
THE ABSOLUTE VALUE OF W* ALGEBRAS

OF FINITE TYPE

SHOICHIRO SAKAI

(Received January 15, 1956)

1. Introduction. In the theory of PF*-algebras, many classical order-
properties in the commutative case have been extended to the algebra,
and in particular, R. Kadison [5] showed that the algebraic structure is
determined by the order structure in a sense. However, in the commutative
case, we had known the stronger fact that the algebra can be characterised
as a vector lattice. Considering these facts, we can raise a more general,
interesting question as follows: Is it possible to characterise a W*-algebra as
a vector space with an order structure ? Moreover, it seems that a suitable
settlement of this question will be useful for the study of the algebraical
type which will occupy a central position in future wStudies of the algebra.

In the management of this question there is a pathology that owing to
the non-coincidence of right ideals and left ones in the non-commutative
case, right ideals can not be explanated by the order structure only of the
self-adjoint portion. But, there is a useful notion for the elimination of
this pathology; let M be a PF*-algebra, x an element of Mand x = u\x\(\x\
= (x*x)112) be the polar decomposition of x, then we shall call \x\ the absolute

value of x and a mapping x—> \x\ the absolute-value mapping. The absolute
value has many interesting properties, and we can easily show that the
non-coincidence of right ideals with left ones can be explanated by the
absolute value. Therefore our question can be reformed as follows: Is it
possible to characterise a W*-algebra as a vector space with an absolute
value mapping?

The question is comparatively manageable in the semi-finite case for,
J. Dixmier [3] and I. E. Segal [7] have given a non-commutative extension of
abstract integration, introduced generalized ZΛspaces, and extended classical
properties in /^-spaces, and in particular, they have shown that the absolute
value in generalized £p-spaces inherits many classical properties. Therefore
the classical theories for the (AZ^)-spaces by S. Kakutani [6J and EL
Bohnenblust [1J will offer a useful model for our intension.

From these points of view, the purpose of this paper is to try an
axiomatical dealings of a generalized ZΛspace, which is most manageable
in generalized Zp-spaces, using the absolute value.

Moreover, since the semi-finite algebra can, in a suitable sense, be
reduced to the finite one, our object will be restricted to the finite case in
this paper

Then, the principal purpose of this paper is to show that any hilbert
space with an absolute value-mapping satisfying some axioms {Axioms I-II, § 3-
below) is a generalized L2-space.
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2. Preliminaries. In this section, we shall consider remarkable
properties of a generalized TΛspace.

Let M be a W*-algebra of finite type with a σ-weakly continuous,
complete trace ψ, then the space M with an inner product (x,y) = φ(y*x) is
a pre-hilbert space and the hilbert space obtained by the completion is
denoted by L?(M,φ) and is called a generalized 7/2-space, associated with
the algebra M and a trace φ [cf. 3,7].

Then, I. E. Segal [7] had presented a more concrete realization of a
generalized Z2-space to us: let us represent M as an operator ring on a
hilbert space <£), then L2(M, φ) is considered a hilbert space composed of
all linear operators on £) which are square-integrable with respect to the
gage induced by φ.

Throughout this paper, we shall consider the generalized Z2-space
L\M, φ) in the sense of Segal. We can point out the following remarkable
properties (a) — (η) of the adjoint operation, the order of the self-adjoint
portion, the absolute value and the unit.

Let P be the positive portion of L\M, φ), then we can easily show the
following:

(α) if and only if a ;> 0, (β, b) j> 0 for all b € P.
Let x be an element of L\M,φ)a.nάx = :w|#|(j#| = .(a*#)I/a) be the polar

decomposition of x, then a correspondence x-> \x\ is a mapping of Lι(M,φ)
on P, and \x\ is called the absolute value of x. Then, J.Dixmier [3, lemma
3] had extended the following classical inequality to L2(M, φ).

(β) I t e W I S d β Ί J δ * ! ) 1 ' * del, I*D1/2 for β, b^L\M,φ).
Moreover we shall point out the classical properties on L\M,φ).
(7) for any a, b £Ξ Lι(M, φ) there is an element c such that (|a\, \b\) =

(a,c) and |c | = \b\.

For, put « = u\a\ (u: unitary) and c = u\b\, then (β, c) = φ{c*a) = ^( |6 |

«*ί |β |) = ( |β|, | ft |)and \c\ = |*|.«
(δ) I«|J-|^I implies | β * | S l ( « + δ)Ί,

where |α[-L|ft| means that \a\ is orthogonal to |6 | .
For, | α | J . | ^ | implies that there is a projection β of ill such that \a\ =

β|α|β and |&|e = 0, where the product of two elements is the extended
product of measurable operators [cf. 7] hence e{p*b)e = 0, so that be = 0,
and analogously a(I — e) = 0, where / i s the unit of M. Therefore Λ = ae
and b= b(I — e\ Then,

I (β + ^)* Ia = (αβ + 6(7 - e)) (ea* + (7 - e)6*)
= aea* + ^(7 - e)b* ̂  βββ* = «β* = | β* | \

hence by the Heinz' theorem [4, Satz 3], |.β*| ̂  l(β + ^)* | .
Finally we shall point out the following properties of the unit:
(£) for x ̂  0, xL7 implies x = 0.
(?) I ΛΓ| ^ α 7 implies |**| g α / .
In the finite algebra, we can extend any partially isometric operator to a unitary
one.
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\y\ ̂  βI imply \x + y\ ^(a + β)I.

