ON THE INVARIANTS OF W*ALGEBRAS
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The present paper has two purposes. The first one is to study the
Tepresentation of normal states of W+*-algebras with connection to their
invariants. Our results will make more complete the connection, subsisting
between the invariants and the representation character of normal states
and the topologies, which has bzen shown by R.Pallu de la Barriere [8]
and E. L. Griffin [5]. The second purpose is to discuss the question when an
algebraic isomorphism between purely infinite W*-algebras arises spatially.
The answer for this has been announced by E. L. Griffin, for which we will
state an independent proof. The same question in the case of semi-finite
W*-algebras was completely discussed in [5] and [8]. ©

1. Definitions and notations. By a W+*-algebra M, we shall always
understand a weakly closed self-adjoint operator algebra with the identity
on a Hilbert space H. We denote by AM" the center of M. Let @ be a vector
in H, M(@) means the closed linear manifold generated by a set [ap; ¢ € M].
The projections correspond to M (@), M(p)are called cyclic projectionsin M, M’
respectively. A projection e is said to be countably decomposable for M if every
family of orthogonal projections in M bounded by e is at most countable,
In particular, M is said to be countably decomposable if the identity is countably
decomposable for M. A vector @ in H is said a separating wvector for M
if M'(p)= H, and a generating vector for M if M(p)= H. Let a be an
operator in M and e a projection in M (or M’'), we denote by a.z an
operator on eH defined by a.up = eaq@ for all ¢ € eH, and by M.y a W*
-algebra formed by all these a@.n. A state p of M means a positive linear
functional on M such that p(1) = 1. A state r of M is said a trace if it
satisfiss 7(ah) = 7(ba) for a, b € M. We use the term a nrormal state in the
sense of J. Dixmier [2]. Let o, p be two states of M, the notations o<<p
will be used in the sense of [4].

The invariant CX) of a semi-finite W*-algebra means the invariant
defined by [8; Chap. IIl. Definition 3], and we denote by C.x{(X) the invariant
of M.n. M is said to be purely infinite if 1 is purely infinite for M. By an
isomorphism, we understand a *-isomorphism.

2. The representation theorems of normal states. In [8; Chap. II,
Theorem 4] was proved the representation theorem for normal traces of a
finite W*-algebra with the invariant C(X) = 1. We first prove this represen-
tation theorem, independently of the commutative case, for normal states.

It is well known in the commutative case that M has a separating vector
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if and only if it is countably decomposable. We notice that this fact is
generalized in a finite W*-algebra with C(X) = 1.

LemMMA 1. L2t M be a finite W*-algebra with the invariant C(X)=1. If
the center M has a separating vector, M has also a separating vector.

This lemma is an immediate consequence of [8; Chap. II. Theorem 2
and Cor. of Prop. 2] and we can prove directly it, but omit its proof.

LEMMA 2. Let M be a finite W*-algebra with the invariant C(X) =1 on a
Hilbert space H. Then for each normal state p of M there exists a vector ¢ €
H such that p(a) = <ap, > for all a € M.

Proor. By Lemma 1, there exists a family {e.} of mutually orthogonal
projections in M* such that Zwem =1 and M, » has a separating vector.
Therefore using [3; Prop. 6], for each normal state o4 of M,,u, we can choose
a vector Yo € exH such that

oa(@a) = <aaVra, Vo> for all ay, € M.,
Now, if p is any normal state of M, p defines the normal state ps of M.z
by palas) = plesaes), where as is the operator in M.,r induced by a € M.
From the preceding fact, there exists a vector @« € e.H such that
pw(am) = <aac¢a, Pa> for all ax € Mqull-

As a= Eaaea = zaeaaea, we obtain

p(d) = pr(eaaea,) = Empm(am) = Ew <aa(Pw, Pa> = 2w<a¢m, Da >
But, p(1) =1 or Za |lpal|? =1, so that {@.} is summable. Set @ = Zw PDa,

then <ap, p> = Zm <apa, pu> = p(a) as desired.

COROLLARY. Let M be a commutative W*-algebra. For each normal state
p of M, there exists a vector @ € H such that p(a) = <ap, ¢> for all a € M
[8; Chap. 7,Prop. 1].

In fact, M is a finite W*-algebra with C(X) = 1.

