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1. Introduction. It is the purpose of the present paper to obtain
sufficient conditions that f(z) regular or meromorphic in a given region be
univalent or multivalent in the region. For this purpose the convexity and
concavity of the image curves will be used efficiently.

A necessary and sufficient condition for the convexity of the function

f2) =2+ a2 + .... regular for |z| < 7 is known to be [1]
. () .
@ 1+§R/”(z) >0 for |z| <7

However, for the univalency of the above function f(z), it is sufficient that
f(z) is convex in one direction [2] and we have the following result : [3, 4. 8].

THEOREM A. Let f(z2) =z + az* + ....b2 regular for (2| <1 and f1(z) =0
on |z| = 1. If there holds the relation

27 . Zfl(zz _
@) f j1+,}e T o< am, |2l =1,

0
then f(2) is convex in one direction and hence f(2) is univalent in|z| < 1.

Some of the conditions which will be given in this paper contain the
above theorem as a special case and have the form analogous to the above
one. But in our present case f(z) is not necessarily convex in one direction.
The univalency of f{(z) will be deduced from a geometrical fact, more
general than the convexity in one direction. This geometrical fact (Lemma
1) will be stated in §2 which is fundamental in our investigation.

Making use of the same lemma, we shall also extend or make more
precise the following well-known :

THEOREM B. If f(2) is regular in a convex region D and if Rf(z) >0 in
D, then f(2) is univalent in D.

This is due to K. Noshiro [5] and J. Wolff [6], Their methods of proof were
very elegant. However it seems to me that the methods are hardly useful
for the purpose of extending Theorem B to the case of multiply connected
domain. Our method is powerful enough to enable us to succeed in the work.

Furthermore we shall give a new generalization of Theorem B to the
case of p-valence.

2. The fundamental lemma.

LEMMA 1. Let w = f(2) be regular in a simply connected closed region D,
whose boundary 1, consists of a regular curve and f'(z) =0 on I',. If there
holds one of the following conditions ;



ON THE THEORY OF UNIVALENT FUNCTIONS 213

(i) For arbitrary arcs C, on T,

2.1) fd arg df(z) > —«
Cz

and

2.2) f d arg df(z) = 2»,

Iz

(ii) For arbitrary arcs C, on T,
2.3) f d arg df(z) < 3=,
Cz

then f(2) is univalent in D..

Proor. Let D, and I', be the images of D, and I'; respectively.

(i) There exists no branch-point in D, since we have (2.2) by Morse-
Heins’ theorem [7].

Suppose that f(z) is n-valent in D, and that #» =2, then D can be cons-
idered as a one-sheeted region on an at least z-sheeted Riemann surface S.
It is evident that if D, encircles no branch-point of S, namely if any curve
connecting any two points in D, encircles no branch-point of S, then D,
has no overlapping part. Hence D, encircles at least one branch-point B
of S without including it, since D has some overlapping parts and since D,
include no branch-point by our assumption. The inner boundary of this
encircling part of D, makes an arc (or a loop) C, for which

4y

fdargdwg — 0
Cw

holds, since the positive direction on I',, coincides with the clockwise direction
on C,. Namely, it is necessary that there exists at least an arc C, on I';
for which

fdarg )< — =«

%

if f(2) is at least two valent and if we have (2.2). Hence f{2) is univalent if
we have the condition (i).

(ii) Since we havey(2. 3) and since 21—” f d arg df(z) is a positive integer,
PZ
we obtain (2.2). Subtracting (2.3) from (2.2) we obtain (2.1) for arbitrary
arcs C, on I';; which proves the case (ii) by using the condition (i).
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3. The fundamental theorems.
‘THEOREM 1. Let w = f(z) be regular for a closed domain D, whose boundary
I", be a simple closed regular curve and f'(z) =0 on I'.. Let z; and z;, i,7 =
1,2, .... be the roots of the equation
d arg dfiz) =0 on I,
If there holds one of the following conditions :

i
@) Max f darg dfr)< 3=, z€ 1,
L)
]
(i1) fd arg dfiz) = 2«
l'z
and

2
Mmf d arg df(z) > — =,
g

then f(z) is univalent in D,.

ProOF. By Lemma 1,f(z) is univalent, if we have

T

3.1) f d arg df(z) < 3= zel,
for arbitrary x and y belonging to I7.

