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J. von Neumann has classified factors in some classes, type I, II, III and
finite, infinite in his monumental works “Rings of operators”. The really
interesting is the theory of type II, (type II and finite). As a special one of
such factors, F.]J. Murray and J. von Neumann [8] investigated approximately
finite factors and they have many interesting results. I. Kaplansky [6] gene-
ralized this theory to general W+*-algebras. In these theories, the separability
condition for the underlying Hilbert space is essential. The purpose of this
paper is to generalize these theories in non-separable caszs, on the basis of
the theory of direct products of W+-algebras in the preceding paper[7].

In the first section we shall study some preliminary lemmas. The second.
section will be devoted to the study of factors. A factor will be called to
be approximately finite if it is of type II, and generated by a family of
subfactors of type I which mutually commute. Then two approximately
finite factors are algebraically *-isomorphic to each other if and only if the
cardinals of families of subfactors mentioned above are identical. Murray
and von Neumann's approximately finite factor is considered as a special
one.

In the final section, we shall generalize the above considerations for
factors to general W*-algebras. A W+*-algebra will be called to be approx-
imately finite if it is of type II, and generated by W*-subalgebras of type I'
which mutually commute. Especially if these W *-subalgebras have no
commutative part in every central decomposition, then it is called to be
uniformly approximately finite. Then every approximately finite W*-algebra
can be represented as a direct sum of uniformly approximately finite W~
*-gubalgebras, and a uniformly approximately finite W*-algebra is a direct
product of an approximately finite factor and a commutative W*-algebra.

1. Preliminaries. In this paper, a W*-subalgebra of W*-algebra will
be meant a weakly closed self-adjoint subalgebra. Let S\(A€A) be a family
of sets of operators, by R(S,; M € A) we shall mean the smallest W*-suba-
lgebra of full operator algebra which contains all S,. A W+-algebra is called
o-finite if any family of projections which are mutually orthogonal is at most
countable. A W+-algebra M is finite it U*U = I implies UU* = I for any
unitary operator U € M. J. Dixmier [1] showed that in a finite W*-algebra
there exists a unique center valued trace §.

Let M be a finite W*-algebra of type II, then one can represent M
faithfully as a standard W*-algebra (in the sense of I E.Segal [11]) on a
suitable Hilbert space §. Moreover if M is o-finite, then there exists a
vector x € H(ixi =1) with following properties: If we define a positive:
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linear functional + on M by
(A) = (Ax, x),
‘then = is a complete trace, that is, +(A*A) =0 if and only if A =0 and
T(AB) = 7(BA) for all A,B € M. Put
<A,B> =1(B*A) and [[A]] = <A, A>?,

then <, > satisfies the common properties of the inner product and M
‘becomes a prehilbert space. Let & be the completion of this prehilbert space,
then IM can be represented as a W+-algebra on § faithfully. It is known
that M on & is unitarily equivalent to M on & (cf. [4],[10], [11]).

The next lemma is due to F.J. Murray and J. von Neumann [8; Theorem
1] in the case of factors.

LeEMMA 1.1. Let M be a o-finie finite standard W*-algebra and [[ - 1] be the
melric as above. Then the strong (weak) closure of a self-adjoint *-algebra in
M coincides with the metric closure of it.

Proor. Let § be the underlying Hilbert space and x be the vector which
define the metric [[ - ]]. Let N be a self-adjoint *-algebra in M and N,
N. be the closure of N by the strong topology and the metric topology
respectively. It is obvious that N, & N.. Let A be an arbitrary element in
N,, then there exists a directed set A, in N which converges to A in the
metric topology. We can easily choose a subsequence A., which converges
to A in the metric topology. By an analogous way to the proof of [8, Lemma
1.5.4], we can assume without loss of generality that |A,, | =< K for all 7.
For any B M’

((Ag;— A)Bx =< B [[Az,— Al]>0 as 1 — oo,
By the standardness of M, [Mx] = £. Hence for all y €
((Ag,— Ay —0 as i—oco.

In other wards, A« converges to A in the strong topology. This shows
that N; 2 N.. Thus we have proved that N; = N..