The generalization of the above lemina has been already established in
[5; Theorem 7]. Now, we will give a simple proof for this statement with
the aid of the method in [8; Chap. III. Theorem 2] and obtain the more
precise result.

THEOREM 1. L2t M be a finite W*-algebra on a Hilbert space H. Then
the following conditions are equivalent ;

(A) For each normal state p of M, there exist vectors {@:}ti=12..ntn H
such that :
n
pla) = 25=1 <api;, pi> for all a € M.
(A’) For each normal trace T of M, there exist vectors {E}i-12,...n in H
such that

T(a) = 2" <af &> for all a€ M.

i=1
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(B) M has the invariant )z(?:)f CX)=1/n.

Proor. It is clear that (A) implies (A’). We first observe that (A’)
implies (B). We may assume that M is countably decomposable and M is
finite. Therefore, there exists a faithful normal trace r of M. By the
assumption of (A4’), we obtain

(a) = 2 <af, &> for allac M

where {£:}i-1,2,...n are vectors in H. Let I be the closed linear manifold
generated by {&:}i=1.,...». Since 7(@)is faithful, we have M'(R) = H and 1 =

\/ Puw). As My, has a separating vector &;, it follows that Cir,)(X)

1:21 1. Applying [8; Chap. I, Prop. 2] to M’, we obtain

Cir (&)(x)— = ;,,(&)(X)C(X)‘
for all X € Qur¢ysuch that C(X) == 0. Hence C(X) = Pj,., () (X)Cor (X)) = P} @ (X),
nCx) = (2 L Pley) (X)) =1 for all X € Q such that CX) 0. Since the
set {X; C(X) = 0} is non-dense, inf C(X) =1/n.

Now, we shall complete the proof by showing that (B) implies (4). By
the assumption, there exists a family {€:}i-1,2,...» of mutually orthgonal and
equivalent projections in M such that 2;; ¢, =1 and C,u(X)=1 In fact,
again, applying [8; Chap. I, Prop. 2] to M

Co(X)~t = n~1C(X)!
and hence C,u(X) = nC(X) or Cpu(X) = 1.

Let p be any normal state of M, then p defines a normal state p; of
M.n by pia:;) = ple.ae;) where ag; is the operator in M, induced by a € M.
By Lemma 2, we can choose a vector yY; € e;H such that p;(a;) = <ai, ¥i>
for all ai € M. Thus

Zomaec) = 2p.<az> = 2 <api, ¥i> = 2<m1».,«m

i=1

But pla)< < E pleiae;), in fact, for all positive e € M
n

i=1

P(a) = 2 p(ae;) = v Ip(allzallzei)l

Z=l

< 2 o(@) 2p(eaes) > = pla) ‘[2 pleiaen)” ]

{=l
hence

p(a) = [2 P(esaet)”‘] =n 2 p(egaet))

i=1

As in [4; §5.(5.6)], by the representatlon Theorem of Segal, we get,
vectors {@. }i-1,2,...,» such that

pla) = 2 <api, pi>.

i=1

ReEMARK. It is easy to> see that if M is an arbitrary finite W*-algebra,
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for each normal state of M, there exists a sequence {@;:} of vectors such
that {M'(@:)} are mutually orthogonal and

pla) = 2 <api,p;> for all a € M.
. i=1
In fact, there exists a family {e;}:.r of mutually orthogonal projections
in M} such that 2;51 e; =1 and in?z C.u(X) > 0. This result was established
: e
in [4].

THEOREM 2. Let M be a finite W*-algebra, then the following conditions
are equivalent ;
(A) M has the invariant inﬂf C(x) > 0.
XE€

(B) The o-weak and the weak topologies coincide on M.
(C) The strongest and the strong topologies coincide on M.
(D) The §-application is continuous in the weak (strong) topology.