On the other hand, the maximum of the integral in (3.1) occurs only
when f(x) and f{y) are points of inflexion on I',, the image of I'.. Namely
it occurs when x and y are the zeros of d arg df(z) = 0 on I',. Hence f(2) is
univalent if we have the condition (i).

Analogous reasoning with condition (i) of Lemma 1 yields the proof of
the case (ii), which may be omitted here.

THEOREM 2. Let f(2) be regular and f'(z) = 0 in a closed convex domain D

whose boundary L be a regular curve. Further let z;,1 = 1,2, ..... be the roots
of the equation
3.2) darg dfz) _ .1
d arg dz
If there hold the relations
(3.3) R e f(z:) >0 (a: a real constant)

for all z;, then f(2) is univalent in D.

PrOOF. Since D is a convex domain, d ,arg dz=0 on L. Hence the
equation (3. 2) is equivalent to the equation d arg df(z) = 0 on L.
Now since f//(z) =0 in D, arg f’(z) is one-valued in D. Accordingly arg
df(z) is also one-valued on L if we take a suitable branch of arg dz since
arg df(z) = argf'(2) + arg dz.
By noticing this fact and by the assumption (3.3), we have
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3.4) - ?” < &+ arg df(z;) — arg dz: < 325
and
(3.5) — % < —a — arg dfiz;) + arg dz; < %

for every z; and z;, 7 > j satisfying (3.3). Hence we have
— 7 < arg df(z;) — argdf(z;) + argdz; — argdz; <
where 27 = arg dz; — argdz; = 0 since D is a convex domain. Thus we have
— 7 < arg dfiz;) — arg df(z;) < 3«
which is equivalent to

24
-z < f d arg df(z) < 3=.
2y

This inequality shows that f(2) is univalent in D by Theorem 1.

COROLLARY 1. Let f(z) be regular for |z| <r. Let 0; and 0;,3,7=1,2, ....
be the roots of the equation

zf"(z
(3.6) 1+ﬂt—f@)- =0, |z] =7, 0S0<27.
If there holds one of the following conditions ;
@) Rel® f(ret%) > 0 (a: a real constant) for all 6; satisfying (3. 6),

9;
(i) Maxf <1+2Rﬁf”<z)>d9<37r, 2] =7,

W /(=)
J

(iif) f(z)*=0in |z| <7 and

01

; g #7(2) _ _
win [ (1w ey o> —m  lzl=v

]
then f(z) is univalent u: lz]| = 7.
Proor. By a simple calculation we see that
149t ?;'éf) = dag dz) da;%’gdj;z) on |z =7,
which proves this corollary by Theorems 1 and 2.
REMARK. As an immediate result of Corollary 1 with condition (i) we
obtain Theorem B stated in §1.

4. Special cases.

THEOREM 3. Let w = f(2) be yegular for a simply connected closed domain
D whose boundary T consists of a regular curve and f(z) =0 on I'. Further
let C, be the part of 1" on which d arg df >0 and C. be the part of T on
which d arg df < 0. If f(2) satisfies for T’ one of the following conditions
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(i) f d arg dfiz) < 3»

(i) /() =0 in D and

fd arg dfiz) > — =.
Ca

(iii) f(2) =0 in D and
f |d arg df(z)| < 4=
r

then f(2) is univalent in D.

Proor. Under our assumption and the conditions (i) and (ii) we obtain
(2.3) and (2.2) with (2.1) in Lemma 1 for arbitrary arcs C, since

fdarg df < fdarg df < 3«

Cv (41

and since
fd arg df > fa’argdf> —
Cy Ca

and

f d arg df = 2«
T
in view of f%(z) =0 in D. Thus f{(2) is univalent by Lemma 1, if we have (i)
and (ii).
The proof of the case (iii) is as follows:
We have
f |d arg df | = fdarg @ar — fd arg df < 4x.
T C1 Ca
On the other hand we have
fd arg df = fd arg df + fd arg df = 2x.
r 1 Ce
Hence we have

fd arg df < 3=
(5]

which completes our proof by the condition (i).
REMARK. As a generalization of Theorem A, Theorem 3 imay not be
so important. But it should be noted that the method of proof is quite
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different from that of Theorem A.
As an application of Theorem A we can obtain the following
THEOREM 4. Let f(2) =z + ar? + .... be regular for |z| <1 and let
(4.1) ()] < A6 |F(2)] in |zl =1

then f(2) is univalent in |z| <1.