LEMMA 1.2. Let M be a o-finite finite W*-algebra and {Nx; A € A} be a
famiiy of factors of type 1 in M which comimute with each other. Then RN, ;
A € A) is a factor too.

Proor. We can assume without loss of generality that IM is standard
on the acting space. Let S be the algebra which is generated algebraically
by all N.. Then S is weakly dense in R(IN,; A € A). Now we shall define
~and [[ - ]] as above. Let A be an arbitrary central element in RIN,; A
€ A), then, by the preceding lemma, for any & >0 there exists a B &€ S
with

[[A—Bll<é&
Then there exist Ny, ...., N,, such that B is contained in the algebra N =
RN,; i=1,...., n). Itis clear that N is a factor of type I. For any X €

N, we have
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[[(B—+B)HX—-X(B—-mBDN]=[[B—-—A)X—-—XB-A)I]l<2'X..

Hence we have
([B —(B)Ill< 2¢
(cf. [2,Lemma 4.7.1]), moreover we have
[7(B) —1(A)] = |7(B - A)| =[[A—B]I< &
Accordingly
[[A — (A =<[[A — Bll + [[B — =(B)1]] + [[((B) — T(A)I]] < 4¢.

Since € is arbitrary, we have [[A — +(A)I]] = 0, which shows that A = (A)I
and RIN,; A € A) is a factor.

The next lemma can be proved by an analogous way to the proof of
[7; Theorem 5] and we shall omit its proof.

LEMMA 1.3. Let N be a factor of type 1 in a W*-algebra M, the latter
being not of type 1. Then M is *-isomorphic to the direct product of N and a
W*-algebra VI, which is *-isomorphic to the contraction of M to the range of
a minimal projection in N.

LEMMA 1.4. Let M be a W*-algebra which is not of type 1, then, for any
positive interger p, we have

M = M1 ® Mz
where M, is a factor of type 1.

Proor. Consider p families of projections {Pn}, ....,{Pm} such that all
projections are mutually orthogonal and Py, .. .., Py are mutually equivalent
for every A. Choose a maximal p families {Pi}, - ..., {Pws} With this property
by Zorn’s lemma and put

P, = > P fori=1,....,p.
A

Then it is clear that they are mutually orthogonal and equivalent. If @ =

D
I— ZPi is not zero, then QM@ is considered as a W*-algebra on the
i=1 )
range of @ which is not of type I. Hence we can easily choose orthogonal
equivalent non-zero projections &, ........ , @, which are contained in .
This contradicts to the maximality of the sets {P.}, -.-.,{Pn} and we have

»
I=2P.

i=1

Since P; are mutually orthogonal and equivalent, we can easily construct
a system of matrix units in IM whose diagonals are P;. The W*-algebra
generated by these matrix units is of type I, hence the lemma is the im-
mediate consequence of the preceding lemma.

LEmMA 1.5. Let N be a factor of type 1, in a W*-algebra M, the latter
being not of type 1. Then, for any q = p which is divisible by p, there exists
a factor N, of type I, which contains N.
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Proor. Let 7 = g/p. By the preceding lemma, we have

M =N & M,.
It is clear that IM; is not of type I. Hence, we have
M, = N (0 M.,

where N, is a factor of type I,, so that
M =N @ N. X M..
Put N, = N &% N, then N, is a factor of type I, and contains N.

REMARK. In Lemmas 1.3,1.4 and 1.5, we have assumed that IM is not
of type I. In the case of type I, we can state analogous ones under suitable

conditions.
Let M be 2 W+*-algebra and E be any projection in 1M, then we shall
denote the contraction of IM on the range of E as Mg

LEmMA 1.6. Let N be a factor in a finite W *-algebra M, then
RN, Z)=NQZ
where Z is the center of M.
Proor. As R(N,Z) is a W*-subalgebra in a finite W*-algebra, R(N, Z)
is also finite. Suppose that R(N, Z) is a o-finite, then there exists a complete
trace T such as at the beginning of this section. Let 7, and T, be its con-

tractions on N and Z, then 7, and =, are traces in these W¥*-algebras. As
Z. is contained in the center of R(IN,Z), we have
(AB) = A'B
where A, B are arbitrary elements in N, Z respectively and j is the center
valued trace in RN, Z). It is known that +(X) = ~(X") in RN, Z) and then
T(AB) = T(AB)") = 7(A'B) = 7(t.(A)IB) = 7.(A) T(B).

