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The present paper has two purposes. The first one is to study the
representation of normal states of Tf *-algebras with connection to their
invariants. Our results will make more complete the connection, subsisting
between the invariants and the representation character of normal states
and the top3logies, which has been shown by R. Pallu de la Barriere [8j
and E. L. Griffin [5J. The second purpose is to discuss the question when an
algebraic isomorphism between purely infinite W*-algebras arises spatially.
The answer for this has been announced by E. L. Griffin, for which we will
state an independent proof. The same question in the case of semi-finite
W*-algebras was completely discussed in [5J and [8J. Ό

1. Definitions and notations. By a W*-algebra M, we shall always
understand a weakly closed self-adjoint operator algebra with the identity
on a Hubert space H. We denote by M11 the center of M. Let φ be a vector
in H, M(φ) means the closed linear manifold generated by a set [aφ a € M].
The projections correspond to Mf(φ), M(φ) are called cyclic projections in M, M'
respectively. A projection e is said to be count ably decomposable for M if every
family of orthogonal projections in M bounded by e is at most countable.
In particular, M is said to be countably decomposable if the identity is countably
decomposable for M. A vector φ in H is said a separating vector for M
if M' (φ) = H, and a generating vector for M if M(φ) = H. Let a be an
operator in M and e a projection in M (or M'), we denote by ae.u an
operator on eH defined by a>uφ = ea φ for all φ 6 eH, and by MfiH a W*
-algebra formed by all these a*u. A state p of M means a positive linear
functional on M such that p(l) = 1. A state r of M is said a trace if it
satisfies τ(ab) = τ(ba) for a, b € M. We use the term a normal state in the
sense of J. Dixmier [2]. Let σ, p be two states of M, the notations σ«p
will be used in the sense of [4].

The invariant C(X) of a semi-finite PF*-algebra means the invariant
defined by [8 Chap. III. Definition 3J, and we denote by Ceπ(X) the invariant
of Men. M is said to be purely infinite if 1 is purely infinite for M. By an
isomorphism, we understand a ^'-isomorphism.

2. The representation theorems of normal states. In [8; Chap. II,
Theorem 4] was proved the representation theorem for normal traces of a
finite J7*-algebra with the invariant. C(%) > 1. We first prove this represen-
tation theorem, independently of the commutative case, for normal states.

It is well known in the commutative case that M has a separating vector
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if and only if it is count ably decomposable. We notice that this fact is-
generalized in a finite "MP-algebra with C(X) ^ 1.

LEMMA 1. Lit M b^ a finite W*-algebra with the invariant C(X) > 1. If
the center M] has a separating vector, M has also a separating vector.

This lemma is an immediate consequence of [8 Chap. II. Theorem 2
and Cor. of Prop. 2] and we can prove directly it, but omit its proof.

LEMMA 2. Let M be a finite W*-algebra with the invariant C(X) ;> 1 on a
Hubert space H. Then for each normal state p of M there exists a vector φ €Ξ
// such that p(a) = <aφ, φ> for all a € M.

PROOF. By Lemma 1, there exists a family {ea} of mutually orthogonal

projections in M4 such that *Σae<* = ~L and MβaH has a separating vector.
Therefore using [3 Prop. 6], for each normal state σΛ of Λfββ6//, we can choose
a vector -̂ α ^ e*H such that

σ*(a«) = <accψ ct,γcc> for ail aΛ € Mean.

Now, if p is any normal state of M, p defines the normal state ρΛ of MeΛπ
by pΛ(acύ) = p(eΛae»\ where a» is the operator in Mecύπ induced by a £Ξ M.
From the preceding fact, there exists a vector φ» € βaHsuch that

Pa,(a<x) = <aΛφΛ, φa> for all aκ € M*α//.

As a = ββ« = *e<*ae"> we obtain

But, p(l) = 1 or 2α I |^α| |2 = 1, so that {φΰ} is summable. Set φ =

then <<29??, ^>> = 2α <aψ<*, φ*> = p(ά) as desired.

COROLLARY. £eί M be a commutative W*-algebra. For each normal state
p of M, there exists a vector φ^H such that p(a) = <aφ, φ> for all a € M
[8; Chap. 7,Prop. 1].

In fact, M is a finite W *-algebra with C(%) ̂  1.
The generalization of the above lemma has been already established in

[5 Theorem 7J. Now, we will give a simple proof for this statement with
the aid of the method in [8 Chap. III. Theorem 2] and obtain the more
precise result.

