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1. Introduction. iLet φ{z) be a function regular in the unit circle, then
Littlewood-Paley [4] introduced the following functions:

(1.01) g(θ, φ) = g{θ) = { J (1 - p)Iψ'(z)\*dp\ , z = p**,

UP

(1.02) ^(fl, 9») = gjβ) = { / ( ! - P)1"1 i ̂ 2 ) I * * } . for
0

and
J 1/2

(1.03) {J ^ }

where

(1.04) X(p, θ) = { ̂  J I ^ ( p ^ β + ί ί ) 12P(p, ί) Λ J ,

and

(1.05) P(Pi t) = (1 - p2)/(l - 2 p cos f + p»).

They established important theorems in the theory of Fourier series by
the use of the above integrals. These auxiliarly functions have been researched
by other authors, A. Zygmund [7,8], J. Marcinkiewicz-A. Zygmund [5], and
G> Sunouchi [6], and they have given complete generalized forms and simple
proofs.

If for some p > 0, the integral

f \Ψ{pe**)\*dθ

remains bounded when p -> 1 — 0, the function <p(z) is said to belong to the
class Rp, then their theorems read as follows:

THEOREM A. Let φ{z) ̂ IΓ, r > 0, then we have
2* l

(1.06) ί j g%θ)dθ\
0

where
(1.07) A = O(r) as r -» oo
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and for q>2
llr

II Λ II τ

(1.08)
- „. .. ,„

THEOREM B. Let φ(z) € Hr,r > 1, α/w/ ^(o) = 0 then we have

(1.09) Brlj \φ(eίθ)\rdθ\ sίj gr{θ)dθ\ ,
o

and for Kp<2

(1.10) Br

0

Further,

THEOREM C. Let φ{z) € Hr,r > 1, fften we have

<1.11) { J to*(β)yd»} ^AΓj

(1.12) SrM \φ(etθ)\rdθ\ ^l (g*iθ))rdθ\ , (^(0) = 0)

(1.13)

Now, we define the following function analogous to gp{θ):

αi4) g$ (Θ)= [j a -

where

{bί I^P^**)!*^^)*}
and P(p, ί) is the Poisson kernel.
Then we may expect analogous inequalities to the second parts of Theorem
A and B and the proof of which is the main purpose of this paper. In §3
we may apply these theorems to the theory of Fourier series.

THEOREM D. Let φ(z) € Hr
} r > 1, then we have f or q > 2
llrJ

(1.16) {J (g%{ff)Tdθ\
0

and for l<p<2

(1.17) [J
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In all cases we denote that Ar, AryP, — are constants depending only on
indicating parameters and A, B, . . . . are absolute constants, not always the
same from one occurrence to another.

2. Proof of the Theorem D.

We shall give a simple proof of this theorem according to the method
of G. Sunouchi [6]. First we need two lemmas

LEMMA A. Let φ{z) € Hr, r > 1,

(2.01) φ*(θ)= sup Lf )+«)l dt

then we have

(2.02) \φ'(Pe*+«)\ ^ Cφ*(θ)/a - P).

This result is contained implicitly in the Lemma 7 of Hardy and Littlewood
[2], but for the sake of completeness we prove it here.

Proof of Lemma A. For r > 1, it is well known that a necessary and
sufficient condition for the function φ(z) to belong to the class IT, is that
the real part of the boundary function of φ{z) belongs to the class Zr.
Therefore, if we put

(2.03) ίϊtφ(peiθ) = u(P, θ), %tφ(eiθ) = f(θ\
h

(2.04) /*(<?)= sup
(KIMS* h J t)\dt
0<|fo|S*

and

(2.05) ap

then it is sufficient to prove the following two inequalities:

(2.06) \u9{p,θ + t)\%Cnθ)Kl-p),

\uβ(p, θ + t)\S Cf*(θ)/(1 - p), for p > H

For the first part, we have

- L! f{-θ +s)l dp \1 —2pcos(s — t) + p
— π

and

- p2) — 4(1 -f ρ2) s in 2-^(s — ι

3p \l-2pcos(s-t) + p* /I {(1-j

where δ = 1 — p. Thus we get
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o

For the second part we may estimate it by the same way. We have

and since

Γ dt V 1 — 2 cos (s — t) + p 2 /
- p 2 ) s i n ( s -

{1 - 2 p cos (s - ί) +

c
~~ {δa + (s — t)ψ — δ2 + (5 - t)2 '

we get easily the required result. Thus the inequalities (2.06) are establ-
ished.

LEMMA B. Let f(β) € Lr, r> 1, then for f*(θ) of (2.04), we have
'lit l/r 2τc i/r

(2.07) ( I (/*((9))r dθ) < A, ί j \f(β) \rdθ\ ,
0 ϋ

where

(2.08) A, = O(r/(1 - r)): as r -> 1.

This maximal theorem is also due to Hardy and Littlewood [3J. Now
we prove theorem D.