Proor. By our hypothesis (4.1) we have f(z) =0 in |[z] £1 and

"l [ _
6/ 70) dfd <12  for |z| =1.
Hence we have
4.2) 1 f ""f” ’ 2{%,ir+(z;,)]d6<6n

since

[ yons

(4.2) is equivalent to the following

“.3) f ( R a;:i)" do < 67
0

which is also equivalent to the following inequality
27

f (1+2sz,(, Yao<sx
0

‘lﬂ (/4
since f ERZ—;[ df =0 in view of the fact that f(z) =0 in |[z] <1. By

employing Schwarz’ inequality we obtain

f 1w ‘ a6 < \/?ﬂf (1+g}e-zf—> df < 4,
0 0

Vi V4

which shows that f{z) is univalent in |z| <1 by Theorem A.

5. On the case of meromorphic functions.

THEOREM 5. Let f(2) be regular for a simply connected closed region D except
Jor a simple pole. Let the boundary T' of D consist of a regular curve and
()0 on I'. If there hold the following relations
(5.1) d arg df(z)< 0 on T
and

(5.2) [ d arg df(2) = — 2n
T
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then f(2) is univalent in D.

Proor. Since f(z) has a simple pole in D and since we have (5.2), there
exists no branch-point in the image domain D, of D by Morse-Heins’
theorem [7].

If f(z) is n-valent and if % =2, then the image region D, can be cons-
idered as a one-sheeted region on an at least #-sheeted Riemann surface S.
Since f(z) has onlyl one pole, only one sheet of S has the point at infinity
which is an interior point of D,. Let us take up this sheet in particular. The
point at infinity is not a branch-point on this sheet and hence there exist
at least two branch-points which are exterior points of D,. So long as D,
does not encircle two branch-points in pairs, there exists no overlapping
part in D,. Hence D, encircles these points respectively without including
them since D, has some overlapping parts. The inner boundary of these
encircling parts make loops (or arcs) I'y and I', for which

fdarg dfs —7#, i=1,2,.
Ty
hold as we see in Lemma 1. Hence

darg df < — 2x.

T14+Te

Consequently for the complementary arcs C of I'1 + I'; we have

(5.3) fdargdf>0 C=*=0
c

since we have (5.2). Namely, if f{z) is at least two valent, then there exist
at least two arcs whose sum satisfies (5. 3).

On the other hand we have (5.1) and hence there exists no arcs satisfying
(5.3). Hence f(2) is univalent in D.

COROLLARY 2. Let f(z) = % +a +az+ .... be regular for 0 < |z] <1
If there holds the relation

5.4 —2<14+nLE

(z)

<0 on |z| =1,
then f(2) is univalent in |z| <1.
6. On the case of regular functions defined in an annulus.

LEMMA 2. Let w = f(2) be regular and single-valued in a doubly connected
closed domain D which does not contain the point at infinity and bounded by
two simple closed regular curves C, and C, (C; is inside C,)

C:z=z(t) 0t 1) 1=1,2.
Further let f(z,) = f(2;) for arbitrary two points z, and 2,,2, =23 on Ci, i =
1,2. Suppose that f(z) =0 in D. Then the image region A of D mapped by f(z)
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is bounded by two simple closed regular curves
T:: w= wz)), 1=1,2
and this function maps D univalently onto A.

Proor. By our hypothesis, I';, i = 1,2 are simple and closed and
w'(t) = f(z:($))z;(2) +0, i=12

Hence T';, 7 = 1,2 are also regular.
By the assumption that f(z) =0 in D, we obtain

6.1) fd arg df(z) = fd arg df(z) = 2= or — 2,
(41 C2

by Morse-Heins’ theorem [7], where the integrals are taken so that z moves

round on C; and C, in the counter-clockwise direction.