THEOREM 1. L?t M be a finite W*-algebra on a Hubert space H. Then
the following conditions are equivalent \

(A) For each normal state p of M, there exist vectors {<7Λ}ί=ι,2,...,n in H
such that

ρ(ά) = 2ί-ι <aΦί> <P*> ί°r att a ̂  M.
(Af) For each normal trace τ of M, there exist vectors {fi}f=ι,2,...,n in H

such that

T(a) = 2l=ι <*?< ζ*> f°r aU a € M.
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(B) M has the invariant inf C(X) ^> l/n.
ΛtΩ

PROOF. It is clear that (A) implies (A'\ We first observe that (A')
implies (B). We may assume that M is countably decomposable and Mr is
finite. Therefore, there exists a faithful normal trace T of M. By the
assumption of (A'), we obtain

τ(a) = 2 <*&. & > for all α € M
ί = I.

where {|-t}/=ι,2,...,w are vectors in if. Let 9)ΐ be the closed linear manifold
generated by {^}ί=ι.2,...,w. Since τ(<z)is faithful, we have M'(ϊft) = 77 and 1 =

n

\/ Pjff'tfj. As Marcfc) has a separating vector f f, it follows that
?=1

;> 1. Applying [8 Chap. I, Prop. 2] to M , we obtain

for all % € ίljr(t<)such that C(X) Φ 0. Hence C(%) - PlΓ(^(X)CΛr(ξi}(X) > PjΓ(^ (%),

/zC(%) > /2L -PSf'ίf,)) ^%) = X f or all % € 11 such that C(X) =t= 0. Since the
set {% , C(%) = 0} is non-dense, inf C(%) > 1/w.

XeΩ

Now, we shall complete the proof by showing that (B) implies (A). By
the assumption, there exists a family {£*}i=ι,2 /,..,w of mutually orthgonal and
equivalent projections in M such that 2 =1 ̂  = 1 and Cβin(X) ^ 1. In fact,
again, applying [8; Chap. I, Prop. 2J to M'

and hence Cβχ%) = wC(%) or CβίH(X) > 1.
Let p be any normal state of M, then p defines a normal state pi of

Λfβjπ by pi(at) = p(eLaei) where at is the operator in Mβin induced by a € M.
By Lemma 2, we can choose a vector ψ^ £ £ί# such that
for alJ a,i € M. Thus

i=ι ί=ι i = ι < = i

But p(a)« 'Σpfeiaet), in fact, for all positive a € M
ΐ = i w n

F(«) = 2 /

hence

As in [4 § 5. (5. 6)], by the representation Theorem of Segal, we get,

vectors {^}i-i,2,...,» such that
n

p(d) = 2 <<*φt,φi>
ΐ = l

REMARK. It is easy to see that if M is an arbitrary finite PΓ*-algebra>
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for each normal state of M, there exists a sequence {φt} of vectors such
that {Mr(φi)} are mutually orthogonal and

00

p(ά) = 2 <#£>«» £>*> f°r all <3 € Λf.
ί=l

In fact, there exists a family {ei}ier of mutually orthogonal projections

in M* such that 2 Γ *< = 1 and inί" Cj HpO > 0. This result was established
^i6/

 XeΩ

in [4].

THEOREM 2. Let M be a finite W*-algebra, then the following conditions
are equivalent

(A) M has the invariant inf C(X) > 0.
XeΩ

(B) The σ-weak and the weak topologies coincide on M.
(C) The strongest and the strong topologies coincide on M.
(D) The ίj-application is continuous in the weak (strong) topology.

PROOF. From Theorem 1 and [2 prop. 2] it follows that (A) -> (B) ±; (C).
(C)->CD) is obvious. Thus ws have only to prove that (D) implies (A). Let
TO> be a normal trace of M, then there exists a vector ξ 6 H such that τ«(«)
= <<&ζ,ζ> f°r all <3 € M. Now, as the ^-application is weakly continuous,

TΛ is also weakly coninuous. Hence we can pick up vectors {ξί}i = ι^...,n such

that τ»(a) = 2/11 <aξi,ξί> for all <z € M.. Now let WΛ be the minimum of

all integers n such that TΛ is expressible as above (it is said the order of
TO). Then we get sup nΛ < +00 for the order nΛ of all normal traces TΛ on