Proor. From Theorem 1 and [2; prop. 2] it follows that (A) —(B) 5 (O).
(C) — (D) is obvious. Thus ws have only to prove that (D) implies (A4). Let
7« be a normal trace of M, then there exists a vector & € H such that r4(a)

= <ad'§,E> for all a € M. Now, as the 4-application is weakly continuous,
T4 is also weakly coninuous. Hence we can pick up vectors {&:}i-1,3,...,n SUCh

that r«(a) = 2::1 <ak;, £;> for all a € M. Now let 7, be the minimum of

all integers 7 such that 74 is expressible as above (it is said the order of
74). Then we get sup 7z, < -+oo for the order #z. of all normal traces 74 on
o

M. In fact, otherwise we can select a sequence {;} of normal traces on M
such that #n; 1 . If we define 1o(a) = 2; 2-iri(a) for all @ € M, then 7,
is also a normal trace of M and ti(a)<<tya) for all 7 Hence, for all
there exist vectors {7:ij}j=1,2,...,n, sSuch that ri(a) = 221 <an:j, miy> for all a

€ M, where n, is the order of r,. But we have »n,<#; for some 7 as #n; T co.
This is a contradiction. Set # = sup #., then by Theorem 2, we have inf
3

e

CX) = 1/n > 0. "

Ii the 4-application is strongly continuous, the application a— <da'€, £>
is strongly continuous, and hence weakly continuous from the result in [1].

Concerning this theorem, in [8; Chap. III, Theorem 7] was proved the
fact that (A)— (D), and (A) 2 (D) in [5; Theorem 8]. And als> for semi-
finite W+-algebra (A)—(B), (C) was proved in [5; Theorem 12].

In order to complete our information concerning the representation of
normal states, we need the following details for the infinite case.

THEOREM 3. Lot M bea purely infinite W*-algebra on a Hilbert space H,
then

(A) For every normal state p of M, there exists a vector @ in H such that
pla) = <ap,p > for all a € M.

(B) The weak and the o-weak topologies coincide on M.
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(C) The strong and the strongest topologies coincide on M.

From [2; prop.3 and its proof], we can see that the above statement
(4),(B) and (C) are true if M’ is a properly infinite W*-algebra. Therefore
the theorem follows as a special case from this fact, but now we will give
the direct proof for this.

Proor. It is well known that there exists a projection e in M such that
p(l —e) = 0 and such that p is faithful on M.y, i.e. o(f) = 0for f a projection
in M.z implies f = 0. Then M,y is countably decomposable. Since M is purely
infinite, there exists a vector v in eH such that M,,(y) = eH. By [3; prop.
6], we obtain a vector @ in e such that pleae) = <eaep, p> for all a € M.
But then |p(a(l — e))[* < pla*a)o(1 — e) = 0 (similarly p((1 — e)a) = 0) yield that
for all a € M,

pa) = p(eae) + plea(l — €) + p((1 — e)ae) + p((1 — e)a(l — ¢€))

= pleae) = <eaep, p> = <ap, p>.

(B) and (C) are the immediate consequences of [2; prop. 2] and (A4).

3. The invariant of a purely infinite mW*-algebra. In this section,
we shall introduce the invariant of a purely infinite W*-algebra, which
plays the essential role for the problem of a spatial isomorphism, as in the
semi-finite case.

LemMA 3. Lot {e;}ia, {€'i}s.r be infinite families of orthogonal, cyclic proje-
ctions in a purely infinite W*-algebra M, and let e a projection in M. If
€ = 2,,¢ =€ then the Cardinal of I equals the Cardinal of ].

Proor. It is sufficient to prove the lemma in the case e =1. Now let
Si = {j; ei€je: =0}, then S; is a countable set. In fact, if e; = Pu(,, @i is
a separating vector for M.u Since e; = zjdeie'ez, <eipi, pi> = 2),6 S < eie;
eii, ;> < +oo. Therefore, <eiee.p;, ;> = 0 except countably many of
j€J. This means that all but countably many of e:i¢je;(j € J) are zero.

For any j € J, if eieje; = 0 for all 7 € I, then eie; = 0for all € 7, which
implies 2551 e;e;. =e;= 0. This contradiction proves that for each jé& ],
there exists i; € J'such that e;eje;, = 0; but then j € S;,, yielding that

J=US.
Thus, the Cardinal of J= the Cardinal of 7 x &, = the Cardinal of 7. By

symmetry, the Cardinal of 7 equals to the Cardinal of J.
This lemma admits the following definition.

DEFINITION 1. L2t M be a purely infinite W*-algebra. A nonzero projection
e in MV is said a homogeneous projection if for every projection f in M" bounded
by e and countably decomposable for M, there exists a family of fixed transfinite
Cardinal of orthogonal, equivalent, cyclic projections {f;}ier in M such that f =

Eidﬁ. The Cardinal of I(determined uniquely by Lemma 3) is said the order
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of e.

