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1. Introduction. Let

(1.1) flz) = D cuz
n=0
be a function regular for |z| < 1. If, for some p >0, the expression
27
1/»
€2 Mir = (oo [ iveniras)”
0

is bounded as 7 —1, then the function f{z) and its power series are said to
belong to the class H”. It is well known that, if f(z) belongs to the class
H?, then f(2) has a boundary function

1.3) fe®) = l)in}j"(re“’), 002~

for almost all @ and f(e) is integrable Z?. Moreover if p =1 a necessary
and sufficient condition for the function f{z) to belong to the class H? is that
the series

(1.4) > cent®
n=0

is the Fourier series of its boundary function f(e®). Hence, in virture of M.
Riesz’s theorem, if p > 1, the class H” is isomorphic to the class L?. In this
case, the series (1.4) is summable (C, &), & > 0, to the boundary functions f(e®)
at almost all 8. The problem whether in this result we may replace sum-
mability (C, &) by ordinary convergence remains open, but if p = 1, the answer
is negative (Sunouchi [7]).

On the behaviour of power series of class H” on the circle of convergence,
important results were obtained by Littlewood and ‘Paley [6] and Zygmund
[11] [12]. The main tool of Littlewood and Paley was an auxiliary function

(1.5) 20) = g0 f) = (f (1 — 7) XXz, ) dr)m, 0<60<2r
0

where
2:

X(r, 0) = (%f [f'(ret9+9) [2P(z, @) a'rp)ll2
0

* Presented to the Meeting of Mathematical Society of Japan on 23 May 1955
(Tokyo).
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and

=1 d-=7)

P9 = 5 11— peepe
But they proved an inequality theorem concerning to g*(@) only for H?,
P = 2k (k = integer) and their proof is very difficult. Later Zygmund [13]
gave a complete and simple proof. In the other papers [10] [11], he used

another inequality theorem of Littlewood and Paley concerning to

1.6) g<e>=g<0;f>=(f (1~r)lf’(re‘9)|2dr)”2 , 0<6=<2r
0

and gave a simple proof of the main result of Littlewood-Paley and many
interesting generalizations. The purpose of this paper is to give the gene-
ralized theorem on g*(#) and systematic treatment and generalization of
theorems on the power series of the class H”.

2. The function ¢}@) for the class H? (0 < p <2).
The definition of the function g¥#) is slightly less simple. It is given by
the formula

@1 &(0) = £0: /) = (f 1- r)”drf |/ (ret®)|? d¢1>llz
0 0

|1 —reto|*®

If «=1, g¥0) reduces to the function g*(@) of Littlewood and Paley
excepting constant factor. So we don’t distinguish between g*() and g*(9).
It is known that g*(f) is a majorant of many important functions. Especially
£%(0) intervenes for the partial sums of the series (1.4).

Let us denote

si0) = 2 ce, ta(0) = ncaet,
v=0
1 n
an(0) = ATE A%-L s(6), (> —1)
n oy=
r(6) = 4o 3 AL 106), (@>0)
" y=0
where
w_ (Pt __ n*
A,,_-( ” >~l‘(a+1)’ as 7 — o,
then
(2.2) T7%0) = n{a¥0) — c%_«(0)} = a{c?U6) — 5%0)}.

Further put

G
(2. 3) hw 6 = hw(e; = — N
©) n (E Oy
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then we have the following relation. The right half was given by Chow [1]
and the left half for &« = 1 was remarked by Koizumi [5].

LeEMMA 1. For the function f(z) € H? (0 < p < ),
2.49) Ash0) < g50) < Baha(0).

ReEMARK 1. Throughout this paper, Aq, Ba, .... are positive constants
depending only on «, and may be different from one occurence to another.

ReEMARK 2. For the definiteness of conjugate series, we put J¢, = 0.

Remark 3. In proving theorems in this paper, we can suppose without
loss of generarity that f(z) has no zeros inside the unite circle. And in many
case, it is enough to prove theorems for f(z) regular on |z| <1. For, proving
theorem for f(Rz) (0 < R < 1) and making R tend to 1, we get the theorem.

PrOOF. If we write

oo

2. 5) (.-I)w(r, 0) = 2 (AE;L)JIT:(G)P o

n=1
then
é (Ai) [T3(0)]*
< (2n + 20 + 1)(ARR '
1
= Awf (1 — )P (7, 0) dr.