α

M. In fact, otherwise we can select a sequence {n} of normal traces on M

such that m t °° If we define τQ(ά) = 2Γ=ι 2~ίτ^) for all « € M, then TO

is also a normal trace of M and τι(a)«τ0(a) for all /. Hence, for all /,

there exist vectors {7?o }j=ι,2,...,w0 such thatτi(α) = 2«lι <^^77«^97«J> f°r a^ Λ

C M, where ^0 is the order of TO. But we have nQ<nt for some / as w* t °°
This is a contradiction. Set /? = sup n<χ, then by Theorem 2, we have inf

a χeΩ

C(X) > 1/w > 0.
if the ^-application is strongly continuous, the application a-+<dίξ,ξ>

is strongly continuous, and hence weakly continuous from the result in [1].
Concerning this theorem, in [8; Chap. Ill, Theorem 7] was proved the

fact that (A)->(D), and (A);±(D) in [5; Theorem 8]. And also for semi-
finite PF*-algebra (A)-»(B), (C) was proved in [5; Theorem 12J.

In order to complete our information concerning the representation of
normal states, we need the following details for the infinite case.

THEOREM 3. Let Mbea purely infinite W*-algebra on a Hilbert space H,
then

(A) For every normal state p of M, there exists a vector φ in H such that
p(ά) = <aφ, φ > for all a € M.

(B) The weak and the σ-weak topologies coincide on M.
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(C) The strong and the strongest topologies coincide on M.

From [2 prop. 3 and its proof], we can see that the above statement
(A\ (B) and (C) are true if M' is a properly infinite TF*-algebra. Therefore
the theorem follows as a special case from this fact, but now we will give
the direct proof for this.

PROOF. It is well known that there exists a projection e in M such that
p(l — e) = 0 and such that p is faithful on Meπt i. e. ,o(/) = 0 for /a projection
in Men implies / = 0. Then Men is countably decomposable. Since M is purely
infinite, there exists a vector ψ in eH such that M'eH(^r) = eH. By [3 prop.

6], we obtain a vector qj in eH such that ρ(eae) = <eaeφ, φ> for all a ζ M.
But then |p(β(l - β))|a g ρ(a*ά)p(l — e) = 0 (similarly p((l - e)β) = 0) yield that
for all β <Ξ M,

P(Λ) = p(eae) + /o(0a(l - έ?)) 4- p((l - *)**) + p((l - e)a(l - e))
— p(eae) — <eaeφ, φ> = <#£>, <£?>.

(2?) and (C) are the immediate consequences of [2; prop. 2] and (A).

3. The invariant of a purely infinite JΓ*-algebra. In this section,
we shall introduce the invariant of a purely infinite JF"*-algebra, which
plays the essential role for the problem of a spatial isomorphism, as in the
semi-finite case.

LEMMA 3. Let {^}ie/, {£'./}>/ be infinite families of orthogonal, cyclic proje-
ctions in a purely infinite W*-algebra M, and let e a projection in M\ If

2ίe/^£ = 2/ej^/ = e> then the Cardinal of I equals the Cardinal of J.

PROOF. It is sufficient to prove the lemma in the case e = 1. Now let
Si = { j ; eie'jei =*= 0}, then Si is a countable set. In fact, if et = PM'W, φι is

a separating vector for Λfβ,w. Since e« = 2^jβ*e'β<> <*<0>ι» ̂ > = *ΣJ;J < ^^j

eiφi)φi> < +00. Therefore, <eiejeiφίjφί> = 0 except countably many of
7 ^ / This means that all but countably many of eiefafj ^ /) are zero.

For any j 6 /, if eie^ei = 0 for all / ^ /, then ^«^ = 0 for all i ^ 7, which

implies 2.«,7 g^ = #J = 0. This contradiction proves that for each j € /,
there exists ij €/ such that eίje'jeίj =t= 0; but then y C SίJ} yielding that

/= y&.
Thus, the Cardinal of /Sthe Cardinal of / x ^0 = the Cardinal of /. By
symmetry, the Cardinal of / equals to the Cardinal of /.

This lemma admits the following definition.

DEFINITION 1. L?t M be a purely infinite W*-algebra. A nonzero projection
e in M* is said a homogeneous projection if for every projection f in M* bounded
by e and countably decomposable for M", there exists a family of fixed transfinite
Cardinal of orthogonal, equivalent, cyclic projections {/ί}**/ in M such that f ~

2ί/ ̂  The Cardinal of I (determined uniquely by Lemma 3) is said the order
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of e.