We notice that if e is a homogeneous projection of the order &, every
projection f in M"bounded by e and countably decomposable for M is itself
cyclic. Now we shall show the structure theorem of a purely infinite W*-
algebra, which yield the definition of the invariant.

THEOREM 4. Let M be a purely infinite W*-algebra on a Hilbert space H
and let = be a family of all transfinite Cardinals « for which there are homo-
geneous projections of the order o. Then there exists a family of orthogonal
projections {€a}ae: tn M such that 1= 2
projection of the order .

e €% and each e, is a homogeneous

ProOF. Let a be a transfinite Cardinal in . By Zorn’s lemma, choose
a maximal family {e;}sr of orthogonal homogeneous projections of the order
a in M'. Set ex = 2, . At first, we shall show that any projection e in
M such that e < ey is a homogeneous projection of the order «. In fact,
if a projection fin M" is countably decomposable for M' with f<e, then
f<es and f=e,f = XMetf = zid,eif (2’ ; countable set), but then there exists
a family of orthogonal, equivalent, cyclic projection {fi;};s in M such that
ef = >, fis and the Cardinal of J is a. Put fj = X .fis. {f;}e is a family

of orthogonal, equivalent, cyclic projections in M such that f = >, s/ Thus
we know that e, and every projection in M"bounded by e® are homogeneous
projection of the order a. If e in M'is a homogeneous projection of the
order «, then e =< es, otherwise the fact that e—ee, is a homogeneous
projection of the order a contradicts to our maximal {e;}:r.

Next, let a, B be transfinite Cardinals in = such that « += 3, then e.
and ez defined as above are mutually orthogonal. Otherwise es-e3 is a
homogeneous projection of the order « and of the order B, which is impo-
ssible.

We define p = zam“’“- If 1—p =0, take a vector ¢ in (1 —p)H, e;, =

Dy =<1—p. From Zorn’s lemma, there exists a maximal family of ortho-
gonal projections {e:}isr containing e;, such that e;~e;, for each 7. Set e =

€, it is clearly impossible that e:;<(1 —e)(1 — p), and also if (1 —e)
(1—p)=0,e =1—p shows that 1 —pis a homogeneous projection. This

contradiction yields 1= p. Assume that (1—e¢) (1 —p) = 0, then there
exists a projection % in M" such that (1 —e)(1 — p)<hei. Now h(l—p)

= Emhei + h(1 — e)(1 — p), with the he; all orthogonal, equivalent, cyclic
projections in M. Since I is infinite, thei ~2£J_iohe,—. If follows that
ke 2 hei + B(L— e) (1 — p) ~ hp. Thus (1 —p)~ 2, hei. Then

it is easy to see that A(1 — p) is a homogeneous projection. It follows that
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1 — p contains a homogeneous projections. This contradicts our choice of
p. Thus 1 = p.

DEeFINITION 2. L2t M be a purely infinite W*-algebra and let {ex}uer a family
defined by Theorem 4, and K. the opern and closed set in the spectrum Q of
M correspond to en. We define the algebraic invariant of M, as the Junction

P(X) defined on U Ko by the relation p(X) = a for X € K.

Let pX), p'(X) be the algebraic invariants of M, M respectively. We define
the invariant of M, as the function C(X) dz2fined on a dense open set of Q. by
the relation C(X) = (p(X), D'(X)).

REMARK. p(X) is invariant by isomorphisms.

4. Spatial isomorphisms of purely infinite W *-algebras. Let M, M
be purely infinite W+*-algebras on Hilbert spacss H, H respectively. We shall
find the condition under which the following statement holds:

(S) If 8 is an isomorphis$m of M onto M, then @ is a spatial isomorphism.
In fact, the invariant defined in the previous section will give the
complete answer to our question as in the case where M, M are semifinite.

Now, if we identify the spectrums of M]\~4 by the isomorphism, the main
theorem is stated as follows:

THEOREM 5. Lot M and M be purely infinite W*-algebras both with the
same invariant C(X), ther (S) holds.

To prove the theorem, we shall proceed as in the semi-finite case.

LeMMA 4. Let M and M be purely infinite W*-algebras with the same
invariant (Ko, Xy), then (S) holds.»