Therefore, by an analogous way to [8; Theorem 1], we can prove the lemma,
since N 1 Z = {al}.

Now we shall consider the general case. We can choose a family E) of
central projections in M which are mutually orthogonal such that each
contraction R(N, Z)s, is o-finite. It is clear that N, are factors. Therefore,
we have R(N, Z)s;, = N5, & Zg, and this implies that

RN,Z) = 2 N5 ® Zs,.
On the other hand (N ®Z);; = Ng, © Zg, and this implies that
N®Z= 2 Ny® Zs,
Hence we have R(N, Z) = NA ® Z.

2. Generalized approximately finite factors. In this section, we shall
concern with factors.

LEMMA 2.1. Let M be a factor of type II,. Suppose that there exists a
Samily {M, ; A € A} with the following properties :
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1) each M, is of type 1 (necessary finite),

(2) ML s commute with each other in elmentwise,

B) M =RIM\; A€ A).
Then there exists a family {Nu; n € M} which satisfies the conditions (2), (3)
and

(4) each N, is of type I..
Moreover the cardinal of {IM\; A € A} as a set is identical with that of {N,;
u € M}

Proor. Split A into mutually disjoint subsets {Az; @ € A} such that
A= L/ Ao and each A4 is countably infinite. Let M® = R(M.,; A € Aa),

aed

then it is clear that there exists an increasing sequence {P,} of factors of
type I in M with M = R®,; n=1,2,....). Hence there exists an increasing
sequence {Q,} of factors of type I, in M?* with M?® = RQ,; n=1,2,....)
(cf., [8, §4. 4]). Put M? = Q,. By induction, we shall define M% with following
properties

O RMZ;2=1,2, ....,n) = Qy,
(ii) M®’s commute with each other.
Suppose that M¢, ....,M%_, are already defined. By assumptions
RM?;i=1,2,...., n—1)=Qu-1CQu

and Q,-1, Q» are of type I,*_;, I.* respectively. By an analogous way to the
proof of [7,Lemma 4.1.2], we can take a factor M2, of type I, such that
RMY?; i=1,2,....,n) = Q, and M% commute with Q,-1. Hence the sequence
{M?} has the desired properties. Moveover, we have
RM;; n=12...)=RQn; n=12,....) = M*

If we write the family {M?%; a € As; n=1,2,....} by {N.; p € M}, then
it is obvious that this family has the disired properties.

By the construction of {Nu; u € M}, the cardinal of this family equals
to that of {IM); A € A}

The following lemma is a slight generalization of a lemma due to M.
Nakamura [9] and we shall omit its proof.

LEMMA 2.2, Let ML be a finite factor which is generated by a finite number

o subfactors My, .. .., M, where M's commute with each other. Then the trace
on M s multiplicative in the sense of

'T(AIA;)_ e .An) = T(A[)T(A_g) ........ 'T(An)
for A€ M; (=12, ....,n).

THEOREM 2.1. Legt M be a finite factor. If there exists a family {IM\; A €
A} of subfactors satisfying the conditions (1), (2) and (3) in Lemma 2.1, then
the cardinal of the family is uniquely determined by M. '

Proor. Let § be the Hilbert space on which M acts as a standard factor
in the sense of 1. E. Segal [11]. By Lemma 2.1, we may assume that each
M, is of type I, and there exists a system of matrix units {W{): 4,7 = 1,2}
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in each M. Put U, = W)+ W{, then U, is unitary and M, is generated
by W and U, Let ® be the group generated by all U, and N, be the
commutative *-algebra generated by all W{}} and N be its weak closure.
Then N is a commutative W+*-algebra in M. We can easily show that
M = RN, ).