3. Axioms and the main theorem. In this section, we shall CDnsider
a hilbert space L as follows: (1) there is an adjoint operation * such that
{ax + βy)* = ax* + βy* and (#*)* = # for #,:>>£.£ and α, £ complex numbers.
(2) the real subspace Ls composed of all self-adjoint elements (a* = x) is a
real hilbert spacea ) with a partially ordering given by a set of positive
elements, P, the so-called "positive cone" of LS} and the following further
condition is satisfied if and only if a ^ 0, (a, b)^>0 for all b £ P, where (, )
is the inner product of L.

Moreover we shall set the following axioms.

Axiom I. Absolute value.
There is a mapping a-*\a\ of L on P as follows:

I i : ])βl! = || \a\ I! and \{a,b)\ ^{\a\, [^I)1 / 2(|«*L | 6 * | ) ^ for a,b€
L, where |( f) is the norm in L.

I2 : For any a,b^L, there is an element c such that {\a\, \b\) =
(^c) and |c! = | ί | .

I 3 : | β | - L | 6 | implies | α * | % \(a + b)*\.

Axiom Ii is natural. Axiom IΛ is an abstraction of the polar decompo-
sition. It will be desirable to find a more simple formulation, if possible.
Axiom I 3 is an abstraction of the algebraic properties of the absolute value.
It will be natural that an abstraction of such type is necessary, though
there may be another formulation.

Axiom II. Unit.
There is an element / > 0 with the properties:

H i : For x > 0, x±ί implies x = 0.
I I 2 : \x\ <; al implies \x*\ <al for a a positive number.
I I 3 : 1*| ^ al and \y\ ^ βl imply \x + y\ ^ {a 4- β)I for a, β posi-

tive numbers.

We shall say an element / as above a unit of L.

Then we shall show the following theorem.

Main Theorem. For any hilbert space L satisfying the axioms III with
a unit I, there are a finite W4 algebra M with a σ-weakly continuous, complete
tace φ, and a linear isometry p of L on the generalized Z2-space L\M, φ)
associated with M and φ such that:

tvhere I is the unit of M,
(2) p{a) ^ 0, if and only if a^ 0,
(3) p{\x\)=\p(x)\for all xGL,

where | p{ ) | is the absolute value of L2(M, φ).

In order to prove the theorem, we shall provide some preparatory

2) By a real hilbert space, we mean that {x9y) is real for x,yeLs.
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considerations in the following sections.

4. Characteristic elements. We shall introduce a notion of the
characteristic elements (projections) in L.

LEMMA 4.1. The following properties are satisfied:

(1) (x*,y*) = {y, x) for x,y € L,
(2) ±a^\a\ for a € L,, and
(3) (\a + b\J\c\)^Nι(a}btc)(\a\,\c\)^ + ma,b)c)(\b\J\c\)^

for a, b and c € L, where iVΊ and N2 are positive numbers depending on a, b
and c.

PROOF. (1) is easily obtained.

(2) Let a € Ls and h £: 0, then by the axiom Ii,

hence (\a\ ±a,h)^>0, so that ±a^ \a\.
(3) By the axiom I2,

( |β + &|, |c |) = ( β + * , * ) ' ^ \(a,cύ\ + |(6,d) |
S(la*\, \d*\γiH\a\, \c\y* + (|**|, ICi*I>/sl(IαI, |c |) 1 / s l

This completes the proof.

DEFINITION 1. For xζ Ls, if it is expressible such that x = xx — x2,xL >
0, ΛΓ̂  > 0 and Xι±x2, we say, it is orthogonally decomposable and #1 — ΛΓ2 is
an orthogonal decomposition of #.

LEMMA 4. 2. Awy element of Ls is orthogonally decomposable in the unique
way.

PROOF. By Lemma 4.1, ±x^ \x\ for x ^ Ls. Put fyx) = {h\h > 0 , ± ^ g

/t} then (̂ΛΓ) is a closed convex set. Let x0 be the point, which uniquely
exists by the uniform convexity of L, that realizes the minimum of ]\h\\ on

fft*).
T h e n f| x : ; < : |Λb|ί ^ ;| | # | | ] ; h e n c e | | Λ ^ | • = i |Λ: | a n d s o Λb = \ x \ . M o r e o v e r

{\x\ + x, \x\ — x ) = \x\\f - | | Λ Γ ) | 2 + (x, \ x \ ) — ( \ x \ , x ) = 0. T h i s m e a n s t h a t

(\χ\ + x)±(\x\ — x\ so that x= ~2~(\χ\ + ^) — -s-(!^l — x) & a ^ orthogonal

decomposition. Now let x = ΛΓ2 — x* be an orthogonal decomposition, then
^Xι + ΛΓa and \x{ + ΛΓ. j | = ||ΛΓ||; hence by the unicity of XQ, Xι -\- x2 = xo= \x\.

This completes the proof.

A unique element xx (resp. x2) in the above lemma is denoted by Xι =
Λ:+ (resp. x2 = ΛΓ).

DEFINITION 2. For any # > 0 and y^O, x^y means that we have yX.u
for any u > 0 with Λ:_LW. Moreover if x'yy and ΛΓ-<JV, we shall denote x^y.