It is sufficient to prove the lemma in the case where M is countably
decomposable. Then M, M have separating and generating vectors o, <p
respectively. Now let p(a) = <8a)g, @> for all a € M, p is a normal state

of M and hence, by Theorem 3 there exists a vector ¥ in H such that p(a)
= <a¥r,¥>. Here, ¥ is also a separating vector of M, in fact, since

la¥r||? = p(a*a) = | {0(a)5| |2, ayr = 0 implies 6’(a);; = 0,68(a) = 0, finally @ = 0.
Thus M(y)~M(e) = H. Let v’ be the partial isometry in M’ defined by v’M
(¥) = M(v'¥) = H. Now, setn =v'¥, M#n)=H and ||ay||? = ||av'¥]||* =

<La*ar'¥r, v¥> = <a*av'*v, ¥> = <a*al, > = HG‘I’I [*= || da)p|[* so
that we can define a linear isomets y u from H onto H such that uwan = 6(a)
¢- If b arbitrary in M, then uau‘*b(p = ual! (b)n = B(a)bq) proves that &(a)
= uau~! for all ¢ € M.

2) If H H are separable, M, M have both the invariant (o, &) Therefore (S) always
holds (cf. [7])
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LEMMA 5. Let M and M be purely infinite W*-algebras with the same
invariant (X,, «), then (S) holds.

PrOOF. As in lemma 4, we may assume that M is countably decompo-
sable. Since the invariant of M is (X, «a), there exists a vector ¢ € H
such that M'(p) = H. and also a family of orthogonal equivalent, cyclic
projections {e;}ir in M’ such that 1 = ZM e; and the Cardinal of 7 is a.
Then, since M is countably decomposable, for all 7 € I there exist vectors
@i,V in e H such that e = M'.;u(@:) = Me/a(¥:). This proves that M,;x have
all the invariant (K, &,). Furthermore, M.,z are all isomorphic to M, in
fact, let u;; be partial isometries such that u;u;; = e, u;u;" = e, if ae; =0,
ae; = aujeu;; = ujaeu;; = 0 for all j yield that @ = >, ae; = 0. Similarly,
we obtain a family of orthogonal, equivalent, cyclic projections @Q}z.z in M’

such that 1 = Ekl e, M ;zhave all the invariant (&, &,) and are all isomo-

rphic to M. Set 6 =9;{-¢9-0;§1, where 6., 6;, are isomorphisms of M
onto M.z, M onto M 3/ir respectively. Then 6; are isomorphisms of M.
onto ﬂfi;g. From lemma 4, we obtain a linear isometries u:; from ¢;H onto
;517 such that (6(a));/ir = w:ia.;nu;’. Now, let » be a linear isometry from H
onto H such that the restriction to ¢H is u;, it is easy to see that f(a) =
uan™1.

LEMMA 6. LZet M and M be purely infinite W*-algebras with the same
invariant («, 3), then (S) holds.

Proof. We may assume that Mi is countably decomposale. Since the
invariant of M is («, ), there exists a family of orthogonal, equivalent,
cyclic projections {e:}i.r in M such that 1= >, e and the Cardinal of [ is
a. Then the family {6(e:)}.r is also a family of projections in M with pro-
perties similar to those of {e;}ir.

Now, we notice that 6 induce an isomorphism of M.nz onto Myeyr, and
M, M’ are isomorphic M)y, Mje.,u respectively. Thus M., Me(e,,)ZI have
all the invariant(&,, B). Let 7, a fixed element of 7, using lemma 5, we

obtain a linear isometry #, of e;H onto G(eio)ﬁ such that woae; utty =
(0(@)oce,pir. Let v; be partial isometries in M such that vjv; = e, viv; =@,
then 0 (v)*0(v;) = B(ei,), O(v:)0(v:)* = O(e;). Now, we can define a linear

isometry u# = Zitlﬁ(vz)uov’; which is a mapping of H onto I?, then
uan' = 25 v ugviavsu; ' 0(v})

= Eiyjﬁ(vi)ﬁ(v"{av,)g(v;) (since viav;€ My, n)
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Il

Ei‘jﬁ(vw’gavjv’}) = Zlyjﬂ(eiaej) =

0(3, eae;) = b(a).
This complete the proof.

Il

The proof of Theorem 2.
The general case, by projections in M¢ is reduced to the case where

M, M have both the invariant («, 8); then, by applying lemma 6, the proof
of the theorem is complete.
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