0

(2- 6) {ha(o)}z = As

Since
- 21 (zet®)
2.7 E ARTiOR = g
we have, by Parseval’s theorem
21
_ 1 |7 (re'@+9)|*
2.8) Du(7,0) = % 6[ |1 — 7ete|2® dgp,
so that
1 " o)
3 2 =B « — )2 __l—:._.
@9 (1a6)} f A= rpeay [ LD g,
0

é Cm{g:(a)} 2’

by the definition (2.1).
On the other hand, for 0<7r < 1/2

(1 —7rp
|1 — rew|2m

are limited above and below by positive numbers, and
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[ reecniap
0

is non-decreasing function of . Thus
1/4

21
T (o) 2
f ( 7‘) dr(.)[ Il fre‘¢|2w dq)

1/2

27
y If?(ret(o+(o))|2
§_ Dm f (1 7") ‘”drf TT:W; d¢
1/4 0

1/2 27
| 7f(retoro)|:

= Emf (1 B 7’)2‘” dr;f |1 - rewlm

1/4

1 o
st a-pea [ 100,
0 0

|1 — 7etv |2
Consequently

1 27
OV Ly [f (re @)z
{gm(e)}l - :)[ (1 r)a drof I]_ . reg(plza

0 1/4
' |0 (oo
= G, — y)e A" (re™9) |2
6[ 1—r7) dr(f 11— yaie] d
< HAn(0)y

by (2.9). Thus we have (2.4).
LEMMA 2. If @« >1/2 and 0 < 7 < 1, then

27

(2.10) f e S Aull— 7y

Proor. Since

|1 — 7ete |2
(2.11) CEr T

where 8 = 1 —7, are bound above and below by positive numbers,

) —7t§¢§'ﬂ'

27 ] 3 T

e < - f o
B[Il_rewlw = As (8 + @) A“O +A"8

<A.,f dp +Aw “dy

Bw ¢2w

§A“ ol-24 -+ Aa[¢l w]g é Aw81-2w’
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for 1 —2a < 0.
LEMMA 3. If we put

h

(2.12) 1%(6) = sup Vl’f (e @+ | du I
o<ini=s<| h J
and
1 h 31/k

(2.13) ft(e) _;—qsl}llgg W f (@) |k dy

= J :
then
(2.14) |fret® )] < AfXO) (L + @l /8)  Jor fie) € L
and
(2.15) fret®+o)| < BFAO)A + || /8)"%  for fle®) € L¥ (k> 1)

where § =1 —7, and /X0) € L, if fle®) €L and k< 2.

This is essentially due to Hardy and Littlewood [3]. Since
2
f(ret®+)) = 1 [ f(e®+™) P(r,u — @)du,
T
0

where P(r,t) is the Poisson kernel, by partial integration, we can easily
get (2.14).

To deduce (2.15) from (2.14) it is enough to note that, by Jensen’s in
equality

1 27 Uk 1 27
(L f ey P nar) " < L f AeO0) |z, £) dt.
0 0

THEOREM 1. If (2) € H? 0 < p <2), and o > 1/p, then

27

@ 16) f (O db =< Ay f fe®)|» db.
0 0

This was given in my previous paper [9]. We shall give a slightly simpler
proof.

Proor. We shall begin with the case p = 2.
(1) p = 2. Then for 2a > 1,

21 27

[ worwsa [a-pear| A2 [ irgeeo:ap
v 0 0 0

1 oo
= Bwf (1 =7y Emlcnlzr""”'”drf N —
0

J
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o 1
=Cs 2 nzlc,.lzf (1 — 731 — rp-2®y2(0-D gy (by Lemma 2)
n=1 0

o 1

<D. 2 nz|cn|zf a _,),z(n-l) dr

n=1 0
271

SES el <G| e

n=1 0

Hence the case p = 2 is proved.
(2) Suppose that 0 < p < 2 and put

F(z) = {f(z)}*"
then F(z) is regular for |z| < 1 and belongs to H*. Since

f(Z) = _2_ {F(z)}(l—]’)/l’ F’(Z),

so that

,ﬁ?lf =1 & {(Hze‘O))(z-P)/p Fl(zeto) }
1—-2» p 1—2)
we have, by Parseval's relation
el S} A a1