Then it is clear that x^ζy and jy-<2 imply

DEFINITION 3. A set..^ of elements of L is said to be a right ideal if
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the following conditions are satisfied:
(1) x,y € 3 implies ax + βy € 3 for a, β complex numbers,
(2) # € θ and M-< |* | imply ^ € &

(3) ΛΓW € ^ (n = 1, 2, . . . . ) and xn -> x (strongly) imply x € 3

LEMMA 4. 3. P#ί [*] = {j>| \y\ -< |*|, jy € £}. M is a ri^ft

PROOF. Suppose that yhy2 £ [*] and \x\ ±u, then by Lemma 4.1,
( b Ί + Λ l , u)^N1(yι,y^,u) {\yλ\,u)^ + iV2(^,^,w)(|^|,w)1/2 = 0;

hence ^ +^€•[*] .

= 0; hence ayxG [xl
Let yn € [*] and ^w ->yύ (strongly), then by the axiom I2

= ll̂ o — J^ ί i|«2ίi for all w.
Hence (|jv0 \, u) = 0, so that jy0 € [Λ:J. This completes the proof.

DEFINITION 4. The right ideal [x] (x ;> 0) is called a principal right ideal
generated by x.

LEMMA 4. 4. Put O(x) = {y\\y\±\x\, y € L}} then 0{x) is a right \ ideal
and O(x) = [*]-*•, where [•]-*- is the orthogonal complement of a closed subspace

PROOF. By an analogous method with the above lemma, it is easily
shown that O(x) is a right ideal cz M-k

Conversely suppose that y € [x\±, then by the axiom Ia, there is an
element c (\c\ = |*|) such that

Since c belongs to [*], (b>|, |*|) = 0, so that y €Ό{x). This completes the
proof.

Let E(x) be the orthogonal projection from L on [ΛΓJ. Moreover, put
M* = {̂ 11̂ *1 -< I**I, y^L}, then by the property (*,.)>) = (.?*,**) and an
analogous method as above, we can show that [x}* is a closed subspace and

Let F(x) be the orthogonal projection of L on [x]*. Then we obtain the
following lemma.

LEMMA 4. 5. For any x,y € L,E(x) commutes with F(y).

PROOF. Let z = zλ + 22, 2T ^ [*] and 23 € O(ΛΓ), then l-εj _L |23 | hence by
the axiom I3, 12* | ^ | (^ + 22)* |.

Now suppose that z £ pfl* (resp. €.[Λί),'"thenUf| S k*l(* = 1,2) mean
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zι, s2 € M* (resp. € [?]£): henceZ = [>] Π M* + M-1 Π M* + M Π M i +
Π [>i£. Therefore E(x)F(y) and F^)^*) are projections of L on [x] f\ [>]*,
so that E{x)F\y) = F\y)E(x). This completes the proof.

LEMMA 4. 6. For # > 0 awd fc > 0, E(x)F(x)h :> 0.

PROOF. At first, we shall show thatjy =yλ + iy-λ (yt € Ls) 6 M Γl M* implies
^ (1 = 1,2) € .[*], so that [x] ft M* = M fl Ls + f'W Π Ls.

Since ^ W ί l M*, |^l <x and |^*l < ^ 7 so that I y \ y <x and

-<«; hence ylt y.Λ € W Therefore y € [x] (] M* fl U implies y+,

y- € M Π M .
Now put E(x)F^x)h=yι + iy* (yt €[x] ΠM* Π L8), then

(E(x)F(x)h,p) = (Λ, E(x)F(x)p) = (A, £) ^ 0 for all i> € P fl M fl M*
hence y2 = 0. Moreover letjΊ = y+ —y- be the orthogonal decomposition, then

hence j ~ = 0, so that E(x)F(x)h > 0. This completes the proof.

LEMMA 4.7. For any x^0, E(x)F(x)I^I.

PROOF. / = E(x)F{x)I + B(Λ) (1 - F(x)) / + (1 - E(x))F(x)I + (1 - £"(*)) (1 -
F(x))I, where 1 is the identity operator on L.

Siacε\Eίx)Fκx)I+EixXl - F^))/|-L|(l - Efr))F{x)I + (1 - E(x))(l - Fκx))I[,
by the axiom I3, | {E{x)F(x)I + ^W (1 - F(x))l)* | ^ / , so that by the axiom
II,, \E{x)F^x)I + £(*)(1 - F^))/| ^ /.

Moreover | (^(ΛΓ)F(ΛΓ)/)* | JL |(JE(Λ?) (1 - F(*))/)*|, so that | E(x)F(x)I\ ̂  |£(ΛΓ>

F(Λ:)/+ F(Λ )(1 -F(*))/l ^ / hence E{x)Fκx)I = |e(Λr)F(Λr)/| ^ /. This comple-
tes the proof.

LEMMA 4.8. (E(*)y)* = F(ίc)y* /or any x > 0

PROOF. Since [*]* = {z\ \z*\ < |**| = \x\^χ,ze L}, M* - {w*|s* €
hence (F(^)* € [*]*. Analogously ((1 - E{x))y)* € M^, hence F ^ * = F(x)
{{E{x)yY + ((1 - E{x))yT) = (F(Λ:)^)*. This completes the proof.

LEMMA 4.9. For any # > 0 , £^)/=: F(ΛΓ)/= E{x)F{x)I = sup

PROOF. Let 0 ^ 2 ^ / and 2 € M, then by Lemma 4. 6, E(x)F(x)z = 2 <
E(x)F(x)I, so that E(x)F(x)I = sup z.

