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1. Introduction. In the theory of W#*-algebras, many classical order-
properties in the commutative case have been extended to the algebra,
and in particular, R. Kadison [5] showed that the algebraic structure is
determined by the order structure in a sense. However, in the commutative
case, we had known the stronger fact that the algebra can be characterised
as a vector lattice. Considering these facts, we can raise a more general,
interesting question as follows: Is it possible to characterise a W*-algebra as
a vector space with an order structure? Moreover, it seems that a suitable
settlement of this question will be useful for the study of the algebraical
type which will occupy a central position in future studies of the algebra.

In the management of this question there is a pathology that owing to
the non-coincidence of right ideals and left ones in the non-commutative
case, right ideals can not be explanated by the order structure only of the
self-adjoint portion. But, there is a useful notion for the elimination of
this pathology ; let M be a W*-algebra, x an element of M and x = #|x|(|x]
= (x*x)!/2) be the polar decomposition of x, then we shall call |x| the absolute
value of x and a mapping x¥— || the absolute-value mapping. The absolute
value has many interesting properties, and we can easily show that the
non-coincidence of right ideals with left ones can be explanated by the
absolute value. Therefore our question can be reformed as follows: Is it
possible to characterise a W*-algebra as a vector space with an absolute
value mapping?

The question is comparatively manageable in the semi-finite case; for,
J. Dixmier [3] and I. E. Segal [7] have given a non-commutative extension of
abstract integration, introduced generalized L?-spaces, and extended classical
properties in L?-spaces, and in particular, they have shown that the absolute
value in generalized L*-spaces inherits many classical properties. Therefore
the classical theories for the (AL?)-spaces by S. Kakutani [6] and H.
Bohnenblust [1] will offer a useful model for our intension.

From these points of view, the purpose of this paper is to try an
axiomatical dealings of a generalized L:*-space, which is most manageable
in generalized L?-spaces, using the absolute value.

Moreover, since the semi-finite algebra can, in a suitable sense, be
reduced to the finite one, our object will be restricted to the finite case in
this paper

Then, the principal purpose of this paper is to show that any hilbert
space with an absolute value-mapping satisfying some axioms (Axioms I-1I, §3
below) is a generalized L:-space.
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2. Preliminaries. In this section, we shall consider remarkable
properties of a generalized L*-space.

Let M be a W*-algebra of finite type with a o-weakly continuous,
complete trace @, then the space M with an inner product (x,%) = @(¥*x) is
a pre-hilbert space and the hilbert space obtained by the completion is
denoted by ZL*M,p) and is called a generalized L*-space, associated with
the algebra M and a trace @ [cf. 3,7].

Then, I.E.Segal [7] had presented a more concrete realization of a
generalized L?-space to us: let us represent M as an operator ring on a
hilbert space §, then L*M, ) is considered a hilbert space composed of
all linear operators on & which are square-integrable with respect to the
gage induced by .

Throughout this paper, we shall consider the generalized ZL:-space
LM, p) in the sense of Segal. We can point out the following remarkable
properties (a) — () of the adjoint operation, the order of the self-adjoint
portion, the absolute value and the unit.

Let P be the positive portion of L* M, @), then we can easily show the
following :

() if and only if @ =0, (a,b) =0 for all b € P.

Let x be an element of L¥M, @)and x = u|x|(]x| = (#*x)!/?) be the polar
decomposition of %, then a correspondence x— |x| is a mapping of LM, @)
on P, and |x| is called the absolute value of x. Then, J. Dixmier [3, lemma
3] had extended the following classical inequality to LM, ).

B) [(a,b)] < (la*|, |6*)'* (lal, |b])* for a, b€ LM, @).

Moreover we shall point out the classical properties on LY M, @).

(v) for any a,b € L{(M, ) there is an element ¢ such that (|a|, |b]) =
(a,c) and [c| = |b].

For, put a =;la| (;: unitary) and ¢ = ;Ibl, then (a, c) = p(c*a) = @(|b]
w*ulal) = (lal, |b]) and |c| = |].»

(8) la|L|b| implies |a*| < [(a + b)*|,
where |a|L|b| means that |a| is orthogonal to |b|.