First we consider the case where the integrals in (6.1) are equal to 2x.
Then w moves round on I', and I'; in the counter-clockwise direction when
z moves round on C, and C. in the counter-clockwise direction. Now let
be an arbitrary point which does not lie on I';, 7 = 1,2 and let #(D, ) denote
the number of w-points of f(z) in D. Then we have

7D, w) = 21—7[ f d arg (f(z) — w) — %fd arg(f(z) — o)
Cy Ce

I T (O WP N A )

T om) f9-w 2wi) fia)—w dz
1 [ Saean (1)
- 2m’0 flzi(t)) — o 2m‘0 fzt) —w

_ 1 | aw 1 f_.{%’w_
T 27 w—w 27 w—
I I's

where the integrals on I, and I'. are also taken in the counter-clockwise
direction by the above statement.

Thus we see that (i) #(D, w) = 0 when o is inside 1", and T, (ii) #(D, ) =
1 when o is inside I'; and outside I, (iii) #(D,w) = — 1 when w is inside I';
and outside I'; (iv) #(D, ) = 0 when » is outside I'; and I,

Since n(D,w) =0, the case (iii) is a contradiction, unless there exists
no point outside I', and inside I'.

Hence D is mapped by f(z) univalently onto A bounded by I and T,
where I'; lies inside I.

In the case where the integrals in (6.1) are equal to — 2z the proof is
quite analogous to the above one and may be omitted. We merely note that
in this case the image curves I'; and I'y change their position.

THEOREM 6. Let f(z) be regular, single-valued and f’(z) =0 for r < |z| < R.
Suppose that
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zf"(z)

Let 0; and 0; (i,7=1,2,....) be the roots of the equation
% 2/"(2) _ _
(6.3) 1+ ) 0, 2] =R, 060 <2x.

If there holds one of the following conditions :
(A) For all 0; satisfying (6.3)

Rei® f(Res) >0 (a: a real constant)
(B) Max f (1 + R sz,'('g) )de <3, 2] = R,
(©) ofh<1+ z}t%g)l) o = 2x, 2] = R
and |
Min f9‘<1+z}t-j{;—'z(§l)de> — = 2| =R

0j

then f(2) is univalent in r < |z| < R.

Proor. Since f(z) +£0 for » < |z| < R, there exists no branch-point in
the image region of < |z| =< R and hence we have

(6.4) LR(H:R%@)M:£=T(1+»tjf,;'z<§))d0:2n

by making use of (6. 2).

Let L, and L, be the image curves of |z| = 7 and [z| = R, respectively.
The positive direction on Z, and L, are decided by (6.4). Let R be the image
region of r < [z] = R which is of course bounded by Z, and Z.. Since we
have (6.2) and (6.4), L, is a simple closed regular curve and the image
region of » < |z| <7 + & exists outside L,.

Now let us show that L, is also a simple closed regular curve.

By (6.4), L, encloses a simply connected region D on the Riemann
surface S generated by f(z) containing the image of R— &< |z] < R if we
neglect the existence of L.

Suppose that D contains the point at infinity, then R also contains the
point at infinity, since R is the common part of D and the outside of L,. But
this is a contradiction since f{(z) is regular for r < |z| < R. Hence D does
not contain the point at infinity. Consequently we can apply the discussion
in §2 and §3 to D. Then the conditions (A), (B) and (C) are the sufficient
conditions for L, not to have multiple points.

Thus all the hypotheses of Lemma 2 are satisfied and hence f(2) is.
univalent for r < |z] < R.
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As an immediate result, making use of the condition (A), we obtain
the following theorem which is again an extension of Theorem B.

THEOREM 7. Let f(z) be regular and single-valued for r < (2| < R. Suppose
that
2f"(2)

2>1+0
T

>0 on |z| =7

and that in r < |z| =R
Re® f/(z) > 0 (a: a real constant)
then f(z) is univalent for r < |z| = R.
Corresponding to the case where the integral in (6.1) is equal to — 2z
we obtain theorems analogous to Theorem 6 and 7.
THEOREM 8. Let f(2) be regular, single-valued and f/(z) +0 in r < [z| < R.
Suppose that

_ g 2"(2) _
(6.5) 2<1+Jt/,(z) <0on [2] =R
Let 0; and 0; (1,7 =1,2,....) be the roots of the equation
(6.6) 1+ @@ |z =7, 0<0<2x
. fl<z) > 2 = == .