Let = be the trace of M, then by the standardness of IM on §), there
exists a vector x € O such that 7(-) = (- x, x). It is obvious that the contraction
of = on each M, is a trace of M,, hence 7(W{)) =0 and ~(U,) =0.

Next, for any U € &, we shall define the manifold Mz by

My = [UAx; A € N].
We shall show that if U =7 then Mv is orthogonal to M, Let A, B be
arbitrary elements in N, then for any & > 0 there exist A,, B, in N, such

that
|(UAx, Bx) — (UAx, Byx)| < &/2

and

|(UAx, Byx) — (UAwx, Box)| < &/2.
For these U, Ay, B, we can find indices A, ...., A, such that U, A,, B, are
contained in R(My,; ¢ = 1,2, ....,n). Therefore, we can write as follows:

A A — (
Ay= 2 atn, . p WDMw . WD Men, By = 22 Bay, .., WM M

where &;, Ai,p, Ai,q are 0 or 1. Then by using Lemma 2.2, we have
(UApx, Box)

= 220, By (UL U WOP A0 WA, ADALG A M)

— ZE“Mw-MnB)‘L---Mn(U;: Wﬁf{)"\"”x: Wﬁj‘{)v"t-qx) = 0.
Accordingly, we have
|(UAx, Bx)| = |(UAx, Bx) — (UAox, Bo%)|
= (UAx, Bx) — (UAx, Byx) —(UAx, Byx) — (UAyx, Byx)|
< &.
Since €& is arbitrary, this shows that (UAx, Bx) = 0. This implies that if
U =+ 1, My is orthogonal to M; and, by this fact, we can easily prove that
My is orthogonal to My for U,V € @ with U = V.
According to the standardness of M on ), [Mx] = § and, as we noticed
in the above, M = R(N, ). Hence

H=2dMs
Ue®

It is clear that My is the image of M; under U. Therefore My have the same
dimension for all U € . Let «, be this dimension and a be the cardinal of
&, then § has apya as its dimension. By the elementary calculations of sets
theory, it is easily shown that « is the cardinal of {IM\; A € A}.

Now {M; u € M} be any family satisfying the conditions (2), (3), (4) in
Lemma 2.1 and B be its cardinal. Then according to the procedure mentioned
above we can constract a unitary group ¢ and manifolds M for V € &°
such that
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H=> M,
Ve@®°
If B > «, then, by the construction of M; and M), it is easily shown that
the dimension B3, of MY is greater than the dimension a, of M, Hence we
have 38 > asx. On the other hand 8,3 equals to ayx since both are the
dimension of §. This is a contradiction, that is, a = G.

REMARKS. In the proof of the preceding theorem, we have employed the
abelian W*-algebra N in M. We show that N is maximal abelian and
moreover regular in the sense of J. Dixmier [2]. Such property of N is of
some interest, but we do not go into its detailed investigations.

By the above theorem, we will give the following definition:

DEFINTION 2. 1. A finite factor IM which is of type II is called to be a-
approximately finite if there exists a family of subfactors satisfying the
conditions (1)-(2) in Lemma 2. 1 and all such factors are called as approximately
Jfinite factors.

Then we have following corollaries:

COROLLARY 2. 1. A factor is Xg-approximately finite if and only if it is appro-
ximately finite in ihe sense of F. J. Murray and J. von Neumann [8].
The following is an immediate consequence of Lemma 1. 2 and Theorem 2. 1.

COROLLARY 2.2. The condition (1) in Lemma 2.1 can be replaced by
(') each M, is X¢-npproximately finite.

Now we shall prove the following theorem :

THEOREM 2. 2. M and N be & and B-approximately finite factors respectively,
then M s *-isomorphic to N if and only if a = 3.

Proor. Since the necessity is clear, we shall show the sufficiency. Let
{M,; A€ A} and {N,; A € A} be the families of factors of M and N
respectively which satisfy the conditions (1)-(3) in Lemma 2.1. (By the
assumption we may use the same set of indices A). By Lemma 2.1, we can
assume that WM, and N, are of type I, for all A. Hence, there exists a *-
isomorphism @, from IM, onto IN,.