For, |a|Ll|b| implies that there is a projection e of M such that [a| =
elale and |ble =0, where the product of two elements is the extended
product of measurable operators [cf. 7]; hence e(b*b)e = 0, so that be = 0,
and analogously a(Z —e) =0, where 7 is the unit of M. Therefore a = ae
and b = b(I — e). Then,

[(@ + b)*|* = (ae + b(I — e))(ea* + (I — e)b*)
= aqea* + b(I — e)b* = aea* = aa* = |a*|?,
hence by the Heinz’ theorem [4, Satz 3], |a*| =< |(a + d)*|.

Finally we shall point out the following properties of the unit:

&) for x =0, xL7 implies x = 0.

&) |%| < af implies |x*| Z al.

D In the finite algebra, we can extend any partizlly isometric operator to a unitary
one.
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(m) || Sal and |y| =B imply |x+ ]| = (a + B)I.

3. Axioms and the main theorem. In this section, we shall consider
a hilbert space L as follows: (1) there is an adjoint operation * such that
(ax + BY)* = ax* + By* and (x*)* = x for %,y € L and «, B complex numbers.
(2) the real subspace L; composed of all self-adjoint elements (x* = %) is a
real hilbert space® with a partially ordering given by a set of positive
elements, P, the so-called “positive cone” of ZL;, and the following further
condition is satisfied; if and only if @ =0, (@, b) =0 for all b € P, where (, )
is the inner product of L.

Moreover we shall set the following axioms.

Axiom I. Absolute value.

There is a mapping a—|a| of L on P as follows:

L: Jlali =1 |la| || 'and |(a, 8)| = (lal, |6])V% (|a*], |b*|)!/2 for a,b €
L, where || - || is the norm in Z.

I,: For any @, b € L, there is an element ¢ such that (|a|, |8]) =
(a,c¢) and |c| = |b].

L: |a|L|[b] implies |e*| = |(a + b)*].

Axiom I, is natural. Axiom I, is an abstraction of the polar decompo-
sition. It will be desirable to find a more simple formulation, if possible.
Axiom I; is an abstraction of the algebraic properties of the absolute value.
It will be natural that an abstraction of such type is necessary, though
there may be anothe:r formulation.

Axiom II. Unit.
There is an element 7 >0 with the properties:
II,: For x=0, xL7 implies x = 0.
II.: |x| < «af implies |x*| < af for a a positive number.
II;: |x]| <afl and |y| < BI imply |x+ y| =< (a + B)I for a, B posi-
tive numbers.

We shall say an element 7 as above a unit of L.
Then we shall show the following theorem.

Main Theorem. For .any hilbert space L satisfying the axioms I-1I with
a unit I, there are a finite W*algebra M with a oc-weakly continuous, complete
tace @, and a linear isometry p of L on the generalized L*-space L¥M, @)
associated with M and @ such that :

1) p/ 1) =1,
where T is the unit of M,
(2) pla)=0, #f and only if a =0,
(3) p(lx]) = |p(x)| for all x€ L,
where |p(-)| is thz absolute value of LM, p).

In order to prove the theorem, we shall provide some preparatory

2) By a real hilbert space, we mean that (z,y) is real for x,y€ L;.
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considerations in the following sections.

4. Characteristic elements. We shall introduce a notion of the
characteristic elements (projections) in L.

LemMMA 4.1. The following properties are satisfied :
1) (=*9%) =, x) for x,y € L,
(2) =a=|al for a € L;, and
(3) (la+bl, Ic]) = Ni(a, b,c){|al, |c|}* + Nua, b,c)(|8], |c| )}

Jor a,b and ¢ € L, where N, and N, are positive numbers depending on a, b
and c.

Proor. (1) is easily obtained.
(2) Let a€ L; and 2 =0, then by the axiom I,
(@, B)| = (lal, B)'*-(lal, B)'* = (lal, k);
hence (|a| =a, k) =0, so that +a < |al.
(3) By the axiom I, ‘
(la+ 8], |c]) = (@ + b,c1) = [(a,c1)| + [(b,c1)]
= (la*|, le* DV [al, le] M2 + (16*], e )V¥(|al, |c])H?*
This completes the proof.

DerINITION 1. For x € L;, if it is expressible such that x = 2 — 2, %, =

0, =0 and x Lx,, we say, it is orthogonally decomposable and x, — x, is
an orthogonal decomposition of x.