Next we shall show that E(x)F(x)I & x. Suppose that there is an element
u( ^0 ) such that E(x)F(x)I-Lu and x is not orthogonal to u; since # € [>] fl
M*, (ΛΓ, W) •= (E(x)Fκx)x, u) = (ΛΓ, E(x)F(x)u) > 0, so that E(x)F(x)u > 0.

On the other hand, (7, E{x)F(x)u) = (E(x)F(x)I, u) = 0 , hence by the axiom
Πi, E(x)F(x)u = 0. This contradicts to the above inequality hence E{x)F(x)
I^x. Therefore we obtain that [x] = [E(x)F{x)l\. Moreover from the proof
of Lemma 4.7,
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E(x)F(x)IS \E(x)F(x)I + E(x) (1 - F(x))I\ t=
hence E(x)F(x)I ^ \E(x)I\. Then,

(E(x)I} E(x)l) = (\E(x)I\, \E(x)I\)±(E(x)F(x)I,E(x)F(x)I).

On the other hand,

(E(x)I, E(x)I) = (E(x)F(x)I + £(*) (1 - F(*))/, E(x)F(x)I + £(*)(1 - F(*))/) =
{E{x)F{x)I, E(x)F(x)I) + (£(*) (1 - F(*))/, £(#) ( 1 - F(x))/) hence E(x) (1 - F(*))
7 = 0 . Finally E(x)Fix)I = £(*)/ = (£(Λ;)/)* = F(#)7. This completes the proof.

DEFINITION 5. For any x > 0, put e(x) = £(#)/ and we shall call e(#) a
characteristic element corresponding to x.

By the axiom II l 5 L is a principal right ideal and L = [/]. Moreover by
the above lemma, to any principal right ideal there corresponds a unique
characteristic element, and if [Xi] ϋ [x^i, e(Xι) <Ξ e(xz).

LEMMA 4.10. Let Γ be a linearly ordered set of indices and (ya) be a mono-
tone increasing subset of P (i. e. ya ^yβ for a>β) and suppose that y»^z
for all a € Γ and an element z, then it has a least upper bound yQ. Moreover
there is a monotone increasing subsequence (y*n) of (ya) such that yan ->^o
{strongly).

PROOF. Put m = sup \yΛ|. Since \\yΛ J| > \\yβ \\ ΐor a > β and m ̂  \\z\, there
αeΓ

is a monotone increasing subsequence (y*n) of (ya) such that lim \\yΛn i = m.
n

Then,
ίί^-jβ^^ϋ^ll 2 -. !^], 2 for a>β;

hence lim ̂ Λ n = y' (strongly) with 0 g y ^ 2 . Now we shall show that / has
n

the property of the lemma. Since (yΛ) is monotone increasing, for any yΛ

C (y<χ) either yΛ ^y<xn0 for some nϋ or yΛ Ί^y*n for all n.
If y<*^y*no then j Ό i S ^ o S y ; and if y*ϊ>y*n for ajl n,hence \\yΛ \\ > )]/ j[ = sup \\ya \\, so that \\yΛ ;| = ])/ j. On the other hand, [ «̂ — / ||a

+ W\? ^ i(^ li2 hence \\ya —y1 \ = 0 andjy* = y. ThereforeyΛ ^ y for all a € Γ.
Now let h>y* for all α e Γ then ft > lim yΛ n = y. This means that y

is a 1. u. b. of (y*). This completes the proof.

LEMMA 4.11. Any right ideal is principal

PROOF. Let M be a right ideal and put F = {z |0 <: 2 ̂  /, s € -̂ 0", then
by Lemma 4.10 there is a maximal element £ in F, which is characteristic

by Lemma 4.9. Let eτ and £2 be two maximal elements, then ex -<
 βχ ΐ g a

and β 2 < €ι + e'z hence eλ ̂  e(^-±-^2)and ^ 2 ^ e ( ^ - ± ^ ) . By the maxima-

lity of eτ and *a, βi = ez =
 e ( ^ 2 ~
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Suppose that [e] !=p M, then there is an element y of M such that y €
[e] and y }> 0, so that e(# -hjy) > e, this contradicts to the maximalxty of e;
hence [e] = M. This completes the proof.

Let E be the totality of characteristic elements of L, then the following
theorem is immediately obtained from the above lemma.

THEOREM. 1. E is a complete lattice.

For, let {M*} be a family of r ight ideals, then (\MΛ and O (f\

O(Ma)) a re r ight ideals, and moreover if [x] is a r ight ideal such t h a t M»

£ [x] for all a, then O ( P \ 0{M«)) £ O(O(x)) = [*].

LEMMA 4.12. 7/2 orcfer fî α/ αw element e belongs to E, it is necessary and
sufficient that 0 <; e <Ξ I and e±(I—e)..

PROOF. Let e(#) be the characteristic element corresponding to e, then
e(e) |> e. Now suppose that e < e(e), then 7 — e = (/ — e(^)) 4- (e(β) — ̂ ) hence
^_L(7 — ̂ ) means that (e, I — e) = (̂ , e((?) — g) = 0 and so e(#) — e € O(#), this
contradicts to e(e) — e ζ [e]. This completes the proof.

Since O(x) = M-L, the characteristic element of O(x) is (1 — E(x))l =
7 - β(Λ).

From this fact and the above lemma, we can immediately obtain the
following.

LEMMA 4.13.

(1) eh e2^Έj and e,±e-> imply eγ + e ± € E.
(2) ex > eλ implies eλ — eλ € E.
(3) en € E (w = 1, 2, ) and en->e {strongly) imply e € E.