Let M° and N be *-algebras generated by {Mx; A € A} and {N,; v €
A} respectively. Let A be an arbitrary element in IM°, then A is expressed
in finite sum:

A= Zam, :..,A,lelA)\g- AN
where A4,, € M,,. Put
B(A) = 2,y 20 Ol Ar) Or(Ars)- - - .Op(AL,).

Then we can prove without difficulties that @ is a *-isomorphism between IM°
and N°. Moreover, by Lemma 2.2, we have

T(A) = 20, 0 T(An) T(A) - .. T(A),)
= 2, TOATO(AL)) - . . . T(O(AL))

n
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= 7/(6(A))
where T and 7 are traces of M and N respectively. Accordingly the mapping
0 is extended to a mapping from IM onto N and we can easily prove that
this extended mapping is a *-isomorphism from IM onto N(cf. [8, p.760]).
This prove the theorem.
The following theorem is proved in [7] only in the separable case. Now
we shall extend it in the non-separable case.

THEOREM 2.3. The direct product of two approximately finite factors is
approximately finite.

Proor. Let M and N be two approximately finite factors and {IM; A
€ A} and {N,; u € M} be the families in IM and N such as Theorem 2.1.
Since M N is a factor (cf. [7,Lemma 14]), we must show that it is
approximately finite. It is clear that

M®ON =RMEON,; A€ A, p €M)

and M, ® N, are of type I and commute to each other. This shows that
M\ N, is approximately finite.

Recently Z. Takeda [12] has introduced the notion of the infinite direct
product of operator algebras. We shall give brief considerations to the
infinite direct product of approximately finite factors. Let {IM,} be the
family of finite factors and 7, be their traces. Then formal expression &)\
T, can be considered as a positive functional on the algebraical direct product
of M, By the usual way we can construct a Hilbert space § by them. By
the zestricted direct product of M,, we shall mean the weak closure of the
algebraical direct product of M, on 9.

By Corollary 2.2, an approximately finite factor IM can be generated
by infinite (countable) subfactors IM, which commute with each other and
each of which is approximately finite. By Lemma 2.2, the trace of M is
multiplicative and so IM is the restricted infinite direct product of IVL,.
Conversely we can easily show that the restricted infinite direct product of
approximately finite factors is an approximately finite factor. Thus we have
the following :

THEOREM 2. 4. A factor is appioxz’mately finite if and only if it is *-isomorphic
to the restricted infinite direct product of approximately finite factors.

Now we shall consider examples. For a given discrete group &, we can
construct the Hilbert space § = L,(®) as a usual way, i.e., § is the set of
all complex valued functions f(x) on & such that >, [f(x)|? is finite and (f(x),

ze©

&%) = 2/(%)g&x) for any f,g€ §. For any a € @, we shall define the operator
zel
U, on & as following:

Udf(%) = fla~1x) for all f € D.
Then it is known that U, is unitary. By W(®) we shall mean the W*-algebra
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generated by {U,; a € ). As R. Godement [4] has shown, W(@) is finite.

Especially we shall take the group & of all those permutations of (1,
2, ....) which move only a finite number of elements. Then F.J. Murray and
J. von Neumann [9] proved that W(®) is an &,approximately finite factors.
Let {&,; » € A} be a family of such permutation groups and « be the
cardinal of A. We shall construct a infinite direct product & of {&,; » € A},
then we can easily show that W(() is an a-approximately finite factor.
Thus our a-approximately finite factor exists for every cardianl «.

3. Approximately finite W*-algebras in the large. In this section,
we shall introduce the notion of approximate finiteness for general W*-
algebras and study the properties of such W*-algebras.

DeFINITION 3. 1. A W*-algebra M of type II, is approximately finite if there
exists a family {IM\; A € A} of W*-subalgebras with following properties
(1) each M, is of type I and contains the center of IM as its center,

(2) M), commute with each other,
(3) M = R(M,; » € A).

DEFINITION 3.2. Let M be a W*-algebra of type I. The type of M is
uniformly greater than 1 if, for any non-zero central projection E, there
exists a non-zero non-central projection P with P< E.