We notice that if e is a homogeneous projection of the order #0> every
projection / in Λf " bounded by e and countably decomposable for M is itself
cyclic. Now we shall show the structure theorem of a purely infinite T7*-
algebra, which yield the definition of the invariant.

THEOREM 4. Let M be a purely infinite W*-algebra on a Hilbert space H
and let π be a family of all transfinite Cardinals a, for which there are homo-
geneous projections of the order a. Then there exists a family of orthogonal

projections {ea}aeΛ in M* such that 1 = *Σ eΛ and each eu is a homogeneous
projection of the order a.

PROOF. Let a be a transfinite Cardinal in π. By Zorn's lemma, choose
a maximal family {et}^i of orthogonal homogeneous projections of the order

OL in Λf . Set ea = 2i6/
βί At first, we shall show that any projection e in

Af such that e <= £« is a homogeneous projection of the order a. In fact,
if a projection / in M^ is countably decomposable for M^ with /<; e, then

/<; £* and /= £α/= 2ί /^/~ 2/e//βί /V »" countable set), but then there exists
a family of orthogonal, equivalent, cyclic projection {fij}jej in M such that

£*/= 2 ί βjΛj and the Cardinal of / is a. Put /} = 2iê > ί/^ 7 is a family

of orthogonal, equivalent, cyclic projections in M such that /= 2;βJΛ Thus
we know that £α and every projection in M " bounded by £α are homogeneous
projection of the order a. If £ in M11 is a homogeneous projection of the
order a, then e < £«, otherwise the fact that e—eea, is a homogeneous
projection of the order a contradicts to our maximal {^}/e/.

Next, let a, β be transfinite Cardinals in π such that a Φ β, then e*
and ββ defined as above are mutually orthogonal. Otherwise eΛ e$ is a
homogeneous projection of the order α and of the order β, which is impo-
ssible.

We define p = 2αe

 e* If 1 — /> =t= 0, take a vector 99 in (1 — p)H, eιQ =
jpjr(y) ̂  1 — p. From Zorn's lemma, there exists a maximal family of ortho-
gonal projections {βt}^ containing et0 such that ei^eio for each /. Set e =

2/βf
βί' ^ ^s clearly impossible that βί0-<(l — ^)(1 — ί), and also if (1 — β)

(1 _ p) = O ;β = 1 — p shows that 1 — p is a homogeneous projection. This
contradiction yields 1 = p. Assume that (1 — e) (1 — p) Φ 0, then there
exists a projection h in Λf such that h(l — e)(l — p)-ζheiQ. Now h(l—p)

= *ΣleIIι>ei 4- A(l — «)(!— ί), with the /zβi all orthogonal, equivalent, cyclic

projections in M. Since / is infinite, 2ie/^£ ^2ier-i ^£ ^ follows that

(1 - Λ ~ te' Then

it is easy to see that h(l —p) is a homogeneous projection. It follows that
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l—p contains a homogeneous projections. This contradicts our choice of
p. Thus 1 = p.

DEFINITION 2. Lit M bs a purely infinite W*-algebra and let {>«}««* a family
defined by Theorem 4, and KΛ thz open and closed set in the spectrum ίl of
M* correspond to eu. We define the algebraic invariant of M, as the function

p(X) defined on \J Ka by the relation p(X) = a for X € K«.
Ct/er

Let PCX), pf(X) be the algebraic invariants of M, Mf respectively. We define
the invariant of M, as the function C(X) defined on a dense open set of ίl by
the relation C(X) = (p(X\ P\X)\

REMARK. p(X) is invariant by isomorphisms.

4. Spatial isomorphisms of purely infinite JF*-alg ebras. Let M, M

be purely infinite W*-algebras on Hubert spaces H,H respectively. We shall
find the condition under which the following statement holds :

(S) If θ is an isomorphism of M onto M, then θ is a spatial isomorphism.
In fact, the invariant defined in the previous section will give the

complete answer to our question as in the case where M, M are semifinite.

Now, if we identify the spectrums of M, M by the isomorphism, the main
theorem is stated as follows :

THEOREM 5. Let M and M be purely infinite W*-algebras both with the
same invariant C(X), then (S) holds.

To prove the theorem, we shall proceed as in the semi-finite case.