5. Integral representations. In this section, we shall show the following
theorem.

THEOREM 2. For any x > 0 there is a system of characteristic elements (e(\))
(0 S λ 2 °°)3 called the resolution of unity such that

(1) λ <; μ implies e{\) <̂  e(μ),
(2) λ» <Ξ λ (n = 1,2, ) «wί/ λw ->- λ zαφ/jy e(λn) -> ̂ (λ) (strongly),

(3) <0) = 0, lim e{X) = β(oo) = 7,
λ->oo

(4) ΛΓ= I \de(X)

0

where the integration is of abstract Radon-Stieltjes type, and

(5) ) [* |p= J |λ |»
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To prove the theorem, we shall need some lemmas.

LEMMA 5.1. Put e(X) = e((λ/ - x)+), then e(X)^ e(μ) for 0 g λ ^ μ

PROOF, μl — x = (μ — X)I + (XI —• x)

= (μ - X)e(X) + (λ/ - xY + (^ - λ) (/ - e(λ))
- ( λ / - * ) - .

Since {(/z - X)e(X) + (λ/- *)+} -L \(μ - λ) ( / - e(λ)) - (λ/~ * ) " | , by the
uniqueness of orthogonal decomposition (μl — x)+ >{μ — X)e(X) + (XI — x)+ }>
(XI — ΛΓ)+ hence e(X) <i £(μ). This completes the proof.

LEMMA 5. 2. Xn <Ξ λ(w = 1,2, — ) awtf Xn -* X imply e(Xn) -> ̂ (λ) (strongly).

PROOF. (λ/ - Λ:) - (λ»/ - x) = (λ - λ»)7

= {(XI - xY - (Xnl - Λ:)+} + {(λ^Z - • * ) - - (λ/ - ΛΓ)- }.
Since (λ/ — x)+ ̂  (λ«7 — Λ;)+ and analogously (λ«7 — ΛΓ)- > (λ7 — x)~, || (λ - λ«)
7 ! > ! (XI - ΛΓ)+ - (λn7 - xY hence (XnI - Λ:)+ -V (λ7 - x)+ (strongly). Suppose
that e(Xn) -^ ̂ (λ), then tjϊ'ere are a sequence («fc) and £ > 0 such thaf l| e(X) — β
(λ.Wλ.) ί! > £ for all nk. O»n the other hand, for any nkQ there is an nkl € (wfc)
such that β(λΛjt0) < e{Xnkl) and wfcl > nk0. For if <λWjfc0) <fc ̂ (λ%) for n^ > nkQ,

then e(Xnk0) ̂  ^(λWA.) for all nk >nko, so that V e(Xnk) = <λ%:0) < β(λ>, sincenk0)

-β(λ»fc0) I! > £ Then (λnΛ 7 - JC)+ € Kλ^.o)] for all nk) δo that its limit
(λ7 — x)+ belongs to [eiXnk^, this means that ^(λ) <i e{Xnk{)) and a contradiction.
Therefore there is a subsequence (m5) of (nk) such that e{Xm5) > e(Xmh) for

mj > m7i. Put er = V ^(X^), then ^ = lim g ^ ) , so that e(λ) — e! I > 8 e'
mj J

< e(X).
On the other hand, by an analogous reason as above, (λ7 — x)+ belongs

to [ef], this is a contradiction. This completes the proof.

LEMMA 5.3. e(0) = Ό and lim e(λ) = β(oo) = 7.
λ->co

PROOF. Put lim e'(X) — e(oo), which surely exists and belongs to E by
λ->oo

Lemmas 4.10 and 4.13. In general, if / € E and f<zI-e(X), then x>Xf,
for Λ: = XI - (XI - x)+ + (λ7 - xY = {λβ(λ) - (λ7 - ΛΓ)+> -f {λ(7 - <λ)) + (λ7 -

xY}} so that E(e(X))F(e{X))x = λβ(λ) - (λ7 - #)- ̂  0 means that x^X(I-
e(X)) + (λ7 - Λ:)- ^ λ(7 - e(X)) > λ/. Since 7 - e(oo) ̂  7 - β(λ) for all λ, x > λ
(7-e(oo)) for all λ; hence ; * j | > λ ; | / — ^(oo)' for all λ, so that β(oo) = 7.
This completes the proof.

LEMMA 5.4.

PROOF. In general, λ S > implies that X(e(μ) — e(X)) g {μe(μ) — (^7 — xY}

- {λ<λ) - (λ7 - xY} S μ(e(μ) - β(λ)), for (/x7 - x) = (^ - λ)<λ) + (XI - Λ:)+ +
(/* - λX<μ) - β(λ)) + (μ - X) (7 - e(μ)) - (XI -•*)-.