If there holds one of the following conditions :
(A4’) For all 6; satisfying (6. 6)
Re® fAret) >0 (a: a real constant)

04
, : 2"(2) _ _
B) 1\/5319[ <1+ 0 >d€> 37, 2] =7
J
DY go— _
«©) Of <1+th,(2) )da_ 27, 2] =7
and
Qi
o 27 (2) _
M1a;c ;,[ (1+ﬁfl(z)>d9<z, |z =7

then f(z) is univalent in r < 2| < R.

The proof of this theorem is analogous to Theorem 6 and may be
omitted.
As a direct consequence we have

THEOREM 9. Let f(2) be regular and single-valued for r < |z| < R. Suppose
that
_ o 3(2) _
2<1+J€f(z) <0 on [z| =R
and that for r < |z| = R



222 T.UMEZAWA

Re® f7(z) >0 (a: a real constant)
then f(2) is univalent for r < |z]| = R.
By making use of the results obtained in §4 we have

THEOREM 10. Let f(2) be regular, singdle-valued and f'(z) =0 for r < |z|
=< R. Suppose that

",
©.7) 2>1+2)t%((—‘:))— >0  onlz] =7
If there holds one of the following relations ;
1+ 2 Z@ | 494
@ x 1+ 2 i
",

where a is a certain number not less than 3/2. then f(2) is univalent for r <
[z]| =R

ProOOF. As in the proof of Theorem 6 we have (6.4). In particular we
have

S"@) N\ 1
6.8) [P <1+ s )d(-) 2.

It was proved in [4] that if we have (6.8) the condition (b) is a sufficient
condition for the condition (a). As for (a) the proof is ohvious by Theorems
3 and 6.

7. Generalizations to the functions defined in an n-ply connected
domain. If we apply the method of proof in Theorem 6 together with
Morse-Heins’ theorem to regular and single-valued functions defined in an
n-ply connected domain which does not contain the point at infinity and
bounded by 7» simple closad regular curves, then all the results in the
preceding section can easily be extended. For example we obtain the
following

THEOREM 11, LZLet f(2) be regular and single-valued in a closed convex
domain D which has n — 1 circular holes |z —a;| <7, i=1,2,.....,n—1, in
it. Suppose that

am @ — @)@ o
2>1+J€_——-—f,(z) >0 on|z—al| =7
1=1,2,....,.n—1
and that in D
e f(z) >0  (a: a real constant),
then f(2) is univalent in D.

THEOREM 12. Let f(2) be regular and single-valued in a closed domain D
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consisting of a circle |z]| = R with n — 1 circular holes |z —ai| < r;, 1=1,2,
eeo.y, m—1, in it. Suppose that
— a "
2514+ 0E =@ o on il =, i=12 ... ,n—1
z)
If f(z) satisfies on |z| = R one of the following conditions ;

O 1+RL@D 5 1 g gwT@ 3

7@ 2 e 2
Gi) [1+9% 8 <2 v \ B | <2

then f(2) is univalent in D.

In order to prove these theorems it will be sufficient to extend Lemma
2 to the following form.

LEMMA 3. Let w = f(z) be regular and single-valued for an n-ply connected
closed domain D which does not contain the point at infinity and bounded by
n simple closed regular curves C;, i = 1,2, ...., n,

C;: z = z{t) o=st=<y, =12 ....,n
Further let f(z)) = f(2:) for arbitrary two points z, and 2s, 21 £2; on C; i =

1,2, ....,n. Suppose that f(z) £0 for D. Then the image region A of D under
f(2) is bounded by n simple closed regular curves

T w = w(zi(2)), =12, ....,n
and this function maps D univalently onto A.
PrROOF. We can easily see that I';,2=1,2,...., » are simple closed

regular curves. Let us suppose that C;, 7=1,2,....,2—1 are inside C,
without loss of generality. By the assumption that f'(z) =0 for D, we obtain

n-1
7.1) 22 —n)r = f d arg df(z) — 2 d arg df(z)
Cn j=1 ¢y
by Morse-Heins’ theorem [7], where the integral is taken so that z moves
round on Ci, 7=1,2,...., »n in the counter-clockwise direction. Since I,

1=1,2,...., n are simple the integrals fd arg dfiz), 7=1,2,...., n are

Cs

equal to 27 or — 27z. Thus we have »n cases (i) f darg df(z) =2z, i =1,
v

J

2,...., n, (ii) f d arg df(z) = — 2z and any one of the integrals fd arg df,
Cp CJ
7=1,2,...., n—11is equal to — 27 and the others are equal to 2z, which

gives n — 1 cases.
Analogously to Lemma 2 we consider the value #(D, w) for every « and
in each case stated above. Then we have our conclusion by similar conside-
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ration to that of Lemma 2. The detail may be omitted here.

