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1. Introduction. It is the purpOvSe of the present paper to obtain
sufficient conditions that f(z) regular or meromorphic in a given region be
univalent or multivalent in the region. For this purpose the convexity and
concavity of the image curves will be used efficiently.

A necessary and sufficient condition for the convexity of the function
f(z) = z 4- a^z'2 -f regular for \z\ < r is known to be [1]

(1) l + 5ί̂ ^ > 0 f o r |*| <r.

However, for the univalency of the above function f(z\ it is sufficient that
f(z) is convex in one direction [2] and we have the following result: [3, 4 8].

THEOREM A. Let f(z) = z 4- a»z* + be regular for \z\ <; 1 and f(z) Φ 0
on \z\ = 1. Jf there holds the relation

(2) dθ< 4τr, \z\ = 1,

then f(z) is convex in one direction and hence f(z) is univalent in\z\ <Ξ l

Some of the conditions which will be given in this paper contain the
above theorem as a special case and have the form analogous to the above
one. But in our present case f(z) is not necessarily convex in one direction.
The univalency of f(z) will be deduced from a geometrical fact, more
general than the convexity in one direction. This geometrical fact (Lemma
1) will be stated in §2 which is fundamental in our investigation.

Making use of the same lemma, we shall also extend or make more
precise the following well-known :

THEOREM B. Jf f(z) is regular in a convex region D and if $tf(z) > 0 in
D, then f(z) is univalent in D.

This is due to K. Noshiro [5] and J. Wolff [6], Their methods of proof were
very elegant. However it seems to me that the methods are hardly useful
for the purpose of extending Theorem B to the case of multiply connected
domain. Our method is powerful enough to enable us to succeed in the work.

Furthermore we shall give a new generalization of Theorem B to the
case of ^-valence.

2. The fundamental lemma.

LEMMA 1. Let w = f(z) be regular in a simply connected closed region De

whose boundary Γz consists of a regular curve and f(z) =t= 0 on Tz. If there
holds one of the following conditions
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(i) For arbitrary arcs Cz on Tz

(2.1) J d arg df(z) > -π
Cz

and

(2.2) J
Tz

(ii) For arbitrary arcs Cz on Tz

l(2. 3) J d arg df(z) < 3π,
Cz

then f(z) is univalent in Dz.

PROOF. Let Dw and Γw be the images of Dz and Γz respectively.
(i) There exists no branch-point in Dw since we have (2. 2) by Morse-

Heins' theorem [7].
Suppose that f(z) is n-valent in Dz and that n>2, then D can be cons-

idered as a one-sheeted region on an at least 72-sheeted Riemann surface S.
It is evident that if Dΐυ encircles no branch-point of S, namely if any curve
connecting any two points in Dw encircles no branch-point of S, then Dw

has no overlapping part. Hence Dw encircles at least one branch-point B
of S without including it, since D has some overlapping parts and since Dw

include no branch-point by our assumption. The inner boundary of this
encircling part of Dιυ makes an arc (or a loop) Cw for which

d arg dw <* — π

holds, since the positive direction on Tϊυ coincides with the clockwise direction
on Cιυ. Namely, it is necessary that there exists at least an arc Cz on Γ2

for which
r

d arg df\z) <; — π

if f(z) is at least two valent and if we have (2. 2). Hence f(z) is univalent if
we have the condition (i).

(ii) Since we have|(2. 3) and since — J d arg df(z) is a positive integer,

we obtain (2. 2). Subtracting (2. 3) from (2. 2) we obtain (2.1) for arbitrary
arcs Cz on ΓZ} which proves the case (ii) by using the condition (i).
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3. The fundamental theorems.
THEOREM 1. Let w = f(z) be regular for a closed domain Dz whose boundary

Γz be a simple closed regular curve and f ( z ) =t= 0 on ϊ\ Let zι and Zj, i, j =
1,2, be the roots of the equation

d arg df(z) = 0 on Γg.