On the other hand,
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λ/ — X = μl — X — (μ — X)I
= (μl - X)* -(μ~ X)β(μ) - {{μl - X)' + (μ - λ) (/ -

where h = (μl - x)+ - (/a - λMμ) and £ = (μ/ - *)- + 0* - λ)(/ -
Since \h\±k, (XI —•*)" =k + tr. Hence

(μ/ - *) = (> - λ)<λ) + (λ/ - *) + + (μ - λ) ( ^ ) - <λ))
+ (^ - λ) ( / - e(yLt)) - f t - Λ "
= (/Lt - λ>(λ) + (λ/ - ΛΓ)+ + (/i - λ ) ( ^ ) - e(\)) - h- -

μ
Therefore,
(μl - x)+ = (μ- X)e(\) + (XI — x)+ + (μ- \)(e{μ) — e(\)) - h~. Hence,
{μβ(μ) -(μl- x)+} ~ {λ<λ) - (λ/ - xY}

= λteG*) - β(λ)) + (μ - \)e(μ) -(μ- \)e(X)
- (λ/ - Λ:)+ - (^ - λ) (e(μ) - e(\)) + h' + (XI - x)+

= X(e(μ) - e(X)) + ̂ ".
This means that {/χ</χ) - f/̂ 7 - x)+} - {λ^(λ) - (λ/ -'*)*} >X(e(μ) - e(X)).
Moreover,

- (μl - Λ:)+ + (XI - x)+

έ?(λ)) + (^ - λ)<λ) - {(txl - xY - (λ/ - xY}

(XI -xY - (XI - xY} = μ(e(μ) - e(X)).
For any division Δ: 0 — λ0 < λ! < < Xn = Λ < oo of the interval

<0, Λ) with 0 < Xt —Xi-i < £ (i - 1,2, , n)} we have
n n

2 [{Xte(Xi) - (Xd - xY} -
- 1

- (λ0/ - ΛΓ)+} + {Xne(Xn) ~ (Xnl ~ xY}
- (Λ/ - Λ;)+

S 2 Me(Xι) - e(Xi-1)) ~ Λf(Δ),

and
n

M(Δ) - m(Δ) = 2 (λ* ~ λi-iX«(λf) - e(Xi-ι))

^ 62

hence by making £->0, Λ^(Λ) — (A/ - xY = / Xde(X).
o

Moreover,

Λe(Λ) - (Λ/ - xY = Λβ(A) - (Λ/ - Λ) - (Λ/ - x)-

= x - Λ(7 - <?(Λ)) - (Λ7 - Λ:)-

= x - (Λ(7 - ^(Λ)) + (Λ7 - ΛΓ)-) ̂  x
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Therefore by Lemma 4.10, there is lim I λ de(X), so that Λ(/ — e(A)}
o

+ (Λ/ — x)' ->x0 (strongly).
Now we shall show that lim (Λ(/— e(A)) + (Λ/ — x)~) = 0. For any λr

A

{Λ(7 - e(Λ)) + (Λ7 - x)-} € O«λ)) for Λ > λ, and so x0 € O(e(X)) hence ΛΓ0 €

= (0), for if / ° \ O«λ)) Φ (0), Z i Φ θ ( f | O(*(λ))) 2 [β(λ)] for all

λ, so that I > \y e(X) = e(oo), this is a contradiction.

Therefore # = I \de{\), this completes the proof.
o

The above lemmas will complete the proof of Theorem 2.

6. Construction of W*-algebra. Let M be the totality of elements of
L as follows: if x € M, there is a positive number a such \x\ ^al. Then
we shall construct a W*-algebra of finite type, using M.

LEMMA 6.1. \ax\ = \a\ \x\ for x € L and a a complex number.

PROOF. Suppose that {\ax\, |*|)>(|(<z*)*|, [ x* |), then | (ax, x) \
l**iyi*(\ax\, \x\Y'*S(\*x\, | * | ) ; hence 0^(\ax\ - | α | | * | , \ax\ - \a\\x\)
<L2\a\%x,x) — 2\a\ \(ax,x)\ = 0, so that | α * | = | α | | * | and moreover\(ax,

^ ; hence | α | ( | * | , |* |) = ( |(Λ*)*|, |Λ*|) = (\ax\, \x\).
Next suppose that (\ax\, \x\)^(\(ax)*\, \x*\), then by an analogous-

discussion as above, we obtain that ( |α#|, \x\) = (|(O:Λ:)*|, |#* | ) ; hence by the
above discussion | α ^ | = |ocll*|. This completes the proof.

By the axiom II and the above lemma, M is a self-adjoint subspace of
L.

LEMMA 6.2. Ifx^L andy € M, E{x)y € M.

PROOF. Put y = £(*)>> + (1 - £(#)& then \(E(x)y)*\ < |^*| ^ al, so that
€ M. This completes the proof.

LEMMA 6.3. If x ^ M f] Ls, and (e{\)) be the resolution of unity cor res-

ponding to x, then there is a positive number K such that x = / λ de(X).

Moreover the family {E{e{\))} of projections is a spectral resolution.

PROOF. Since the first part is clear, we shall prove the second part. It
is clear that λ <Ξ μ implies E(e(X)) <Ξ E(e(μ)).

Suppose that λn ̂  λ (n = 1,2, ) and Xn -> \ then by the Theorem 2r

e(Xn) -> e(X) (strongly), hence
(! (E(e(X)) - E(e(Xn)ϊ)F(y)Γ?
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- E(e(\rMF(y)I, (E(e(X)) - E(e(\n)))F(y)I)
- E(e(\n)))I, (E{e(\)) - E(e(λn)))F(y)I)

- e(\n), (E(e(X)) - EieiX^F^ί)
^ \e{X) - e{\n) I , /! -> 0 for all y € £.

Since, by Theorem 2, linear combinations of {F(y)I\y € £} are dense in
L, the above property means that E(e(Xn)) converges to E(e(\)) with the
strong operator topology. This completes the proof.

From the above lemma, we can define a bounded operator T(x) =

J λ dE(e(\)), then it is clear that T(x)I = / λ de(X) = x
K

- I T

Let ^ ^ M and ̂  = yL + % (̂ 1,̂ 2 € M f] A), we shall consider the corres-
pondence y -> TOO = Γ(JΊ) + iT(yί) then it is clear that T(y)I = ̂  + 2>2 = ̂ .