We omit aiso the proofs of Theorems 11 and 12 noting only that the
conditions (i)-(iv) can be obtained from () in Theorem 10 by choosing «
suitably.

8. Sufficient conditions for the p-valency of regular functions. We
shall generalize some of the results in §3 and §4 to the case of p-valency.
For this purpose we need to extend Lemma 1 at first.

LEMMA 4. Let f(z) be regular for a simply connected closed domain D whose
boundary I, consists of a regular curve and f(z) =0 on I'.. Suppose that

8.1) f d arg df(z) = 2kn.
T,
If we have for arbitrary p —k+ 1 arcs C,, C., ....,Cp_p+10n the boundary T,
of D which do not overlap one another
8.2) f darg dfiz) > —(p—k+ 1)
C1+Co++...4+Cp k41
or
(8.3) f darg dfiz)<(p+k+ U«

C1+Co+...+Cp_f+1

then f(z) is at most p-valent in D.

Proor. If f(z) is n-valent where n=p + 1, then we can consider the
image region D, of D under f(z) as a one-sheeted region on an at least
n-sheeted Riemann surface S.

Since D,, has at least one n-valently overlapping part and since we must
have a part of D, encircling a branch-point of S in order to move from
one sheet of the z-valently overlapping part to another, there exist at
least p branch-points of S encircled by parts of D,. Here and what follows.
the number of branch-points are counted in accordance with their multip-
licities. Furthermore we say that a region R encircles a point P if there
exists at least a curve in R connecting two points in R whose projection
on the w-plane encircle the point P whether it is included in R or not.

On the other hand there exist 2— 1 branch-points in D, of course
encircled by parts of D, by (8.1). Hence there exist at least p—k+1
branch-points of S exterior to D, respectively. Let B;,i=1,2,.....p —k+ 1
be the projections on the w-plane of the branch-points stated above and let
Q be a point on the w-plane overlapped by D,, n-valently. Since the projections.
of the inner boundaries of the encircling parts also encircles B;, i = 1,2,

..., p — k+ 1 respectively, we have arcs C;,i=1,2,...., p—k+1 on Iy,
the boundary of D,, which begin from a point on B:Q, :=1,2,....,p— k&
+ 1 and end also at a point on B:Q, i =1.2,...., p — k+ 1 encircling B;, £

=1,2,...., p—k+ 1 once negatively, respectively.
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Thus we have p — k+ 1 arcs on I’, which have no common parts except
perhaps the ends of them and for which

fd argdw=< —x, . i=12,.....,p—k+1

Ty

hold. Hence we have

darg dfiz)< —p—k+ 1)z

C1+Co+.. . +Cp_k+1

if f{z) is at least p + 1 valent in D.

Accordingly f(z) is at most p-valent in D if we have (8.7) for arbitrary
p—Fk+1 arcs C,Cy, ...., Cp_xs1 on the boundary I, of D which do not
overlap one another. We note that (8. 2) is equivalent to (8.3) since we have
(8.1). Thus the proof is complete.

THEOREM 13. LZLet f(z) be regular for a closed convex domain D whose
boundary L is a regular curve. Suppose that fz) has exactly p — 1 critical points

a;, i=1,2,...., p—1in D and no critical point on L. If there holds the
inequality .

p-1
(8.4) b [e“‘ f(2)/ H (z — ai)jl >0 (a:a real constant)

i-1 .

on L, then f(z) is at most p-valent in D.