If there holds one of the following conditions:

(i) Max I d arg df(z) <3τr, z£ Γβ:i ,j J

(ii) J d arg df(z) = 2π

and

ΓMin I d arg df(z) > — π.

then f(z) is univalent in Dz

PROOF. By Lemma l,/(z) is univalent, if we have

(3. 1) I d arg df(z) <?>π z € Γ*
?/

for arbitrary x and jy belonging to Γz.
On the other hand, the maximum of the integral in (3. 1) occurs only

when f(x) and f(y) are points of inflexion on YWi the image of I\. Namely
it occurs when # and y are the zeros of d arg <#*(z) = 0 on IV Hence /(^) is
univalent if we have the condition (i).

Analogous reasoning with condition (i) of Lemma 1 yields the proof of
the case (ii), which may be omitted here.

THEOREM 2. Let f(z) be regular and f ( z ) Φ 0 in a closed convex domain D
whose boundary L be a regular curve. Further let Zt, i — 1, 2, ..... be the roots
of the equation

(3.2) . = Q ̂  L
d arg dz

If there hold the relations

(3. 3) sJt eia f(Zi} > 0 (a: a real constant)

for all Zi, then f(z) is univalent in D.

PROOF. Since D is a convex domain, d ^arg dz > 0 on L. Hence the
equation (3. 2) is equivalent to the equation d arg df(z) — 0 on L.

Now since f(z) Φ 0 in D, arg f(z) is one-valued in D. Accordingly arg
df(z) is also one-valued on L if we take a suitable branch of arg dz since

arg df(z) = arg/(z) + arg dz.

By noticing this fact and by the assumption (3. 3), we have
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(3. 4) - y < a + arg df(z{) - arg dzt < ~-

and

(3. 5) — — < — oί — arg df(zj) + arg dZj < ̂

for every zt and z j f i > j satisfying (3. 3). Hence we have

— π < arg df(Zt) — argd/O^) + arg dz5 — arg dzt < π

where 2π ̂  arg dZi — arg dzs ^ 0 since D is a convex domain. Thus we have

— 7Γ < arg df(Zt) — arg df(Zj) < 3τr

which is equivalent to

Γ- π < I d arg df(z) < 3τr.

This inequality shows that f(z) is univalent in D by Theorem 1.

COROLLARY 1. Let f(z) be regular for \z\ ̂ r. Let θι and Θ3,i,j~ 1,2, ----
be the roots of the equation

(3.6) l 4 - 3 ί - τ =0, \z\^r,
/ (Z)

If there holds one of the following conditions

(i) OteίΛ f(reίθή > 0 (a : a real constant) for all θj satisfying (3. 6),

(ii) Max [
'U J \ f(z)

θj
(iii) f ( z ) =t= 0 in \z\ ̂  r and

θi
in i

t,J J

\z\ - r,

Min

then f(z] is univalent in \z\^r.

PROOF. By a simple calculation we see that

J arg cfe

which proves this corollary by Theorems 1 and 2.

REMARK. As an immediate result of Corollary 1 with condition (i) we
obtain Theorem B stated in §1.

4. Special cases.

THEOREM 3. Let w = f(z) be γegular for a simply connected closed domain
D whose boundary Γ consists of a regular curve and f(z) Φ 0 on Γ. Further
let Cι be the part of Γ on which d arg df>Q and C2 be the part of Γ on
which d arg df<: 0. If f(z) satisfies for Γ one of the following conditions
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(i) J d arg df(z) < 3τr

(ii) f(z) Φ 0 in D and

j d arg df(z) > - π.

(iii) f(z) Φ 0 in D and

j \d arg df(z)\ < 4π

r

then f(z) is univalent in D.

PROOF. Under our assumption and the conditions (i) and (ii) we obtain
(2.3) and (2. 2) with (2.1) in Lemma 1 for arbitrary arcs Cv since

/ d arg df< I d arg df< 3τr
Cv Ci

and since

. / d arg df > I d arg df > — π

Cv GZ

and

I d arg df= 2π

r

in view of f(z) Φ 0 in D. Thus /(a:) is univalent by Lemma 1, if we have (i)
and (ii).

The proof of the case (iii) is as follows:
We have

/ \d arg df\=ld arg \df — I d arg df < ±π.

r CΊ cz

On the other hand we have

/ d arg df= I d arg df'+ / c? arg ί^*= 2τr.

r CΊ 6*2

Hence we have

I J arg df< 3τr

which completes our proof by the condition (i).
REMARK. As a generalization of Theorem A, Theorem 3 ίmay not be

so important. But it should be noted that the method of proof is quite
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different from that of Theorem A.
As an application of Theorem A we can obtain the following

THEOREM 4. Let f(z) = z + a 2z* + fo? regular for \z\ <; 1 #ra/

(4.1) [A*) I < χ/6~ \f(z) I in \z \ ̂  1
(z) 7S unίvalent in \ z \ ̂  1.