LeEMMA 4.2. Any element of Ls is orthogonally decomposable in the unique
way.

ProoF. By Lemma 4.1, +x< |x] forx € L;. Put F(x) = {k|h =0, =2
&} then $(x) is a closed convex set. Let x be the point, which uniquely
exists by the uniform convexity of L, that realizes the minimum of |7% | on
B(x).

Then'|zx = (m/ =]~ {|; henca| x| = |x| andso x = |x|. Moreover
(x| + % |x] —2)= |x] 2 =22+ (% |x])—(|x|,%) =0. This means that
(]x] + x)L(|]x] — %), so that x = ~;——(|x| + x) — ; (x| — %) is an orthogonal

decomposition. Now let x= &, — %, be an orthogonal decomposition, then
+x=<x + xand |x + % | = || x{|; hence by the unicity of x, x, + % = %, = |x|.
This completes the proof.

A unique element x; (resp. %;) in the above lemma is denoted by x =
x* (resp. X = X7).

DEFINITION 2. For any x=0 and ¥y =0, x>y means that we have y Lu
for any # =0 with x | ». Moreover if x>y and x<y, we shall denote x ~ .

Then it is clear that x<y and y <z imply x< z.

DEFINITION 3. A set & of elements of L is said to be a right ideal if
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the following conditions are satisfied :
1) xyey implies ax + By € 3 for a, B complex numbers,
(2) x€ 3 and |y| <|x| imply y € 3,
3 %eEF =12 ....) and x,— x (strongly) imply ¥ € 3.
LEMMA 4.3. Put [x] ={y||y| < |x|, ¥y € L}. [x] is a right ideal.
ProoF. Suppose that y,, 5. € [x] and |x| Lu, then by Lemma 4.1,

Iy + 3], %) < NiOv, D5, %) (0], w2 + No(p1, 92, %) (|92], )2 = 0;
hence ¥, 4+ : € [x].
(lan|, u) = (@, w) = |a| |y, w)] =< la| (P51, [@5DV2(d, a2 = |al
(1% [ )V |3: ], w2 = 0; hence ay € [4].
Let y» € [%] and y, — ¥, (strongly), then by the axiom I,
(1yol, %) = (Yo, #2) = (Yo — Yn + Yn, %42)
(Yo = In, %02)| + (I, %82)]
Yo —ul i+ (Y51, DV 9nl, |26s] )2
(Yo =l o |+ (YR, ]V 2nl, )2
=9 —n | |z, for all n.
Hence (]3], #) =0, so that y, € [x]. This completes the proof.

i IA A

DEFINITION 4. The right ideal [x] (x =0) is called a principal right ideal
generated by x.

LEMMA 4.4. Put O(x) = {y||y| L |x|, y€ L}, then O(x)is a right: ideal
and O(x) = [x]L, where [-]+ is the orthogonal complement of a closed subspace
[-].

Proor. By an analogous method with the above lemma, it is easily
shown that O(x) is a right ideal < [x]L.

Conversely suppose that y € [x]4, then by the axiom I, there is an
element ¢ ([c| = |x|) such that

(o1, 12]) = v, 0).

Since ¢ belongs to [«], (|¥], |x]) =0, so that ¥y € O(x). This completes the
proof.

Let E(x) be the orthogonal projection from L on [x]. Moreover, put
[%lx = (| [»*] < |x*|, y € L}, then by the property (xy)= (¥* x*) and an
analogous method as above, we can show that [x], is a closed subspace and
[t = ] y*l L]x*|,y € L}.

Let F(x) be the orthogonal projection of L on [«],. Then we obtain the
following lemma.

LEMMA 4.5. For any x,y € L, E(x) commutes with F(9).

ProOF. Let 2z =2 + 2, 21 € [x] and 2. € O(x), then |z|L |z:|; hence by
the axiom I, |2f| < |(=1 + 22)*].
Now suppose that z € [¥], (resp. € [VI}), then|z¥| < |2*|(Z = 1,2) mean
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21,22 € [Yl«(resp. € 1) hence L = [x] N [¥]« + [x]L N ]« + [ N [Y1E + [¥]+
N l¢. Therefore E(x)F(y) and F(y)E(x) are projections of L on [«] N [¥],
so that E(x)F(y) = F(»)E(x). This completes the proof.