DerFINITION 3.3. An approximately finite W*-algebra M is uniformly a-
approximately finite if there exists a family {IM,: A € A} of W*-subalgebras
which satisfies the conditions (1), (2), (3) and

(4) the type of each M, is uniformly greater than 1,

(5) the cardinal of {IM,; A € A} as a set is a.

The unicity of the cardinal of such family will be proved in the Corollary
of Theorem 3.1.

THEOREM 3.1. A W*-algebra M is uniformly a-approximately finite if and
only if M is *-jsomorphic to the direct product of anrn o-approximately finite
factor and a commutative W*-algebra.

PROOF OF SUFFICIENCY. We can assume that IM is the direct product of
an a-approximately finite factor A and a commutative W*-algebra N. There
exists a family {A,} of factors in A satisfying the conditions (1)-(3) in Lemma
2.1 and whose cardinal is a. Let M, be the direct product of A, and N,
then it is obvious that the family {IM,} satisfies \the conditions (1)-(5) of
Definitions in this section. In other words, M is-uniformly «-approximately
finite.

To prove the necessity of the theorem, we shall give some lemmas.

LEMMA 3.1. In the theorem, we can assume that M is o-finite.

Proor. There exists a family {£.} of central projections which are
mutually orthogonal and 3 E, = 7 and each contraction Mjz, of M on the
range of E, is o-finite. Now we shall assume that the theorem is valid for
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all Mz, Then, for each y, there existsa family {IM,,} of W*-subalgebras
of M5, satisfyng the conditions (1)-(5). Let

M, = ZEI“MMM\E#:
M

then it is clear that {IM,} satisfies the same conditions, that is, IM is uni-
formly «-approximately finite.

Let M be a fixed o-finite a-approximately finite W*-algebra, then we
can define a complete normal trace 7 and a metric [[ - ]] as in §1. In the
follwoing, these =, [[ - ]] and a family {IM,; A € A} of W*-subalgebras
satisfying (1)-(56) will be fixed. Under these notations, we shall prove the
following.

LemMaA 3.2. For given Ay, ...., An € M and & >0, there exists an integer
D =pA., ...., An, E) and W+*-subalgebra N such that :
(6) N is of type I,
(7) there exist B, ...., B, € M such that
[[A: — B:l< & fori=1,....,m.

Proor. Let S be the *-algebra which is generated by all IM, in algebraical
sense, then Sis weakly dense in M = R(M,; A € A). Therefore, by Lemma

1.1, for any & > 0 there exist A/, ...., A,’ in S such that
[[A;: — A1 < &/2 for 2=1,...., m.
By the definition of S, there exist M,,,, ...., M, such that A/, ...., A, are

contained in the algebra P = R(M,,;; ¢ =1, ....n). Since every M,, is of type
I, P is of type I(necessary finite). Hence there exists a family {E.} of central
projections which are mutually orthogonal and 3, E, = 7 and each Pg, is of
type I.. There exists #, such that

[S5.]] < e

n=ng

where
K:}L/ng ("A:l).
Put E = E, 4 ... + En, and B; = EA/, then
[[A: — B]l = [[A: — FA/II =S [[(Z — E)AQl + [[E(A: — A< E/2 + €/2 = &.

Let p = n,y!, then by Lemma 1.4 there exists a W#*-subalgebra N, in Mg
which contains Pr and is of type I,. By Lemma 1.3, there exists a W*-
subalgebra N, in M-z which is of type I,. Let

N=NE+N(—E),

then N is of type I, and B; € N. This proves the lemma.

LEMMA 3.3. If a = &,, then there exists a sequence {A,} of operators in

M such that
M=RA,; n=12....)

where Z is the center of M.
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Proor. Let {Mn; #=1,2,....} be a family of W*-subalgebras in the
Definition. For each #, there exists a family {E..} of central projections

o

in M, which are mutually orthogonal, 2 E, .. = I and each contraction M,
m=1

of M, on the range of E,,,(=%0) is of type I. It is clear that if Ey ., * 0,

then

Mn,m = Pn,m @ Zn,m
where Z.,, is a factor of type I, There exist linear basis in P, ., and we

can choose a countable set {Aum»; » =1,2,....} which are weakly dense
in P, . This shows that

Nn,m = R(An,m,p, Zn,m; n,m,p = 1,2, . )

Since the set {Eum Anmo Enm; n.m,p=1,2,....} is countable, we can
describe them as A;, A., ..... By the above considerations, it is obvious
that

M=RZ,A;:;,;i=1,2,....).
This proves the lemma.