PROOF. By our hypothesis (4.1) we have f(z) Φ 0 in |z| <Ξ 1 and

/
Hence we have

(4-2) I

since

f(z)

yfft \ 2

-7Γ] +2

for 1*1 =1.

-% Γ d» < 6τr

(4. 2) is equivalent to the following

^ ) dθ<6τr(4.3)

which is also equivalent to the following inequality
-2*/

since Γ zf"
J ®7' =^Q in view of the fact that f(z)*Qin . By

employing Schwarz' inequality we obtain

J

which shows that f(z) is univalent in \z\ ̂ 1 by Theorem A.

5. On the case of meromorphic functions.

THEOREM 5. Letf(z) be regular for a simply connected closed region D except
for a simple pole. Let the boundary Γ of D consist of a regular curve and
f ( z ) Φ 0 on Γ. If there hold the following relations
(5. 1) d arg df(z) < 0 on Γ
and

(5.2) I d arg df[z) = — 2π
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then f(z) is univάίent in D.

PROOF. Since f(z) has a simple pole in D and since we have (5. 2), there
exists no branch-point in the image domain Dw of D by Morse-Heins'
theorem [7].

If f(z) is n-valent and if n > 2, then the image region Dw can be cons-
idered as a one-sheeted region on an at least ^-sheeted Riemann surface S.
Since f(z) has onlyl one pole, only one sheet of S has the point at infinity
which is an interior point of Dw. Let us take up this sheet in particular. The
point at infinity is not a branch-point on this sheet and hence there exist
at least two branch-points which are exterior points of Dΐυ. So long as Όw

does not encircle two branch-points in pairs, there exists no overlapping
part in Dw. Hence Dw encircles these points respectively without including
them since Dlυ has some overlapping parts. The inner boundary of these
encircling parts make loops (or arcs) I\ and Γ2 for which

d arg df<^ — π, i = 1, 2, ..

r <
hold as we see in Lemma 1. Hence

d arg df ^ — 2π.

o

Consequently for the complementary arcs C of Γi -f Γ3 we have

(5.3) fdzrgdfX) C Φ O
a

since we have (5. 2). Namely, if f(z) is at least two valent, then there exist
at least two arcs whose sum satisfies (5. 3).

On the other hand we have (5.1) and hence there exists no arcs satisfying
(5. 3). Hence f(z) is univalent in D.

COROLLARY 2. Let f(z) = h a0 + a\z + be regular for 0 < \z\ g 1.z
If there holds the relation

(5.4) ~~ 2 < 1 + ai Sf <0 °n lzl = 1'

then f(z) is univalent in \z\ <Ξ 1.

6. On the case of regular functions defined in an annulus.

LEMMA 2. Let w = f(z) be regular and single-valued in a doubly connected
closed domain D which does not contain the point at infinity and bounded by
two simple closed regular curves Ci and C> (C2 is inside Ci)

G : z = Zi(t) (0 S t ̂  1) ί = 1,2.

Further let f(zτ) Φ/fe) for arbitrary two points zγ and z^Zi Φ 23 on d, i =
1,2. Suppose that f(z) Φ 0 in D. Then the image region Δ of D mapped by f(z)
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is bounded by two simple closed regular curves

Ti : W = w(Zi(t)\ i = 1, 2

and this function maps D univalently onto Δ.

PROOF. By our hypothesis, Γ«, / = 1, 2 are simple and closed and

Hence Iλ, i = 1, 2 are also regular.
By the assumption that /'(z) Φ 0 in D, we obtain

(6. 1) / d arg df(z) = J d arg = 2ττ or -

by Morse-Heins' theorem [7], where the integrals are taken so that z moves
round on CΊ and C2 in the counter-clockwise direction.