LEMMA 6.4. Pw/ i ? = {T(y)\y € Λf}, ί^w M is a W*-algebra.

PROOF. Let T(yO, T(y2) € Λf, then {aT{y1) + βT(y2))I = α ^ + φ *
+ βy-i)I' Since F(^) commutes with T(x) for any Λ;, ̂  € M, the above equality

means that (aTiyO + βT(y2))F(y)I = T(«^ + βy*)F(y)I; hence αTOi) + /5Γ( 2̂)

= IXα î + )8Λ) € M.
If TW = 7YΛ) + tΊXy*) (yh y*€Ls f] M), clearly iχy)* = T(^) - my*) =

TO*); hence M is self-adjoint.

E(y)Ί\x)I= E(y)x€M by Lemma 6.2; hence E(y)T{x)I"= T(E(y)x)I, so
that £ϋO7\*) = T(EO)Λ ) € M.

Let Ufd be the uniform closure of M, then Γ(ΛΓ)ΓO) € iί?6 {x,y € Λf), for

any element of Λf is uniformly approximated by finite linear combinations

of elements of {E(x)\x€: M}; hence Λf* is a C*-algebra.
Now we shall introduce a new norm [IS )][ on Λf Π Ls as follows: ί x\[ =

/

Πls/ίl JII*IΠ-β

λ de(\) and I λ deCλ) =t= Λ: for any
J

-1113)11 - ί l ί * ί ί ί + e

Put S = {ΛΓ| [;|ΛΓ||| ^ 1 , x€M f] Ls}, then S is bounded and closed, for
II * II = (I * U # I )1/2 ̂  (^ ^)1/2^ a n d Λi € S and Λ:W -^ x (strongly) imply ± xn S / and
± Λ : < / ; hence \x\ g/ . Therefore S is weakly compact, so that it is com-
plete by the norm )|] ||! [cf. 2, lemma]. Since \\x\\ is equal to the operator
norm of T{x), the self-adjoint portion of Λfδ coincides with M (\ Ls and so
Λf6 = Λf hence Λf is a C*-algebra, and moreover there is a locally convex

topology, by which the unit sphere is compact, so that Λf is a W*-algebra
[cf. 8]. This completes the proof.

7. Proof of Main Theorem. Now we shall prove the main theorem.
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The proof is devided into two parts, and the first part is devoted to (1), (2)
of the theorem and the second to (3), that is, the unicity of the absolute
value. By Lemma 6.1, it is enough to prove the theorem under the as-
sumption " |/ | | = 1".

LEMMA 7.1. Preserving the order structure, we can introduce a product
into M such that it becomes a W*-algebra of finite type with the unit I.

PROOF. From the discussions of the last section, the mapping x-+T(x)
(x £Ξ M) is a linear isomorphism of M on Ms and moreover it is clear that
x > 0 is equivalent to T(x) ̂  0 hence by this mapping, preserving the order
structure, we can introduced canonically a product into M; then M is a
W*-algebra with the unit /.

Moreover,

(x,y) = (xI,yI)^(T(x)l, T(y)ϊ) = (T(yrT(x)l,l)
= (T(y*)T(x)I, I) - (T(y*x)I, I) - (y*x, 1) for x,y, € M.

Therefor, put φ(x) = (x, 1) for x € M, then φ(xy) = (y, **) = (x,y*) = (yx, Γ) =
φiyx) for x, y € M. Moreover, φ(x*x) = (x, x) = 0 implies x = 0 hence M has
a complete trace, so that it is a W*-algebra of finite type. This completes
the proof.

LEMMA 7.2. Let L\M, φ) be the generalized L1-space, associated with the
algebra M and the above trace φ, and o be the injection mapping of M (in L)
on M (in L\M, φ)), then p is uniquely extended to the isometric mapping of L
on LHM, φ), and satisfies the following relations: (1) p(I) = I and (2) a > 0 is
equivalent to p(a) 2: 0, where I is the unit of M.

This is clear.
By the above two lemmas, we complete the first part of the proof.

Next we shall show the unicity of the absolute value. Now put \ x\\ =
inf a for all x ζ M, then by Lemma 6.1, 1 ill is a norm on M, and moreover
||gZ

by this norm, M i s a Banach space, for it coincides with the uniform norm
;|j |[|βo on the self-adjoint portion Ms, so that ||: an + ibn [(«> -> 0 (<z», bn € Ms)
means || an ^ -> 0 and (| bn IU ->Ό hence !;] an + ibn ! ->- 0. Conversely, by the
axiom II 2 |||x* ϋ! = !!! x'ί, so that |!|an + ibn % ->0 means analogously aih + ibn |!L
->0; hence l) | is equivalent to lί ίoo. Now we shall identify L with
L\M3φ) under the mapping p and put \x\γ = (Λ Λ:*)1^ for all x € A where
the product is the extended one in Lι(M, φ\ then e ( | * | ) = e ( |#| i), for # =

\x\\U, where u is a unitary element; hence, put u= I etθde(θ), then | ΛΓ| X =

Γ** ^ J-
xu* = T(x)J e~ίθ dF(e(θ))I = \ e'iΘdF(e(θ))T(x)I = I e~iQdF(e(βf ince

0 0 0

M is invariant under F(» (jy € £), the above equality means that [#|i
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belongs to [x\; hence | # | i - < \x\. Next suppose t h a t |ΛΓ| 2 _L υ(υ > 0), t h e n
{\x\,v) = (x',vτ) = (\x\\U,V\) = {\x\\,vxu*), w h e r e 1^1 = z>. Since υx be longs t o
\v\, so is ViU* hence ( |# | ,#) = 0, so that \x\ -< | # | , .