{ 2‘(0;f)}2§A,,,.,f (1_,)2%] (IR ar
0 Y |1 —7ete|

By Lemma 3, for % < 2 this is smaller than

1 0 202

22— . o+ |<p| ‘k'(T‘l) |F’(”1(0+w))|z

B, o{FX@)y:c-i» f 1— e f {7_} (| Fl(ree+o)|2
D, { k( )} J ( 7’)‘ dr 5 (82 g (‘pz)w d¢

-n

1

x
é Cp w{F:(o)}z(z—p)lpf (1 _ 7’)2"‘ dr (85 -+ ¢2)I/Ic(2/11-1)IFl(ret(0+¢))|2
0

S2lkeCzip=1) (&2 4 ) dep

-1

1 T
~ 209 ; V(ypt(0+9))]| 2
= vp)“{p"t(e)}z(z-ﬁ)lpf 1 —rye- %(%'1) d”f (Sz'fgf)w—llk)(zlm—l) d¢'
0 -z

Let a=1+8/pE>0), B=Q1+8)/p—1/k2/p —1) and k be sufficiently
near to 2, then

o1 (3 )1 2 e

and the above formula is

1 T
22ip— , F(ret®+e))|2
Cp. o{ FX(0))2C2I? 1)f 1 — 7)2/8d. f _I——_#
D, { k( )} J ( f) r—u (81 +(p2)ﬂ
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1 2%
s o | F(rei@+o)| 2
< Dy, o{ FXO)PCIP-D f a f>"*d"0f T —reelum
=< By, ol FHOYP {560 F)Y, (28 >1).
Thus

[ (e nyassp.| Exoyrige; pyas
0 0

sre{f "oy )| | " g0; Py )"
0 0

by the inequality of Holder. From the maximal theorem of Hardy and
Littlewood, we have
27 27
| woyawsa, [ ireora
0 0
and so by the case (1),

2

Of (850; )’ d0 < Ga f

‘Thus we proved Theorem 1 completely.

COROLLARY 1. If f(2) belongs to the class H® (0 < p < 2),
then

21

| F(e)|%d0 =< Kp, o f 1e®)|* db.
0

2

f {HX0)Y db = Ap,wf [f(e®)|? db (a >1/p)
0 0
where

1 n .
1) = { sup_ 3 lot0) —fem)= |

This is a maximal theorem concerning with strong summability.

Proor. Let us put 7 is the index #» when H%(0) attains the supremum,
then

n )

1 1
sup © 2 |of0) — o¥O)* = - 3 |03 7(6) — aO)|*
k=1

0<m<eo k=1

’ﬂo o
-1 0 i % )2 0',0:—1 — ,acé 2 y
<> Ij‘k"(—)‘kf‘g‘(‘ll‘ = J (0)k O _ oy,

by (2.3). Thus Corollary is immediate from Theorem 1 and Lemma 1.

COROLLARY 2. If f(2) belongs to the class H? (0 < p <2), then

k=1

oo

poRs (@>1/p)

n=1 n
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is convergent for almost all 0.

This is immediate from Theorem 1 and Lemma 1. This Corollary has

been ever proved by Chow [1].
From this, we can get the following Corollaries by the well known

method.

COROLLARY 3. If f(z) belongs to H? (0 < p < 2), then the series 2 AnCrn €™,

wherez (An)2/n converges, is summable |C, «l,(a > 1/p) for almost all 6.
For the proof, see Chow [1].

COROLLARY 4. If f(2) belongs to H? (0 < p < 2), then for almost all 0, the
sequence {n} can be divided into two complementary subsequences {n;} and
{my}, depending in general on 6, and such that o%-(0) tends to f(0) and the

ny

series 2 1/my, converges, where a > 1/p.

For the reduction of this Corollary, see Zygmund [10].