LEMMA 4.6. For x=0 and h =0, E(x)F(x)h =0.

PROOF. At first, we shall show thaty = y; + &, (3; € L;) € [x] N [x]« implies

¥ (1 =1,2) € [4], so that [x] N [x]x = [x] N Ls + i[x] N L.
{ * |

Since y € [x] N [%]x, || <x and |y« <Zx, so that ‘!izzﬂ < x and
‘i«f.z;’:?’,l < x; hence y,, ¥, € [x]. Therefore y € [x¥] N [x]x N Ls implies y*,
y- € [x] N [xl

Now put E(x)F\x)k = ¥ + . (¥ € [x] N[x]x N Ls), then

(E(x)F(x)h,p) = (h, E(X)F(x)p) = (h, p) =0 for all p € P N [x] N[x]x;
hence y, = 0. Moreover let ¥, = ¥} — y; be the orthogonal decomposition, then

O, ¥7) = —05,97)=0;
hence y; = 0, so that E(x)F(x)h =0. This completes the proof.
LEMMA 4.7. For any x =0, E(x)F(x)I < IL.

Proor. I = E(xX)F(x)I + E(x)(1 — F(x))I + (1 — E(x))F(x)I + (1 — E(x)) (1 —
F(x))I, where 1 is the identity operator on L.

Since| Ex)F %) + Ex)1 — Fx)I| L|(1 — Ex)F(x)I + (1 — Ex))1 — Fx)I|,
by the axiom I;, [(ExX)F(x)I + E(x) (1 — F(x))[)*| <1, so that by the axiom
II, |EXFxI+ Ex)(1— Fx)I| < I

Moreover |(E(x)F(x)])*| L [(E(x) (1 — F(x))I)*|, so that |Ex)F(x)I| < |E(x)
Fx)I + Ex)(1— Fx)I| < I; hence Ex)Fx)] = |Ex)F(x)I| < [. This comple-
tes the proof.

LEMMA 4.8. (E(x))* = F(x)y* for any x =0 and y € L.

Proor. Since [x]x = {z| |2*| < |x*| = |x| = x,2 € L}, [x]y = {w*|u € [x]};
hence (E(x)* € [%]x. Analogously (1 — E(x))»)* € [x]t, hence Fax)y* = F(x)
(E(x)»)* + (1 — E(x))y)*) = (E(x)y)*. This completes the proof.

LemMA 4.9. For any x=0, Ex)I = F(x)I = E(x)F{x)I = 21’19[ z and [x] =
[E()I]. o

Proor. Let 0 =z=<7 and z € [x], then by Lemma 4.6, E®)Fx)z =z <
E(x)F(x)I, so that E(x)F(x)I = sup =z.

0=2=1,z¢(7]

Next we shall show that E(x)F(x)I ~ x. Suppose that there is an element
u( = 0) such that E(x)F(x)I L« and x is not orthogonal to #; since x < [x]
[x]x, (%, ) = (E@)Fx)x, %) = (%, Ex)F(x)u) > 0, so that E(x)F(x)u > 0.

On the other hand, (Z, E(x)F(x)u) = (E(x)F(x)I, #) = 0; hence by the axiom
II,, E(x)F(x)u = 0. This contradicts to the above inequality ; hence E(x)F(x)
I~ x Therefore we obtain that [«x] = [E(x)F{x)I]. Moreover from the proof
of Lemma 4.7,
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E®FI < |EQF@®I + E(x) (1~ Fx)I| = |[E@I| =1;
hence E(x)F(x)I = |E(x)I|. Then,
(Ex)I, Ex)) = (|E®I|, |E®I]) = (E®Fx)I, Ex)F(x)I).
On the other hand,
(B, E(x)]) = (E(X)F(x)I + E(x) (1 — F(x))I, E(x)F(x)I+ E(x)\1 — Fx)I) =
(Ex)F(x)1, E(x)F(®)I) + (E(x)(1 — F(x))I, E(x) (1 — F(x))I); hence E(x)(1 — F(x))
I =0. Finally E(x)Fx)I = E(x)I = (E(x)I)* = F(x)I. This completes the proof.