First we consider the case where the integrals in (6. 1) are equal to 2π.
Then w moves round on ΓΊ and Γ^ in the counter-clockwise direction when
z moves round on Ci and C2 in the counter-clockwise direction. Now let ω
be an arbitrary point which does not lie on Ti, i = 1,2 and let n(D, ω) denote
the number of ω-points of f(z) in D. Then we have

n(D, ω) = — — / d arg

1 Γ f(z)
27Γi J /O) -

1 ff(*ι(t)

2τri J f(zι(t)]

(f(z) -ω)- ~f<* arg(/(2) - <

1 Γ /(«)
ω ~ 2« J /(2)-ω

)^w rVwo) t)
) - ω 2^r/ J /fca(0) - ω

= ... L Γ dw _ 1 Γ ^̂
2ττ2 J ^ — ω 2τri J ^ — i

Γι

where the integrals on ΓΊ and Γ2 are also taken in the counter-clockwise
direction by the above statement.

Thus we see that (i) n(D, ω) = 0 when ω is inside I\ and Γ. (ii) w(D, ω) =
1 when ω is inside Γτ and outside Γ > (iii) n(D, ω) = — 1 when ω is inside IΛ
and outside Γ2 (iv) n(D,ω) = 0 when ω is outside Γϊ and Γa.

Since n(D, ω) ̂  0, the case (iii) is a contradiction, unless there exists
no point outside ΓΊ and inside IV

Hence D is mapped by f(z) univalently onto Δ bounded by Γ\ and Γ3

where Γ2 lies inside I\.
In the case where the integrals in (6. 1) are equal to — 2τr the proof is

quite analogous to the above one and may be omitted. We merely note that
in this case the image curves ΓΊ and I\ change their position.

THEOREM 6. Let f(z) be regular, single-valued andf(z) Φ 0 for r <Ξ \z\ <=
Suppose that
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(6.2) 2 > l + s J ί ~ > 0 on\z\=r.
j (z)

Let θt and θj (i, j = 1,2, . . . . ) be the roots of the equation

(6.3) 1-f

If there holds one of the following conditions :

(A) For all θ} satisfying (6. 3)

$teia f'(Retθι) > 0 (a: a real constant)

Jt
ax f (l + K ̂ f )

ίJ J \ J (Z) /
(B) Max l + K dθ < 3τr, \z\ = R,

( C ) l + X - d θ = 2π, \z\=R

and

f'V zf'(z)

^J ( 1 + Ryώ-WJ (*+*W »>-*> '" =
θj

then f(z] is univalent in r <^ \z\ ^R.

PROOF. Since f(z) 4=0 for r <> \z\ ^R, there exists no branch-point in
the image region of r<L\z\<*R and hence we have

by making use of (6. 2).
Let LI and Z2 be the image curves of \z\ — r and \z\ — R, respectively.

The positive direction on LI and L> are decided by (6. 4). Let R be the image
region of r <Ξ \z\ ̂ R which is of course bounded by LI and L«. Since we
have (6.2) and (6.4), L{ is a simple closed regular curve and the image
region of r^ \z\ <r+£ exists outside Lγ.

Now let us show that L± is also a simple closed regular curve.
By (6.4), LZ encloses a simply connected region D on the Riemann

surface S generated by f(z) containing the image of R— £ < Ξ | z | < Ξ / ? i f we
neglect the existence of LI.

Suppose that D contains the point at infinity, then R also contains the
point at infinity, since R is the common part of D and the outside of Lv. But
this is a contradiction since f(z) is regular for r^ \z\ ̂ R. Hence D does
not contain the point at infinity. Consequently we can apply the discussion
in §2 and §3 to D. Then the conditions (A), (B) and (C) are the sufficient
conditions for L>2 not to have multiple points.

Thus all the hypotheses of Lemma 2 are satisfied and hence f(z) is.
univalent for r<; \z\ < R.
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As an immediate result, making use of the" condition (A), we obtain
the following theorem which is again an extension of Theorem B.

THEOREM 7. Let f(z] be regular and single-valued for r <; \z\ <Ξ R. Suppose
that

y frt(~\
2 > l + 9t 2- >0 on \z\ =r

and that in r <^ \z\ <; R
Re1" f ( z ) > 0 (a\ a real constant}

then f(z) is univalent for r <Ξ \z\ ^R.

Corresponding to the case where the integral in (6. 1) is equal to — 2τr
we obtain theorems analogous to Theorem 6 and 7.