3. The function g]ﬁ(ﬁ) for the class H? (o > p > 2).
For the class H? (oo > p > 2), we have the following theorem. This is
essentially due to Zygmund [13]. The proof is also repetition of his argu-

ment.
THEOREM 2. If flz) € H? (o0 >p >2) and o > 1/2, then

2n 27
a1 [ @w@raosa,. [ e
0 0
Proor. Let u be a positive number such that
1 1 '
e+ = =1
b2 p
and let £(f) be any positive function such that
2 ”
3.2) { f £4(6) d0} <1

0,
Then it is known that

I

- SRRSO EIES I
[{Of (22%6)) de} ]

= sup { f h(g;*(éi))zf(e) dﬁ}”z,

(3.3) { | " oy a )"
0

and the inner integral
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27 27 1 2 O+ s
f (X(O)VEB)db < Ad f £0)do f 82 dy f e @O G, 6 =1—7)
0 0 0 0

11— reto|2e

do
1— reci;o—e) | 20

1 27 21
<8.[ sar [ iroenrapien [ EO
0 0 0

|1 = rette= |2

<z [ " s a0 | s ar / e

Let us put
B, ) = f (Ep + 6)+ Egp — )} db
0

and
(3.4 EX(@) = sup 1 | E(u, @),
o<use %

then the last integral

201 f Ol _ s f {Elp + w) + E(p — u)} 1*1-;%[,;12,;‘
0

|1 — rei@=0 |2

-7

du

=C. 82“'1f {8 + w) + Ep — w)} ot an
0

) 3

gc“aw—xf +cw8w—1f =1+],
8

0

say. Then

1= [ (Ep+ )+ Ep —w) 22
0

= Do EX()

and

T

< 82m—1f {E(@ +u)+ Eo — “)}:TZ

8

= S2e-1 [ El(u, @)u=* :r 4+ 2« Bzw—lf E(u, @) u=*"' du
)
8

é S2e-1 E(?T’, ¢)7r—]7r—205+1 + 2a Sz@—1 E*(¢)f w2 du
8
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2a
200 — 1

< E) {z g1 } < E.E%(p).

Thus the left-hand side of (3.3)

[ worenawsr. [ sar[ vweoregdp
0 0 0

= #@Ewip
0

=& [ " o I " ) ap )™

=G. f " e 4 f " e dp }2"'

from the maximal theorem of Hardy-Littlewood and the theorem of Lit-
tlewood-Paley [6] (simple proof; Zygmund [14]). Thus we get

27 2
{ f (g:w»we}”” < AM{ f e » de}”", (0 >5>2)
0 0

and the theorem is proved. From this, we can derive easily that if f(2)
belongs to H? (o >p > 2), and a >1/2, then

f {2 I }”“ d0<A,a f Ifie®)|»d6,
0 n=1 0

and

27 27

1 & . R
[t Sier@ s dos B [ irenieas

0 = 0
4. A proof of the theorem of Littlewood and Paley. From Theorems
1 and 2, we have especially,

THEOREM 3. If f(2) belongs to H* (1< p < ), then

@1 f @OYdo< A, f f(e®)]? do.
0 0

From this, we have the following
27 27
4.2 [ soyaoss,[ ieora, ®>1)
0 0
and
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21

(4.3) f {uO)}* dé = C, f Ife)|* db @®>1
0 0

where S(0) is the function of Lusin and w(@) is the function of Marcinkiewicz.
The function of g%(@) is essenitally a majorant of these functions. The
reduction of (4.2) is done by a moment’s consideration, but the reduction of
(4.3) is somewhat difficult. For the detailed definitions and proofs, see
Zygmund [13].

The main theorem of Littlewood-Paley is condensed in the following
theorem.

THEOREM 4. If f(2) belongs to H? (1 < p < =), then

4.4) Apf |f(ew)|"dt9§f {E%ni’,‘(e)l‘z,,}plz doéA”’f ()| ? df
0 0 n=1 P
(4.5) Byas f renizao = | (1@ —ani)t* | a0 < B, . f e d8
0 k=1 0

0
2

@6 Cos [ e ass [ [Sia@traosc, [ tensa,
0 k=1 0

0

"k
where Au(f) = 2 cne® and B > npw/m > a >1.

g—1+1
(4.4) is a consequence of Theorem 3 and Lemma 1*. The left-halves of

(4.5) and (4.6) are proved by the following results of Zygmund [11]. That
is

27 oo , ol 2 o 2
f {ZM} ’degup,,,,ﬁf {2|s,.‘,(0)—a,.kw)|z}” o
n =l 0

0 k=1
27

ng.u.Bf {%I&(ﬁ)ﬁ}"”d@

0
for 1< p < . For the proof of the reverse inequalities, we need

LEMMA 4. Let {f(2)} (n =1,2....) be a sequence of the function of HP
(1< p< ), and let sn, (0) denote the k-th partial sum of the boundary series
of fu(2). Then

2 oo o o N v
f (2 | Sn, kn(0)|2> dé < Apf (2 [fil€®)|2 ) db.