LEMMA 4. Let M and M be purely infinite W*-algebras with the same
invariant (%0, #uX then (S) holds. a>

It is sufficient to prove the lemma in the case where Λf is countably

decomposable. Then M, M have separating and generating vectors φ, φ

respectively. Now let p(d) = <θ(a)φ, φ> for all a € M, p is a normal state
of M and hence, by Theorem 3 there exists a vector ψ in H such that p(a)
= <aY,Y>. Here, -ty is also a separating vector of M, in fact, since

I \aψ\ I * = p(a*a) = | \θ(a)φ\ |a, aψ = 0 implies θ(άfa - 0, θ(a) = 0, finally a = 0.
Thus M(^r}^M(φ} = H. Let v' be the partial isometry in M' defined by υ'M

H. Now, set η = z 'ψ , Λffa) = fΓ and | |̂ | |a = 11^ |̂ |2 =

= <<zWVτh^> = <e*e ,̂ ̂ > = I |<srΨΊ [ a = 1 1 <9(«)̂ [ [2, so

that we can define a linear isometry w from 77 onto H such that uaη ~ θ(a}

~φ. If Z? arbitrary in M, then uau~lbφ = uaθ~l (b)η = θ(a)bφ proves that
'1 for all a € M.

2) If Ή, // are separable, M, M have both the invariant (#o, #o) Therefore (51) always
holds (cf. [7])
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LEMMA 5. Let M and M be purely infinite W*-algebras with the same
invariant (4£0, a), then (S) holds.

PROOF. As in lemma 4, we may assume that M* is countably decompo-
sable. Since the invariant of M is (#0,aO, there exists a vector φ^H
such that M!(φ) = 77, and also a family of orthogonal equivalent, cyclic

projections {e't}i€ι in M' such that 1 = 2ic/
 βί an(* the Cardinal of 7 is a.

Then, since M is countably decomposable, for all i £Ξ / there exist vectors
φt, fa in £t'77 such that £-77 = Me^φi) = Me H(γί). This proves that Mβ σ have

all the invariant (4<0, #o) Furthermore, Me H are all isomorphic to M, in

fact, let u't1 be partial isometries such that u' Ju^ = e£' z^X/ == £J5 if ae\ = 0,

<z£j. = au'ije'iu'-J = uΊpe'iUΊf = 0 for all y yield that <s = 2iez^i ~ ^ Similarly,

we obtain a family of orthogonal, equivalent, cyclic projections {e\}ui in M'

such that 1 — 2/β/ ^^^e^have all the invariant (<^0; ^o) and are all isomo-

rphic to M Set θι = (9?ί θ θe'l, where ftj't, ^^^ are isomorphisms of M

onto Λf^#, M" onto M^y"/ respectively. Then (9i are isomorphisms of Me\H.

onto Ms^. From lemma 4, we obtain a linear isometries ^ from eLH onto

'̂J7 such that (θ(a))e/

iΐι = uia^πui1. Now, let w be a linear isometry from 7f

onto 77 such that the restriction to e\H is ,̂ it is easy to see that θ(ά) =

LEMMA 6. Let M and M be purely infinite W*-algebras with the same
invariant (a, β), then (S) holds.

Proof. We may assume that M^ is countably decomposale. Since the
invariant of M is (a, β), there exists a family of orthogonal, equivalent,

cyclic projections {&}& in M such that 1 = 2ίeι^
 and tίιe Cardinal of ^ is

α:. Then the family {θ(et)}uι is also a family of projections in M with pro-
perties similar to those of {et}ιeι.

Now, we notice that θ induce an isomorphism of Meiπ onto MΘ^H, and

M'} M are isomorphic Λf^σ, M'^ΐi respectively. Thus MβfZr, MΘ^H have
all the invariant (#0, /3). Let /0 a fixed element of 7, using lemma 5, we

obtain a linear isometry UQ of ^0/7 onto θ(eι^H such that uQaeiQHUo =
{θ(ay)θ(eio)ΐf. Let t t be partial isometries in M such that v\vt = βiOJ ^ *̂ = £*>
then 6> (vt)*θ(vt) = 6>(̂  0), θ(vt)θ(vt)* = 6>(^) Now, we can define a linear

isometry w = ̂ /.ί̂ *)^* which is a mapping of H onto 77, then

= 2; jθ(Vi)θ(v*aϋj)θ(v^ (since v^
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This complete the proof.

The proof of Theorem 2.
The general case, by projections in M^, is reduced to the case where

M, M have both the invariant (a, β) then, by applying lemma 6, the proof
of the theorem is complete.
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