DEFINITION 5. For any x=0, put e(x) = E(x¥)I and we shall call e(x) a
characteristic element corresponding to x.

By the axiom II,, L is a principal right ideal and L = [I]. Moreover by
the above lemma, to any principal right ideal there corresponds a unique
characteristic element, and if [%] S [%], e(x) < e(x).

LEmMA 4.10. Let T be a linearly ordered set of indices and (V) be a mono-
tone increasing subset of P (i.e. Yo =¥p for a = B) and suppose that Y. <z
Jor all a € 1" and an element z, then it has a least upper bound y,. Moreover
there is a monotone increasing subsequence (Yu,) of (Ya) Such that Yu,—>Yo

(strongly).
PrOOF. Put m = S,ﬁl? [Ye|. Since |ys | = |y | for &« = R and m < |z, there
is a monotone in‘creasiﬁg subsequence (¥s,) of (¥2) such that liry | Ya, | = m.
Then,
[ Yo —Ya|P < Dal? — [3g)2 for aa =B
hence lim Ya, =3 (strongly) with 0 <) <z Now we shall show that » has

the property of the lemma. Since (¥») is monotone increasing, for any ¥
€ (Yo) either Yu < ya,, for some 7n; or Yo = ya, for all n.

If Ya =< Ya, then yu =< Ya, =3, and if y, =y, for all n, then yo =¥;
hence ||y | =y | = SUp | Ya [, sothat|ys|= |3’ . Onthe other hand,|ys — 3 |*

+ ¥[E<yx|?;hence |¥s — ¥ | = 0 andys = y'. Thereforey, <y foralla €T
Now let & =34 for all « € I' then £ =1lim y,, =3¥. This means that )

is a L.u.b. of (yx). This completes the proof.
LEMMA 4.11. Any right ideal is principal.

Proor. Let M be a right ideal and put F={z|0<z2=<1 z¢& M}, then
by Lemma 4.10 there is a maximal element ¢ in F, which is characteristic

by Lemma 4.9. Let ¢; and ¢, be two maximal elements, then e, <& % ; b

and e; < e—‘gﬁ; hence e; < e(ﬁ%z—“)and e e(e'—_'———e"’) By the maxima-

2
lity of e; and e, e, = e, = e(ﬁl_'iz'_ﬁz).
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Suppose that [¢] = M, then there is an element ¥y of M such that y €
[e] and y =0, so that e(e + ») > ¢, this contradicts to the maximality of e;
hence [e] = M. This completes the proof.

Let E be the totality of characteristic elements of Z, then the following
theorem is immediately ebtained from the above lemma.

THEOREM. 1. E s g complete lattice.
For, let {M,} be a family of right ideals, then [ \Ma and O ([ )

O(M,)) are right ideals, and moreover if [x] is a right ideal such that M,
S [#] for all @, then O(f\ O(Ma)) € O(0(x)) = [4].

LEMMA 4.12. In order that an element e belongs to B, it is necessary and
sufficient that 0 < e <1 and e L (I —e).

Proor. Let e(e) be the characteristic element corresponding to e, then
e(e) = e. Now suppose that e < e(e), then 7 — e = (I — e(e)) + (e(e) — e); hence
el (I — e) means that (¢, —e) = (e,e(e) —e) =0 and so e(e) — e € O(e), this
contradicts to e(e) — e € [e]. This completes the proof.

Since O(x) = [x]L, the characteristic element of O(x) is (1 — E(x))I =
1 — e(x).

From this fact and the above lemma, we can immediately obtain the
following.

LEMMA 4.13.

1) e, e, € E and e Le, imply e, + e: € BE.

(2) (4% g e, 1‘mpll‘es e — € < E.

B) ewn€E (n=12,....) and en— e (strongly) imply e € E.

5. Integralrepresentations. Inthis section, we shall show the following
theorem.

THEOREM 2. For any x = 0 there is a system of characteristic elements (e(\))
(0 SN ), called the resolution of unity such that

(1) XN=p implies e(\) < e(u),

(2) M=A (=12 ....) and Ay — N imply e(\y) = e(A) (strongly),

3) €0)=0, lim e(\) = (o) = I,

A>eo
@ x= f A de(\)
0

where the integration is of abstract Radon-Stieltjes type, and

5) l.fxu2=f 2ot .
0
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To prove the theorem, we shall need some lemmas.