0 n=1 J o
A comparatively simple proof was given by Zygmund [10], using Rade-

macher’s function.
ProOF OF THEOREM 4. From Lemma 4, we have

*) We suppose that the left-half of (4.4) is proved by another method.
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f“ <i (813, (0) — o ny(O)]? >M do

k=1

f (2 ) mcme"‘“’ ’ )mzdo
k=1 m=1 ‘
Ny A "k...1 /2
<A, .,,,gf (z > mene™ | > 1/1;3) de
k=1"m=1 v=ng+1
> Tkt o[z
= B f (2 S LIS mewens ) a0
k= lu—nk-pl m=1

n=1

0

Thus (4.5) is proved. On the other hand

|0’nk+](0) - U'nk(a)lz _——<_ { 2 Ia’m(e) - G'm—l(e)lz}_

m=ng+1

> mlow(6) — O] | { >} 1/m}

M=ng+] m=ng+1
Ns N—+1
1
=log 7y +1 { 2 lmio’m(o)_a'm»(e)[ }
m=ng+

=logf i > ls® — Um(0)|2/m}

m=ny+1

by (4.2). Since

[Ags1(0) % = |Sngsa(6) — Sur(0)]?
= lsnk+1(8) anar(O)[2 + ISn,C(H) - G'Wk(a)lz + Ia'ﬂk—t—l(e) - a',.,c(e)lz,
we get the required inegnality
- W(0) — on(@) ]2
2 Al = Ap,ap 2 [$2,(0) — oni(D)|* + By,a ﬁzli(_‘)—ng_(‘)l—

k=1 n=1

and get the formula (4.6). Thus the theorem is proved completely.
The following corollary is deduced by the well known method from
Theorem 4.

COROLLARY 5. If f(z) belongs to the class H” (p > 1), and if B > Nyps1[Ms
>a >1, then

27 2z

J {sup i@} 05 A [ 070

Y] 0
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COROLLARY 6. If {&:} is any sequence of numbers of which each has one of
the values 1, — 1, and if f€ H? (p > 1), B > w1/ > > 1, then

f “2 ElAi(6) [pdﬁ < By,ups f [f(e)| ® df
0o k=t 0
where

(3

Af) = X cuet.

n=ng—1+1

5. The power series of H-class.

Concerning with the power series of H-class, A.Zygmund [11] proved
that

(5.1) f @ dd< A f |f(e®)|log™ |fle®)|d6 + A’
0 0

and

(5.2) (l(0)df < B, If(e?)| db ) , O<p<l).
f (] vena)

So, from Lemma 1, we get

THEOREM 5. If f(2) belongs to the class H, then

27

5.3) f @) o< A f /(e [ log* [Aie)|df + A’
0 0

(5. 4) f (@*O)db < B.u( f /(&) do ) 0<p<l)
0 0

The present author has not ever a simple and direct proof of this
thegprem.

THEOREM 6. If f(z) belongs to H, then

5.5) f (w6} dd < A f |(/e) | Tog* [/ie)|d6 + A’
0 0

(5.6) f o)y a0 < B, ( f inen) aa) O<r<1)
0 0

where

= " |F(6 +t)+ F(@ —t) —2F@)|* ,, \'*
6) = {f 0 a)

0
and
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C)
Fé) =c+ f 1) dt.
0

This is immediate from the fact
o) = Cg*(6)
which was proved by Zygmund [13].

6. Power series of the class H¥(0 < p < 1). For the class H?(0 < p
< 1), we have a more precise results than Theorem 2.

THEOREM 7. If f(z) belongs to H? (0 <p < 1) and a = 1/p, then

6 [ wxepraosa, [ el rogifelas + 4
0 0

(6.2) f (X0} dI < B,, { f e » d6 }", 0<p<l).
0 0

Proor. This case is reduced to the case p = 1.
If we take 0<p<1, aa=1/p and p
G(z) = {fiz)}*
then G(z) € H,
(@) = a{G(2)}*"'G'(2),

and

27
i(p+0)) ]| 2a-1) | G/(yeile+0))]:
[ GG,

1
%0 A = ,o,ti,f e
(ga(01 f))‘ %o (1 r)& ar |1 —_— ref(l’lza
0

0

From (2.14) of Lemma 3,

Glre@+0) < AG*(6) {1 + '—‘g’—'}, G=1—17)
where
G*0) = sup |- f | G(eO*0) | du ‘
o<lni== | I
0

the right-hand side is smaller than

! -/‘" (8,2 + @2)-1 v JG'(,,e:(o+<p))|z
1

Ap{G*(e)}Z(“—l)f 1 —7ryedr — P)E-I(§2 4 p)r-l |1 — refe|2 dp

0

1 3
éAp{G*w)}*‘““’f 1 —r)““dff |G el 4
0

|1 — 7e*#|?
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= A {GHO)y*=D{g*6; Gy