LEMMA 7.3. Z^ί {#* | / = 1, 2 , — ,n} be a finite family of mutually orthogonal
projections and {oil \ i = 1,2, , w} #£ <z family of complex numbers. Then

t=i i«i i=i

PROOF. Since |(^ι^ι)*[i is orthogonal to

2 α ' β ί * ) ; n e n c e b ^ t n e axiom I3,

i=2 '

Ui βi

and so

Analogously, λ s 0 t n a t 2 \a3eΛ

n n

On the other hand,

(
n

βj J^Λ oii et

n n

Σ

Σ lα*βι!

Σ^|Σ«
n n

ύ> 2+ e$ 12L

Σ iii
ek)

Λ ί β ' )
l J

hence e3
z e< βi- =

' so that! 2 ^̂ ^ I - 2 \aΛ^
[ i = l i = l

This completes the proof.

LEMMA 7.4. For any unitary element u of M, \u\ = \u\ι = /.
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PROOF. For any unitary element u, there is a sequenceί 2 Λ*o>> etw> J

as the above lemma such that lim } u — 2 ^foo^fooί = 0; hence \\ul =

lim ;| ^ ^fcio^oo ' = lim i ^ , βf oo&cn) !'«, = w j«,, so that |w| < 7. On

the other hand, (|«|, |» |) = («,«) = (7,7); hence \u\ = 7 . This completes the
proof.

LEMMA 7.5. Z#/ h be a positive element of L, u a unitary element and e
be a projection which commutes with h, then \ehu\ = e\hu\e and \hu\ =•
e\hu\e + (I - e)\hu\(I - e).

PROOF. e( |(ehu)* |) = e( | {ehuf \ τ) = e((u*eh2euy^) ^ w* ̂ w and e( \{(7 - e)
hu}* I) ̂  w*(7 - e)u hence | (βΛ«)* | -L | {(7 - e)hu}* |, so that by the axiom
I3, I ehu I <Ξ I hu \ and | (7 — e)hu \ ̂  | hu |, and so ^ | g/̂w | β = 1 ^̂ w | S e\hu\e
and (7-β)|(7-β)Λfί |(7-β) = \(I- e)hu\ ^(1 - e)\hu\(I - e).

Then,
(I hu I, I hu I) = (to, hu) = (eto + (7 - *?)to, eto + (7 - ^)to)

= (\ehu\, \ehu\) + (\(I-e)hu\, \{I - e)hu\)
^(\ehu\ + \(I-e)hu\, \ehu\ + \{I- e)hu\)
<(e\hu\e + (7 - e)\hu\(I - e), e\hu\e + ( 7 - e)\hu\(I- e))
S ( | t o | , \hu\) = (e\hu\e + {I- e)\hu\(I- e\ e\hu\e + (I- e)\hu\(I- e))
+ ((I- e)\hu\e, ( 7 - e)\hu\e) + (e\hu\(I- e), e\hu\(I- e)) ,

hence by an analogous method with the proof of Lemma 7.1, | ehu | = £ | to | e
and \hu\ ~ e\hu\e Λ- (J — e) \hu\{I — e). This completes the proof.

LEMMA 7.6. %x% = ]|| Λ: (!« /br all xζ M.

PROOF. At first, let {g*|/= 1, 2, , w} be a finite family of mutually
orthogonal projections, {at | / = 1, 2, ,w} a family of positive numbers

K n n n

*Σ(Xiei)u = ^odei = I ( "
for by Lemma 6.2, |w| = 7 means | β i « I ^ 7 ; hence \eιu\<Lei and by an
analogous method as Lemma 7.4, |β««| = β<, so that by Lemma 7.5,

= 2 <*ί ift«ι = 2

Since elements as the above forms are uniformly dense in M, we
can show, by an analogous method with Lemma 7.4 that ||#|'l = jj#ji[oo for
x € M. This completes the proof.

Finally, we shall complete the proof of (3) of the main theorem.
Put x = hu {h > 0, u unitary), then by Lemma 7.5 \x\ commutes with h =
\x\ι. Now suppose that \x\ 4= \x\ι, then there exist a projection e and a.
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positive number £ ( > 0) such t h a t it commutes with \x\ and \x\lt and e\x\e

> e\x\λe + £e or e\x\e 4- £e < e\x\Λe, and e\x\e and e\x\xe belongs to M.
We shall assume that e\x\e > e\x]iβ + £e, then by Lemma 7.5, e\x\e =

\ex\ and moreover |ejc|i = (ehuu*he)112 = efte = β|#|ie, so that |e#| > |£#|i +

£e; hencz \\ex.;>'iex\>a* +€. This contradicts to Lemma 7. 6; hence e\x\e
^e\x\ιe + Se. Under the assumption "e\x\e + £e < e\x\Ύe", we can obtain

an analogous contradiction; hence \x\ = \x\x for all xζ L. Though we show

\x\ = (ΛΓΛ;*)1/3, by the trivial modification of the product, we can also consider

\x\ = (Λ*^) 1 ^

This completes the proof.
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