LEMMA 5.1. Put e(\) = (M — 2)*), then e\ < e(u) for 0 <A < p.

PrOOF. pul —x = (u— NI + (Al —x)
= (= Ne() + M — 0)* + (w — A (I — e(\)
-\ —2x).
Since {(x —AeA) + A —x)*} Li(u—A) (I —eN)) — (A —x)"|, by the
uniqueness of orthogonal decomposition (uZ — %)* = (& — A)e(A) + AL — x)* =
(M — x)*; hence e(\) <e(n). This completes the proof.

LEMMA 5.2. M <N#n=1,2,....) and A —>\ imply e(As) = e(\) (strongly).

PROOF. M =2 — A —%) = — )]
={AM—2)* —QAud —2)*}+ {A — )" — (AT —x)" ).
Since (A — x)* = (AaI — x)* and analogously (An — )" = (AL — %)=, |(A — An)
1= (M — x)* — (A I — x)* ;' hence (A — x)* > (AT — x)* (strongly). Suppose
that e(As) > e(\), then there ‘are a sequence (n:) and &€ > 0 such that [e(\) — e
(Am) ! > € for all 7. On the other hand, for any n, there is ‘an ny, € (my)
such that e(A,,) < éAm,) and 7y > ny. For if e(\s,) < e(An,) for ng > nug,
then e(\n,) = e(A\x,) for all m, = nyy, so that \V4 e(An,) = €(Any,) < e\, since

NRENKO
[ e\) — e(Ang) || > E. Then (An, I — x)* € [e(An,,)] for all n;, so that its limit
(A — x)* belongs to [e{Au,)], this means that e(A) < e(Ax,,) and a contradiction.
Therefore there is a subsequence (m;) of (n;) such that e(ams;) > e(Am,) for

m; > my,. Put € = V e(Ay,), then ¢ = lijm e(\n,), so that e(n)— dI=€;¢

my
< e(A\).
On the other hand, by an analogous reason as above, (A7 — x)* belongs
to [¢'], this is a contradiction. This compléetes the proof.

LeEMMA 5.3. €0) =0 and &gn e\) = (o) = I.

ProOF. Put lim e(A) = e(o0), which surely exists and belongs to E by
A>eo

Lemmas 4.10 and 4.13. In general, if f€ E and f< 17— e(A), then x = \/f,
forx=AI— (M — x)* + (AL — %)~ = {Ae(A) — (AL — 2)*} + (NI — e(\)) + (AT —
%)}, so that E(e(A\))F(e(A))x = Ae(A) — (Al — x)* =0 means that x=N7I —
e\) + (A — x)- =ML —eA)) =M. Since I —e(0) < I —e(A) for all A, x=2A
(I —e(o0)) for all A; hence x| = A |7 — e(0)" for all A, so that e(oo) = I.
This completes the proof.

oo

LEMMA 5. 4. X = f A de(\).
0
Proor. In general, A < u implies that Ae(u) — e(A)) < {uelw) — (ul — x)*}
— {Ae(\) — (AT — x)*} < lelp) — e(M)), for (ul — x) = (p — N)e(A) + (A — 2)* +
(n — AXeu) — eN) + (u — N) (I — e(w)) — (M —x)".
On the other hand,
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M—x=pl —%—(u—2n)1

= (ul — 2)* —(p —Nelp) — {(ul — %)~ + (p —AN) (I — elw)}
=h—E,
where k= (uI — x)* — (up—Ne(p) and &k = (ul — %)~ + (u — AN — e(w)).
Since || Lk, (A —2x)" =k + h~. Hence
(ul — x) = (u — N)e(\) + AL — 2)* + (u — A) (e(w) — e(A))

+(@—NUT—epw) —k—h
= (uw —Ae(A) + (A — x)* + (u — N (e(u) — e(A)) — b~ — (ul — %)~
={ul —x)* — (ul — x)".