THEOREM 8. Let f(z) be regular, single-valued and f ( z ) Φ 0 in r <Ξ \z \ <J R.
Suppose that

(6. 5) - 2 < 1 + ̂  < 0 on \z\ = R.

Let θi and Θ3 (i,j ~ 1,2, ---- ) be the roots of the equation

(6.6) l + 3

If there holds one of the following conditions :

(A7) For all Θ5 satisfying (6. 6)

f'(reίθί) > 0 (a : a real constant)

M i n l + f t d θ > -3τr, \ z \ = r
rt

in /
ΊJ J

and

Max I f 1 + gt ίί-̂ - ) <# < ar, |2| =x Γ f l+0t?5
,^ J V f(

then f(z) is univalent in r g | z \ < R.

The proof of this theorem is analogous to Theorem 6 and may be
omitted.

As a direct consequence we have

THEOREM 9. Let f(z) be regular and single-valued forr^ \z\ <R. Suppose
that

<0 on \z\ =

and that for r <; \z\ ̂  R
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sJteία> f ( z ) > 0 (a: a real constant)

then f(z) is univalent for r ̂  | z \ <^R.

By making use of the results obtained in §4 we have

THEOREM 10. Let f(z) be regular, single-valued and f(z) Φ 0 for r <Ξ \z\
^R. Suppose that

(6.7) 2 > l + 9t?^y- >0 on \z\ = r.

one of the following relations

(a) / 1+ 3Ϊ
Λ*)

where a is a certain number not less than 3/2, ίfee« /(z) is univάlent for r

PROOF. As in the proof of Theorem 6 we have (6. 4). In particular we
have

(6.8) /

It was proved in [4] that if we have (6. 8) the condition (b) is a sufficient
condition for the condition (a). As for (a) the proof is obvious by Theorems
3 and 6.

7. Generalizations to the functions defined in an n-ply connected
domain. If we apply the method of proof in Theorem 6 together with
Morse-Heins' theorem to regular and single-valued functions defined in an
^-ply connected domain which does not contain the point at infinity and
bounded by n simple closed regular curves, then all the results in the
preceding section can easily be extended. For example we obtain the
following

THEOREM 11. Let f(z) be regular and single-valued in a closed convex
domain D which has n — 1 circular holes \z — aι\ < ri, i = 1, 2, . . . ., n — I, in
it. Suppose that

2 > l + 8t ( 2"f/f / ( g ) >0 on \z-ai\ =r«
/ (z)

ι'= 1,2, . . . . ,w- l
and that in D

$tέ*f(z) > α (a : a real constant),

then f(z) is univalent in D.

THEOREM 12. Let f(z) be regular and single-valued in a closed domain D
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consisting of a circle \z\ < R with n — 1 circular holes \z — aι \ < ri} i = 1,2,
, n — 1, in it. Suppose that

2 > 1 + W(~—rTΓ^ > ° °n \z - aι\ = n, ι = 1,2, ....,»- 1.
/ ί2')

If f(z) satisfies on \z\ = R one of the following conditions'

(in)
f'(z)

< 2 (iv)
/'(*)

<2

/(z) is univalent in D.

In order to prove these theorems it will be sufficient to extend Lemma
2 to the following form.

LEMMA 3. Let w — f(z) be regular and single-valued for an n-ply connected
closed domain D which does not contain the point at infinity and bounded by
n simple closed regular curves d, i ~ 1,2, , n,

d : z = Zi(t) (0 ̂  t S 1), i = l,2,...., n.

Further let f(z\) Φ/fe) for arbitrary two points zτ and z^} zτ Φ 22 on d i =
1,2, , n. Suppose that f(z) Φ 0 for D. Then the image region Δ of D under
f(z) is bounded by n simple closed regular curves

Ti: w = w(Zi(t)}} i = 1,2, , n

and this function maps D univalently onto Δ.