[ tme: ryraos a, [ e en—rire; cyran

< A,,{ f MG*(H) de}“” { f 2,,9*(9; G)db }
0 0

by Hélder’s inequality. From the maximal theorem and jTheorem 5, we get

271 27

f {9X0)y?do = B,,f |G(e®)|log* |G(e®)|d6 + B,
0 0

21

=B, f /i) » log* |fe®)|d + B,
0
Analogously

21

[ @ mmassa, [ (Gr@penioo: o as
0

0

<4, [fgﬂ{c*(g)}u de ]l—p [fu {o*(0; G))*db ]p

27

ng,,L{f |G(e)| do}“

0
< By J feniras ).
0

Thus Theorem is proved completely.

THEOREM 8, If f(z) belongs to H* (0 < p<1), and o = 1/p, then

6. 3) f {r0)}* dB < A, [f(e)]? log* | fet®)|db + A;,
0 )

6. 4) f (ha(6))?* dO < BM'{ f lf(ewwde}“ .
0 0

This is immediate from Theorem 7 and Lemma 1. This formula was given
by the present author [9] by more complicated method.

7. Maximal theorems of the Cesaro mean of the power series of
the class H*»(0< p < 1).

THEORFM 9. If f(z) belongs to H> (0< p<1) and a« > 1/p — 1, then
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27 27

@ [ (s iononyao<a. [ irenras

0 0

THEOREM 10. If f(2) belongs to H0 < p<1/2), and a = 1/p — 1, then

27 27C
7.2) f { sup lo%(@)}*dd < B, f /ie)|* log* |fie®)|d6 + B,
0

0
@3 [ (o los@mmaoscou( [ enra),  o0<p<n,
0 0

Theorem 9 is a generalization of classical results of Hardy-Littlewood
{4] and Gwilliam [2]. (7.2) of Theorem 10 is an affirmative answer of a
problem of Zygmund [12]. From (7.3) we can easily see that «%) (a = 1/p
— 1) converges to f(¢®) for almost all . This was proved by Zygmund [12]
for 0 < p < 1. For the case 1/2< p < 1, the maximal theorem is left open,
but convergence of ¢%@¢) is proved in the next section.

The present author [9] deduced Theorem 9 and Theorem 10 from Lemma
1 and Theorem 8 with the aid of the following lemma.

LEMMA 5. If f(z) = g¥z) and o >0, then

. 1 & o D05 g) — a@H 1210 g)]*
los(@; )l =< Au- nwz,,,,,ﬂ/u, e

k=0

&+ 1)

where %0 ; f) is the a-th Cesaro mean of the boundary series of f(z).

1 ” (@+1))2(g 2
4 a, L 3ol 0; )

k=0

For the detailed argument, see my previous paper [9].

8. Strong summability and ordinary summability of the power
Series.

In Corollary 1, we have proved the maximal theorem of the strong
summability of &%) (a > 1/p) for H? (1< p =2). But if we give up the
maxinal theorem, then we can prove the more precise result.

THEOREM 11. If f(2) belongs to H* 1< p < 2) and o = 1/p, then

> lo(0) —fe®)]1 = o(n)

k=0

Jor almost all §, where 0 < g < p/(p — 1).

This was proved in the author’s paper [8]. The method of the proof
depends closely upon the paper of Zygmund [12]. In his paper, Zygmund
proved the strong summability theorem of the function of Z and the Cesaro
summability theorem of the series of the class H? (0 < p < 1). The proofs
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of both theorems have many features in common, but the the details of
proofs are different. After proving Theorem 11, we can deduce from that
the following Cesaro summability theorem.

THEOREM 12. If f(2) belongs to H? (1/2< p< 1) and a = 1/p =1, then the

sertes 2 cne™® is summable (C, o) to f(e') for almost all 6.