-1

Proor. Now since f’(z)/H(z —a;) =0in D by (8. 4), arg[f’(z)/Z(z —ay) ]

i=1
is one-valued in D. Accordingly arg df(z) is also one-valued if we take suitable

branches of arg (z —a;), i=1,2,...., p — 1 and arg dz since
-1
arg df(z) = arg [f(z)/ 2 (z — ai)J
i=1
Dp=1

+ 2 arg(z — a;) + arg dz.

i=1
By noticing this fact and by the assumption (8.4), we have
p-1

- % < a + arg df(z;) — arg dz; — 2 arg (z; — ag) <

k=1
and
p-1

? —arg df(z;) + arg dz; + 2 arg (z; —a,) < 7'25

k=1

for any z; and z;, ¢ >j. Hence we have
— < arg df(z;) — arg df(z;) + arg dz; — arg dz;
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-1 -1
+ 2 arg(z; — ay) — 2 arg (zi —ay) < 7
k=1 k=1
where 27 = arg dz; — arg dz; =0 and 27 = arg(z; — a;) — arg (2; —a;) =0,
k=12,....,p—1, since D is a cinvex region. Thus we have

—m < arg flz;) —arg fiz;) < 2p + )=
which is equivalent to

—7r<fdarg df(iz) < (2p + D).

2j
This inequality shows that f{z) is at most p-valent in D, by Lemma 4.
As an immediate result we obtain the following

THEOREM 14. If f(2) = 22 + ap+12?* + ... isregular for |z| < r and if we have
(8.5) Rle*f(2)/z7-1] >0 (a: a real constant)
Jor |z| <7, then f(z) is p valent for |z| <7,

ReEMARK. The condition (8.5) in Theorem 14 can be replaced by

(8.6) P> X nla|r?

n=p+1
which is seen as in the case p = 1.

Making use of Theorem 14 we can extend many theorems on univalent
functions to the case of p-valency. But we shall here enunciate only a
generalization of Noshiro’s theorem concerning the radius of univalence and

the radius of convexity [9].
TuEOREM 15. Let flz) = 2? + aps12°*L + .. .. be regular for |z| <1 and let
iﬁ%t <Mfor 2| S1. Then fiz) is pvalent in |z| < % and fiz) maps
S — 1 1 1/, 1 )}
<M, —NME—-1 L = - 14+ = (1L ¢ .
|z] s — &/ M where M, Z{M(+p>+M\ 5 onto a p

valently convex domain.

PrOOF. Let us put g(z) = {5(% Then g0) = 1 and |2)| < M for |z|

=< 1. Hence we obtain

| gz)—1 7
M= gz) éM’ (lzl =7)
1— Mr o S(2) 1+ Mr
MM—r éﬁpz”‘léM M+7r’ Izl =7

by Schwarz’ lemma. Hence we have (8.5) if |z| < Ilil

As for the convexity the proof is quite analogous to the case of univalence
and may be omitted here.



ON THE THEORY OF UNIVALENT FUNCTIONS 227

THEOREM 16. Let f(z) be regular for a simply connected closed domain D
whose boundary 1" consists of a regular curve and f'(z) =0 on I". Suppose that

[ d arg df(z) = 2kr.
T

Further let C, be the part of 1" on which d arg df > 0 and C. be the part of
T on which d arg df < 0. If fiz) satisfies one of thz following conditions :

(A) f darg dfi2) < (p + k + D,
(B) fd arg dfiz) > —(p —k+ U,
() f |d arg df(z)| < 2(p + D=

then f(z) is at most p-valent in D.

We can prove this Theorem 16 analogously to Theorem 3 by making
use of Lemma 4 and the proof may be omitted here.

COROLLARY 3. Let f(2) be regular for (2| <1. Suppose that f(z) has k — 1
critical points in |z2| < 1 and no critical point on |z| = 1. Further let C, be
the part of |z| =1 on which

1+§R%~)zl >0 and put x:fdargz

and C. be the part of |z| = 1 on which

1

1+%%§0 and hence Zﬂ—x:fdargz.
¢ A

If f2) satisfies for |z| = 1 one of the following conditions

(@ f<1+z}t3fl‘z—))de<(p+k+1)z,

J f(2)
() 1+5R;f:z‘)z) <brErl,
®) l(l+§)’%%)d0>—(ﬁ—k+l)m
@) 1 +2}t- ?’:S) > 22;——’?%17:,
© 1+ % ff{%)z) 8 < 2p + Dy,

C1+C2
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(©) l1+2}tz—f"(i) <p+1,

7(2)

then f(z) is at most t-valent in |z| < 1.

This is an extension of a result given in [4, 3].
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