PROOF. We can easily see that Γ^, ί=l,2, . . . . , n are simple closed
regular curves. Let us suppose that Cj} j — 1,2, . . . . , n — 1 are inside Cn

without loss of generality. By the assumption that f'(z) =t= 0 for D, we obtain

(7.1) 2(2 -ri)τr = Jd arg df(z) - ]£ J d arg df(z)

<>'n J=1 C,

by Morse-Heins' theorem [7], where the integral is taken so that z moves
round on Cι, i = 1,2, , n in the counter-clockwise direction. Since IΛ ,

i = 1,2, , n are simple the integrals I d arg df(z), j — 1,2, , n are
c}

equal to 2π or — 2π. Thus we have n cases (i) I d arg df(z) = 2π, i = 1,

^
2, , n, (ii) / d arg <#*(z) = — 2π and any one of the integrals I d arg df}

Cn Cj

j = 1,2, , n — 1 is equal to — 2π and the others are equal to 2τr, which
gives n — 1 cases.

Analogously to Lemma 2 we consider the value n(D} ω) for every ω and
in each case stated above. Then we have our conclusion by similar conside-
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ration to that of Lemma 2. The detail may be omitted here.
We omit aiso the proofs of Theprems 11 and 12 noting only that the

conditions (i)-(iv) can be obtained from (b) in Theorem 10 by choosing a
suitably.

8. Sufficient conditions for the p-valency of regular functions. We
shall generalize some of the results in §3 and §4 to the case of ^-valency.
For this purpose we need to extend Lemma 1 at first.

LEMMA 4. Let f(z) be regular for a simply connected closed domain D whose
boundary Γz consists of a regular curve and f(z) =t= 0 on IV Suppose that

(8.1) I d arg df(z) = 2kπ.

?z

If we have for arbitrary p — k -f 1 arcs d, C«, . . . . , Cι,-j3+ι on the boundary IV
of D which do not overlap one another

(8. 2) J d arg df(z) > - (p - k + \)π
Cι + Cz+ + ...+Cp_jc + ι

or

(8. 3) J d arg df(z) < (p + k + l>r
CI + CZ+... + CP-K+I

then f(z) is at most p-valent in D.

PROOF. If f(z) is w-valent where n > p + 1, then we can consider the
image region Dw of D under f(z) as a one-sheeted region on an at least
^-sheeted Riemann surface S.

Since Dιυ has at least one w-valently overlapping part and since we must
have a part of Dw encircling a branch-point of S in order to move from
one sheet of the /2-valently overlapping part to another, there exist at
least p branch-points of S encircled by parts of Dlυ. Here and what follows
the number of branch-points are counted in accordance with their multip-
licities. Furthermore we say that a region R encircles a point P if there
exists at least a curve in R connecting two points in R whose projection
on the w -plane encircle the point P whether it is included in R or not.

On the other hand there exist k — 1 branch-points in D, of course
encircled by parts of Dw by (8.1). Hence there exist at least p — k + 1
branch-points of S exterior to Dw respectively. Let Bί} i = 1,2, ,p — k + 1
be the projections on the w -plane of the branch-points stated above and let
Q be a point on the w -plane overlapped by Dw 72-valently. Since the projections
of the inner boundaries of the encircling parts also encircles B{, i~ 1,2,

, p — k + 1 respectively, we have arcs d, i = 1, 2, , / > — £+! on Tw,
the boundary of Dw, which begin from a point on BiQ> i = 1,2, , p — k
+ 1 and end also at a point on BiQ, i = 1,2, ...., p — k + 1 encircling Bι, £
= 1S2, ...., p — k-t- 1 once negatively, respectively.
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Thus we have p — k + 1 arcs on Γw which have no common parts except
perhaps the ends of them and for which

d arg dw <Ξ — π, i = 1,2, .. .., p — k 4- 1

r<

hold. Hence we have

J
J arg df(z) ^ - ̂  - k + IV

+c'.μ-fc+i

if /Oε) is at least £ + 1 valent in D.
Accordingly f(z) is at most ^-valent in D if we have (8. 7) for arbitrary

p — k + 1 arcs Cι;C2, ---- , C^-Λ+I on the boundary Γ« of D which do not
overlap one another. We note that (8. 2) is equivalent to (8. 3) since we have
(8. 1). Thus the proof is complete.

