)us = C#mpgl—up.
The inner integral of Si«(7) is

f“ U1 (r, WP —

A
u/2
‘1 U»-ya(y, ﬂ
sP(pn)] Ty ok

<P, (% u){ f . UNr, ¥)dvr }Wl { f Y1 av }z—m,
0 0

AT )
by Holder’s inequality. From lemma 1, the last expression does not exceed

u/Z 2= 900
= Cou¥(pu)r®! f f

3/2
2—po

2-2pa
< Cpra-15 w3 (3u )

é C/Lp'”—l 33—”“%”“_3.
Since 0 = 0 is the Lebesgue point of f*(z), weZobtain
Si(r) < Cura-igi-we f L au

(5) §C,Mp“ 183 zpm 8 2+ 00

=< Curedi-re,
Concerning the integral Si(r), we have
T A ¢4
Sy(r) = C f z% du f Ur~Ye(r, Y Py — u)dyr
H

/2
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scf LW af f U, WIPY - wag )
8
(since 0 < 1/a <1 by Hoélder’s 1nequa11ty)

= Cf L;S% Ur-e(y2 u) du

gc([ +f ) = Jir) + KO,
€(8) F(B)
say, where € (§) is the portion of € contained in the interval (8, =) and
&(3) = (5, #) — 6(8). Since
Ui, u) < Cu® for u € &(3),
we obtain by lemma 1

"
-1 J#)
J) = Cpsoie [ . g
8
< Cpor-1pdl-or
= Cu*rdt-*»,
The set $(8) consists of an enumerable sequence of intervals d; = (a, bs),
and hence, applying lemma 1 to the function U(r?% u), we get

um?

< Cpmm 2] L), du+2f 1w () }

=< Cpus»- 1[[ f(u) L2 du -+ S 1)f 1\(@¢fw—f(7i);du}

ump

< C}Laﬁ-—l{'ulsl—pu + Si-vw ﬁ”)%/):_l(ﬂdu}
s

< Cuordr-or 4 C/l‘wp—lgl—puf f\(u)z::ﬂ(u) du.
8

Thus we obtain
1/q

Sz

"f"(u)(p”’”"l(u) 11/@1’
=8 %y

or;more generally

<< - {C,LPWSI pw_l_clutl'\l 2
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(A1)

v=1
4 I 0) pa—1 P a/p
< {CIM""‘B“P"'“ Cz#"“”‘s“””""f O
u
‘Since pa — 1 > 0,by lemma 2
f PO
loe| 7
and we can prove (see Zygmund [2])
/] hw—](u + e)f)\(u + 6) du < oo
2| ®*
Put r =1—1/(n + 1), then
2 AL |op(0) — oHO)]" < Ce' D AM | (6) — aHO)] 7
v=1 v=1
7 N . af/p
< {Cl/‘bpwn17(m+1)—1 + Cy pP@=1 ppa+D-1 f @? Yu + Oy Nu + 0) du}
= : o]
= O(nﬂ(a‘lﬂ—lip)) = O(n'zw+1),
by lemma 2.
Therefore by Abel’s transformation,
D a%70) — 6 %(6)|* = O(n), a.e.

v=1

in which we can raplacz On) by o(n), using the argument due to Zygmund
[2]. Thus we have proved the theorem completely.
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