If a¢ = &, then, by Lemma 3.2, M can be considered to be approximately
finite (B) in the sense of F.J. Murray and J. von Neumann [8]. Hence, by an
analogous way to [7; §§ 4.3, 4.4, 4,5], we can show the following lemma.
We shall omit its proof.

LEMMA 3.4. If a = X, then for given A,, .....An€Many p=1,2,....
and & >0, there exists an n = n(A,, .. .., Au,»E) such that for every q = n which
is divisible by p and every W+-subalgebra N, of type 1, there exists a W*-
subalgebra N with following properties :

8) N is of type I,

(9) there exist By, ...., B,, € M with [[B; — A:]] < &,

(10) Ny = N.

LeMMA 3.5. The theorem is valid in the case a = &,.

Proor. Let {A,} be a sequence of operators in IM which satisfies the
condition in Lemma 3.3. For A, and m = 1, we shall define a W*-subalgebra
N, after Lemma 3.2 and we assume that it is of type I,. By a repeted
application of the preceding lemma, we can easily choose the W*-subalgebras
N.,N;, ...., such that

(11) each N; is of type [,

(I2) NycN:<....C M,

(13) for every n, there exist By, ....,B, € N, with [[B; — A;]] < 1/n.

Let S be the algebra which is the algebraical union of N,. It is obvious
that every A; can be approximated by elements in S in the metric topology.
Since S contains the cente Z of MM, the weak closure of S coincides with
M. It is clear that

N.=M,XZ
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" where M is a factor of type I,,. Let M° = R(N,; »n=1,2,....), then IM?°
is a factor by Lemma 1.2 and & approximately finite. Since M = RN, X Z;
n=12 ....), we have

M=M'®Z
by Lemma 1.6. This proves the lemma.

PROOF OF NECESSITY. There exists a family {IN.; A € A} which satisfies
the conditions of Definition 3.1. Split A to subsets...., A, .... such that
every A, is countably infinite. Now we put

M, = RIMN\; A € Ay),

Then M, is X,-approximately finite. It is clear that the cardinal of {M,} is «
and they commute with each other. Hence we can assume without loss of
generality that each N, is &j-approximately finite.
By the preceding lemma, we have
N,=M,XZ

where M, is an &y-approximately finite and Z is the center of N (which
coincides with that of ). Put M? = R(M,; A € A) and we shall show that
M is an «-approximately finite factor. Since each IM, can be generated by
factors which commute with each other and are of type I, M is generated
by such factors. Hence, by Lemma 1.2, M is a factor and so it is clear
that M is an «-approximately finite factor. By Lemma 1.6, we have

M=RN ;A€ A)=RM\9OZ; A€ A)= RM°,Z) = M° 3 Z.
This proves the theorem.

Now we shall consider general approximately finite W*-algebras.

THEOREM 3.2. Let M be an approximately finite W*-algebra, then, for any
cardinal o = X, there exists a central projection E such that E. are mutually
orthogonal and have the union equal to I and each WLg, is a-uniformly appro-
ximately finite.

To prove the theorem, we shall prepare for some lemmas. In the
following, we shall assume that IM is an approximately finite W*-algebra.
Let {N\; A € A} be as in Definition 3.1. We shall say that a subfamily
{N,; A € A’} of this family is uniformly distributed if R(IN\; A € A’) has no
commutative part, that is, for any central projection in IM the contraction
of R(N,; A € A’) on the range of this projection is not commutative.