Proor. If we put
Rz) = g¥2),
then g(z) belongs to HMA =2p, 1< A< 2), and (a + 1)/2 =1/2p = 1/A. From
the formula in [8], p.225, we have

n
E AP a1 (05 g) — aiINE; 9)|% = o(nza+1), a.e.
k=1 :
that is
n
2 A%“lai‘”“”z(@; g) — 0';,(-“1)/2(9: 9)|2 = o(ne+2), a.e.
k=1

By Abel’s transformation,

5 o705 ) = ol o)l

e = o(n%), a.e.

k=1

From Lemma 5, we have
n

1 3 lofe%s 9l
nw E (k + l)l_w ’
Since evidently o{**1/%(8; g) tends to g(e”) for almost all 9, if we take
polynomial f(z) near to f(z), then we can conclude
a(0; f)—fe9), a.e. as 7 — oo,
Thus we get Theorem 12 from Theorem 11.

loe@; /)] = o) + a.e.

9. The afﬁrniative answer to a problem of Zygmund.
On another conjecture of Zygmund, we cap_prove the following theorem.

THEOREM 13. If f(z) belongs to HP, then

TS dmor [ e .
0.0 [ S om0l 1= 4, [ temiras, 0< o5, 1p

n=1

0
. 2)f { sup . 1oaOI }p a9 < B,,f fe)|*d, 0 < p=1,a=1/p—1).

Y 0<n<e (log (7 + )L "

9.2) is deduced from (9.1) by the usual method. (9.2) is an answer to
the problem raised by Zygmund [12]. But there is a slip in his original
paper, so I proved (9.2) in the case 1/2< p =<1, since this case is better
than Zygmund’s original conjecture. After-that, I noticed his correction [14]
in such a form as (9.2), so we will prove Theorem [13] completely. For the
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proof of theorem we need a lemma which was given in [9].

LeMMA. (A) For positive a,

a3 mOr [ g, f e ,

S allog(n + D) T y |[log @ —7)|** |1 — 7ete|2e
T~ e
=4 E n{log (n + 1)} °

{B) If we put

< [T)%0)]2 7' 1 SV (<112 gy (2 pan iz —
[ Zatogm+7 | =0 (s g =y Slsr@ Jre=reo.

0<r<1

then the integrals of {f**0)} and {f¥0)}* are majorated by the integral of
Ife®)|?, if flz) € H2

PrOOF OF THEOREM. The case 1< p <2 of (9.1) was proved in my
previous paper [9]. So we begin with the case p = 1.
(1) p=1. Let us put
Fz) = {fiz)}'
then F(z) € H:. Denote by s*-1?(4) and 7%/%#) the corresponding (C, —1/2)
sums etc. of the boundary series of Fz). If we put

2
$(0+0)) | 2
(7, 0) = f 'Ifl)(j—e—re‘ «T|)?|’"d¢‘

0
_ szIF(re‘("*“’))lz |p(,ez<o+r))|zd
Joo|l—7e®l |1 —rev

2T oo 2
- 2[ !23:—“2(«9)7%‘”2Aﬁ,“’rfb”z(ﬂ)r"e”’”‘f’ dop

0 n=() n=0

27 n 2
- f > (S A 0) o frrer | dp
0

n=0 “v=0

> Ay Os0)

v=0

s

n=0

2 rzn.

Applying Minkowski’s inequality and Hélder’s inequality successively,

we obtain
hd . 2 1/2
(2| =z armrosizo] =)
n=) " v=0

< Ao 20+ 1 0)] (3 1510)1 7 )"
v=0 n=v
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< A, 2(1} + 12| 7xix()| |log (1 — 7)|2 7 F¥@) (by (B) of Lemma 2)

v=0)

. 12 , o 1/z
< A.Ft@)|log (1 — )|/ (2 w+ 1)|-r:uz(0)|zrv) (2 fv)
v=0 v=0

1/2
< B.F{6)(1 — r)-Vz|log (1 — 7|V (E(u + 1)|T:112(0)|2rv) .

v=0

So

®(7,0) = Co{FHO)}(1 — )| log (1 — f)l(z(v + 1)IT|’,‘”2(0)127’">.

v=0

By the formula of Lemma (A)

< | 7(0)]*
E n{log(n + 1)}*

1

»¥A1'2(17—1')2
§Dma[ llog(l —7’)'2 ¢(r7 e)dr

72(1 - 1’)
[log (1 — 7)|

< ELFO)Y f

0

- 2(» + )| 7HIHG)| 2y dr
v=0

|T6)]*
Dlog(@ + 2)

= Go{FHO)PH{F**(6)).