Proof of (1.16). From (1.03)-(l. 05), (1.14)-(L 15), and Lemma A we have
2Λr1 r2ic

= j (1 - P)"-1 dp j i j \φ\Pe«+«)\<P(P, t) dt}
ϋ 0

1 2*

-* f (1 ~ P)dp[^ J \φ'{p^+lt)\3P(p, t) dt

Therefore

/

(g*(β)Yrlq dθ.

Since 0 < 2/q < 1, if we apply the Holder's inequality and using (1.11) and
Lemma B, we obtain



ON INTEGRAL INEQUALITIES AND CERTAIN APPLICATIONS 123:

2* 2* i-a/g 2* * a/«

/

*

0 0 0

0

which is the inequality (1.16).
Proof of (1.17). Similarly as in the proof of (1.16) we can reduce the

proof of (1.17). to the second part of Theorem C, or we can reduce it to*
the second part of Theorem B, by the inequality

(2.09)

which is deduced as follows:

= f a - py>-*\φr(p*9)\*dθ = f (l -
0 0

ί (l-pY'1 \<p'(pWθ)\» dp

o

and by the fact that <p'(p*ei9) is the Poisson integral of φ\ρ etθ) and p > 1,
we can apply Gauss' theorem and Jenssen's inequality. And then the last
side of the above formula does not exceed the following expression:

/

I JLTt

(1 - py-1 - i J <p'(p(*e+u

u)P(p, t) dt dp

0 0

Thus we obtained (2.09) and so (1.17).

3. Applications. In this section, we show some applications of above
theorems to the strong summability of the power series on the circle of
convergence. Let

CO CO

(3.01; φ{z) = 2 C n 2 M = "Σ6***",

and we write
n

(3.02) sn(θ)=

(3.03)

and
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(3.04) tn(θ) = sn(θ) - σn{θ\

where c0 = 0. This condition is not essential. Then A. Zygmund [instated
the following theorem.

THEOREM E. Let φ(z) ^Hp,p> 1, then we have

(3.05) f | ;g]*^)ί!J dθ<,APj \φ(e«)\»dθ,

and

fJ^^] dθ.(3.06) BJ \φbe»)\pdθ^ f
L LL L

Further, G.Sunouchi [6] extended above theorem, that is

THEOREM F. Let φ{z) € H*9 p> 1, then for q>2 we have

(3.07) [ fJ£&J\l\ dθSAPtJ \φ(e»)l*dθ.

L ι n } ί
These theorems are well known, but their proofs due to many comp-

licated lemmas. Here we may give very simple proofs.
Proof of theorem E. First we prove (3.05). Let us put by definition

<3.08)

and

(3.09)

\j J p, θ) dr
o o

then we have

(3.10) j? | / w ( 6 / ) | 2 = CΨ(1, θ) = cf (1 - rYΦ(r, θ) dr.

These formula appeared in the paper of H. C. Chow [1].
On the other hand, (3.01)-(3.04), since

(3.11) !

we have by ParsevaΓs theorem

Therefore from Theorem C we have
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P/2

(3.13) J {jϊ11^ J dθ=Ap] dθ I J (1 - r)«Φ(r, (?)

* 1 /•*
{

- * 0

Thus we obtain (3.05).

Secondly we prove (3.06). We have

(3.14) j (g*(θ)ydθ

1 Γ \
— r) dr — I I φ'(rtθ+it) \ *P(r, t) dt \

2τt J J{(
—A 0 1/4

say, then we have

(3.15) Ix(β) = 1 {l-r)dr^~\ \ φ\r^u) f 2P(r, /) dt

Γ1/4 l Γ*

l f*"2

1/4

'2 i Γ
0--r)drj^^ \φ'(re>°+u)\*P(r,t)dt

Here we use the property that M\(r, φ) is a continuous increasing function
of r for any function φ{z) regular in \z\ < 1, where

(3.16) Mχ(r, 9.) = ( ^ j I ̂ e ) | w ) " A , (λ > 0).

And that we have

1/4 - *

Therefore we obtain from above formulas
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f
P/2

1/4

Applying second part of Theorem C to (3.18), we prove

\

Proof of theorem F. In this case, if we apply Hardy-Littlewood's theorem
(cf. A. Zygmund [10], Chap IX Theorem 9.51) instead of Parseval's theorem
in the above argument we obtain

<3.20)

and

<3.21)

ΦΛr,0)=2

2π J l l - r ^ l *

Ψq(p, θ)) =

(P - r)"Φq(r, θ)dr = (1 -
0 0

Therefore from (3.07), (3.20) and (3.21) we have

<3.22)

JP/Q 7T

J {Ψ,ιa,β

f (r1
 Ί

J dθ{] (l-r)<>Φq(r,θ)dr\
-tt 0

dθij {l-r)*

\l-reu\q

By an elementary calculation, it is easily proved

<3.23) m
1 - reu

And so, by the use of (3.23) and Theorem D, we have
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<3.24) J Hp-lMΦilΊ dθ

^ A J * (jff (0))" <tf =Ξ A.,, j I «p(e*) I * dθ.
- t t —it

This is our disired result. Thus the theorem is completely proved.
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