LemMMA 3.6. Suppose that ML is o-finite, then there exists a wuniformly
distributed countable subfamily of {N); A € A’}

Proor. Let & be the set of all countable subfamilies of {N,; A € A).
For {N\; A€ A}, {N,; A€ A} €T, we shall define
{Ny; A €AY > {Na; A€ Ay}

if the commutative part of the former is contained in that of the latter.
‘Then it is obvious that this relation satisfies conditions of the usual order
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ralation. Let ¥ be a linearly ordered subset of §, then we can ‘find a
countable subset %, of §; which is cofinal with g, since M is ¢-finite. Let
N= U A
(N ; AeAo)eo
then {IN\; A € A} is countable and {IN\; A € Ag} > {N; A € A;} for all
{N.; A € A;} € §1. Therefore, by Zorn’s lemma, there exists a {N,; A €
A’} in & which is maximal under the relation }>. If {IN,; A € A’} has a
commutative part, then we can easily choose N, such that

Ny A€ A UA{NL} > {N,; €A}

properly. This contradicts to the maximality of {IN.; A € A’}, that is, this
is uniformly distributed.

LEMMA 3.7. Let M be o-finite and ¥ be as above and T, be a subset of
then following conditions are equivalent :

(13) there is no uniformly distributed countable subset in T,

(14) R(N\; M € A) has a commutative part.

Proor. It is clear that (14) implies (13) and we shall show the converse.
As in the preceding lemma, we can find a countable subfamily {N; A € A’}
which is maximal under the relation > As {N,; A € A’} is not uniformly
distributed, there exists a central projection E in IM such that the contra-
ction of R(N,; A € A’) on the range of E is commutative. By the maximality
of {N\; A€ A’}, there is no N, in {N,; A € A} such that N,z is non-
commutative. This shows that RN, ; A € A) has a commutative part.

LEMMA3.8. Let %y = {{INax; A € Ay} v € I'} be a set of uniformly distributed
countable families and Ny = \_J A,, then

yel'

RN, ; A€ Ay
is uniformiy approximately finite.

Proor. Split I' into subsets {I'.} which are mutually disjoint and each
of which is countable. Then, by an analogous way to the proof of Lemma
3.4, we can prove that R(N,; A € U A,) is uniformly &,-approximately

yel'p
finite. Hence we can show that R(IN,; A € A) is uniformly approximately
finite by a similar way to the proof of Theorem 3. 1.

LEmMMA 3.9. For any central projection E in W, there exists a central
projection F =< E such that Mg is uniformly approximately finite.

Proor. There exists a central projection E; < E such that Mg, is o-finite
and so we can assume that Mzis o-finite. Hence it is sufficient to show the
lemma under the assumption that M is o-finite and E = 1.

Let {{N,; A € Ay}; v €I'} be the set of all uniformly distributed co-
untable subfamilies of {N,; A€ A}. By Zorn’s lemma, we can find a
maximal subfamily {{IN, ;A € A,}; v € Iy} such that Ay(y € I'y) are mutually
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disjoint. Let A’ be the family of complement of U A, in A, then, by the
YeTo

maximality of {{IN\; A € Ay}; y €Iy}, RN\ ; A € A’) satisfies the condition

(1) in Lemma 3.8. Hence there exists a projection F € M which is central

in RN, ; A € A’) and the contraction of RIN,; A € A’) on the range of F is

commutative. It is clear that F is central in M. This shows that

Mr= RWN\r; A € U Ay)
* Yel'o
and My is uniformly approximately finite by the preceding lemma.

PROOF OF THEOREM. By the preceding lemma, there exist central proje-
ctions such that contractions of IM on their ranges are uniformly approx-
imately finite. Let {P.} be a maximal family of such projections which are
mutually orthogonal. Then we have 3 P, = I by the preceding lemma.

Let E, be the union of P, such that M,, is uniformly a-approximately
finite. Clearly Mg, is uniformly a-approximately finite and 3 E, = I. This
proves the theorem.

COROLLARY. Let M, N be two approximately finite W*-algebras and {Es},
{F.} be the families of central projections in M,N respectively which are
determine by Theorem 3.2. Then M is *-isomorphic to N if and only if the
center of M is *-isomorphic to the one of N and by this isomorphism E. is
mapped to E. for all .
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