< Fa{F+(0>}22(y T
v=0

Consequently

29 ]T}L(B)IZ L o
f { _ﬁm}j} A< Ga f (F*(6)) (F**(60)) df

=alf " r@yas ' "oy as N
0 0

27 21
<H. f | F(e)|2 df < Ha f )] do,
0 0

by Lemma (B).
The case 1/2< p < 1. put
G(z) = {f(2)}*

then G(z) € H. Denote by sk(@), oX@) and 7}(0) the corresponding partial
sums, Cesaro means and their differences of the boundary series of G(2).
Then we have
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(S e e f o
Uf D B
0
by the case proYed.

Moreover we have
2.

1 [ 1GEe ™) | ey
271'f |1-re”’|2 d¢— Eolsn(e)) 7",
0 n=

and let us put
G S e )
1822, Toga e K012 = 10
then we can prove analogously to Lemma 3 in [9]

< | 75(0)]2 . lo%@)]
105 A{Z gt 07 ) B g n t D

n=1

and

f‘zz
0

On the other hand, since «a = 1/p, and G(z) = {f(z)}?, we have
f(2) = a{G(2)}*1G'(2)
and by applying Holder's inequality,

I6)do < f |G(e®)| db.
0

‘plz

[7%(6)|*
{Z n{log(n + 1)}/ §

n=1

1 27
721 — ) f | F(rett@+er|2 /2
< B
“{ liog(1 — i ¥ ) 1T = yges dq’}
0

C{fl fzwr{ ]7G,(2’€’ff’1f@|,i}“_l [G/(ret @)z p2a(] — y)2 d(pdr}mg
0 0
1

IA

|1 — 7ete|? |1 — 7|z [log (1 —r)|¥?

IA

72l _r)za fZﬂ lG(re‘(o'””))lz_ a-1
o mioga —amrl) e )

. 27 iG/(re{(0+(p))l2/(z_a) g-a DI
{f |1 — rete]z G- dq)} ]
0

| f rn f (G @\ r(l—p) 1o
0 0

IA

flog (1 —7)]* |1 — ree| llog 1 —7)|* )

2.
i | G/(rei®+o)y|2i2-a) 2-a o)z
A S e )]
0
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< By | | Mgn )"

|log 1 —7)|?
a-1)p < lT"(H)li "
= K1)y {zm&g (n+ D) }
= F{H(0)},
where

H(6) = Max [1(0), { 21 ,7{1“([)%]& }1/2 J

and
27 21
f H(0)db < Gf |G(e")] db.
0 0

Thus we get

[ (2 ot o

21 27
=4, 16 sa, [ 1Henra.
0 0
For the case p=1/m and 1/(im+ 1)< p<1/m (m=2,3,....), we can prove
similarly, cf. Chow [1]. ’
The reduction of (9.2) from (9. 1) is identical to the proof of Theorem 6
in [9]. That is from Lemma 5,

(@- 1)I’(0 g) — o.kw“)/ (6 g)l.

« o
o305 Nl < Au ,,2 e & 1"
'—1 n +1) (0 g)l_
AL % (k-f—l)l “

where
flz)= g%2), and a=1/p—1
This is smaller than

(@+1)/2

Ia(““” 0: g —o (9 g)] ’ [ (@+1)[2, }3
< k - ;
B, 2 i + B, lof}»lgola" @; 2|

SR CAT ) Rt SR CAT A1
(& + 1){log (& + 2)y17»

=< Cu(log n)”pz ok

k=0
+ C{sup | o{**V/%0; g)| }*
Consequently
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o0 Nl
f <n<w {log (n + 2)}\» } df

o "
Scwf {é 'a'('” 1)/’(0 g) __a_(a.p])p(e g)I‘ }Zp 3d€
0

prrd (k+ 1){log (k& + 2)}1/»

+Cf {sup [olE+Di2(8; g)l} do

0<n<eo

27 2

< DJ | (e[ d6 < Daf fie®)|» d6
0

0

by (9.1) and a = 1/p — 1. Thus we get the formula (8. 2).
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