THEOREM 13. Let f(z) be regular for a closed convex domain D whose
boundary L is a regular curve. Suppose that f(z) has exactly p — 1 critical points
oίi, i = ~L,2, . . . ., p — 1 in D and no critical point on L. If there holds the
inequality

Γ P~l Ί
(8. 4) title1* f(z)l Π (z - cίi) > 0 (a : a real constant)

L ί-i -J

on L, then f(z) is at most p-valent in D.

lί-l p P-l

PROOF. Now since /(*)/ Π(* - #0 Φ 0 in D by (8. 4), arg /fe)/2(* ~ α')
ί=l L ί=l

is one-valued in D. Accordingly arg df(z) is also one-valued if we take suitable
branches of arg (z — O.L), i = 1,2, , p — 1 and arg dz since

arg d/fe) = arg f'(z)/ V (2 — at) \
L /TT J

+ 2 arβ(2 — «*) + a^g <&•

By noticing this fact and by the assumption (8. 4), we have

and

— -^ < a 4- arg ύξ/*(Zi) — arg dzi — 2 arg (ZL — αfc) < y
fc = l

- ^ < — Λ - arg J/(2^) 4- arg dz} + 2 ar^ fo — «4) <2
Λ= 1.

for any Zt and 2.;, / > j. Hence we have

— π < arg dftzi) — arg df(z3) + arg cfe^ — arg
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p-l p-1

4- 2 ars(zj — #fc) —
fc=l fc = l

where 2τr > arg cfe< — arg cfe , ̂  0 and 2π ;> arg («< — αfc) — arg (2j — ocfc) ̂  0,
£ = 1,2, ,p — 1, since £) is a C3nvex region. Thus we have

- π < arg f ( z t ) - arg /(s,) < (2p + l>r

which is equivalent to

fπ < I d arg df(z) < (2p

This inequality shows that /(2) is at most p-valent in D, by Lemma 4.
As an immediate result we obtain the following

THEOREM 14. If f(z) = 22? + e2,+i2:p+1 + ... is regular for \ z \ ̂  r and if we have

(8.5) RtePfW/z'-1] > 0 (a: a real constant)

/or |z| ^r, then f(z) is p valent for \z\ <^r,

REMARK. The condition (8. 5) in Theorem 14 can be replaced by

(8.6) P> 2.

which is seen as in the case p = 1.

Making use of Theorem 14 we can extend many theorems on univalent
functions to the case of ^-valency. But we shall here enunciate only a
generalization of Noshiro's theorem concerning the radius of univalence and
the radius of convexity [9],

THEOREM 15. Let f(z) = z» + ap+ιZp+l + be regular for \z\ <; 1 and let

< M for \z\ <J 1. Then f(z) is p-valent in \z\ < — and f(z) maps

—) + ̂ ί1 -
11 — 1 where M* = (Ml 1 +

2 I \
valently convex domain.

PROOF. Let us put g(z) = ^7:—. Then ^0) = 1 and |̂ )| < M for \z\

< 1. Hence we obtain

I M2 - g(z)
?L
M J

(war)

by Schwarz' lemma. Hence we have (8. 5) if \z\ < jr?.

As for the convexity the proof is quite analogous to the case of univalence
and may be omitted here.
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THEOREM 16. Let f(z) be regular for a simply connected closed domain D
whose boundary Γ consists of a regular curve and f'(z) =fc 0 on F. Suppose that

I d arg df(z) = 2kπ.

r

Further let d be the part of Γ on which d arg df>Q and C3 be the part of
Γ on which d arg df<^0. If f(z) satisfies one of the following conditions:

(A) J d arg df(z) < (p + k + l)τr,

Ci

(B) J </ arg

(C) \d arg <//(*) I <2(p + ΐ)π

r

ί/ί^w f(z) is at most p-valent in D.

We can prove this Theorem 16 analogously to Theorem 3 by making
use of Lemma 4 and the proof may be omitted here.

COROLLARY 3. Let f(z) be regular for \z\ <Ξ 1. Suppose that f(z) has k — 1
critical points in \z\ < 1 and no critical point on \z\ = 1. Further let d be
the part of \z\ = 1 on which

I + ̂ ^M > o and put x = \ d arg z
f ( z ) J

Ci

and C* be the part of \z\ = 1 on which

1 + ^ ̂ ΓΓ~ ̂  ° and hence 2π ~ x = ί ̂  arg 2.
/ V^/ t/

Cϋ

If f(z) satisfies for \z\ = 1 owe of the following conditions

(a)

ί(
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(CO 1+Stt^

then f(z) is at most p valent in |z| <s 1.

This is an extension of a result given in [4,3].
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