Therefore,
(ul — x)* = (u — Ne(A) + A — x)* + (u — A)e(u) — e(A)) — k~. Hence,
{pe(n) — (I — 0)*} — {Ae(A) — AL — x)*}

= Me(p) — e\) + (1 — Ne{p) — (uw — N)e(A)
— M —x)* —(p —N)(e(p) —e(\) + b~ + AL — x)*
= Me(p) — e(\) + k-

This means that {pe(u) — (uf — x)*} — {Ae(A) — (AL — %)*} = Me(u) — e(N)).
Moreover,

{pe(n) — (ud — x)*} — {re(A) — (X — x)*}
= pe(u) — Ne\) — (uf — x)* + (N — x)*
= wle(p) — e\) + (u — Ne(\) — {(uf — x)* — (N — x)*}
=< u(e(p) — e\) + (r — Ne(d) — {(u — Ne(A) +
M — x)* — (M — 2)*} = ule(n) — e(N)).

For any division A: 0=20< A< ....<An=A < o of the interval
0,A) with 0 <X — N, < E(2=1,2,....,n), we have

m(A) = 2 Nioa(e(h) — (i) < 2 [{hsen) — (AT — 2)*) —
i=1 i=1

{ireiz1) — i1l — )} = {heh) — Aol — 2)*} + {Ane(An) — (Anl — 2)*}
= Ae(A) — (A1 —x)*

=< 2 Mle(n) — e(hioy)) = M(A),

i =1
and

M(A) — m(A) = 2 s — Mo )Xea) — e(hi-y))
t=1

< 62 (eui) — e(hi-y)) = Ee(A) — €(0)) < & ;

=1
A

hence by making &—0, Ae(A) — (AT — x)* = f Ade(N).

0
Moreover,

Ae(A) — (AT — x)* = Ae(A) — (AT — x) — (AT — %)~
=x— AT —e(A)) — (AT — x)-
=x— (AT —eA) + (AT —x))<=x
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A
Therefore by Lemma 4.10, there is [{im A de(A), so that A (7 —e(A))y
Soo

0
+ (AT — x)~ = x, (strongly).

Now we shall show that 1im (A — e(A)) + (AT — x)~) = 0. For any A,
{A( — e(A)) + (AT — %)~} € O(e(™)) for A > A, and so x, € O(e(\)) ; hence x, €
() Oten) = (0), for if [ Ote\) = (0), L+ 0([ ) Oen))2e)] for all

A0 A0 A0

A, so that 7> \/ e(A) = e(c0), this is a contradiction.
A0

Therefore x = f Ade(\), this completes the proof.
0
The above lemmas will complete the proof of Theorem 2.

6. Construction of W*-algebra. Let M be the totality of elements of
L as follows: if x € M, there is a positive number « such [x] <al Then
we shall construct a W*-algebra of finite type, using M.

LEmMA 6.1. |ax| = |a||x| for x € L and o a complex number.

ProoF. Suppose that (|ax|, |x]|) = ([(ax)*|, |x*|), then |(ax, x)| < (|(ax)*|,
[e*])V2 (Jax|, |21 = (|ax|, |%]); hence 0=(|ax| — |a]||x|, |ax| — |a]||x]|)
=2|a]ix,x) —2|a] - |[(ax,x)| =0, so that |ax|] = |a]||x] and moreover|(ax,
%) = lal(lx], [x])=((@x)*], [2*DV4(|ax], |2 = ([(ax)*], [#*])*|a] (2],
[x])V2; hence || (||, |x]) = ([(ax)*], |2*]) = (|ax], |x]).

Next suppose that (|ax|, |x|) = ([(ax)*|, |x*|), then by an analogous
discussion as above, we obtain that (|ax|, |x]) = ([(ax)*|, [x*|); hence by the
above discussion |ax| = |a]||x|. This completes the proof.

By the axiom II and the above lemma, M is a self-adjoint subspace of
L.

LEMMA 6.2. If x€ L andy € M, E(x)y € M.

Proor. Put y = E(x)y + (1 — E(x))y, then [(E(x))*| < |y*| < al, so that
E(x)y € M. This completes the proof.

LEMMA 6.3. If x€ M\ L;, and (e(\)) be the resolution of wunity corres-

K
ponding to x, then there is a positive number K such that x = f A de(\).
-K
Moreover the family {E(e(\))} of projections is a spectral resolution.
Proor. Since the first part is clear, we shall prove the second part. It
is clear that A < u implies E(e(A)) < E(e(u)).
Suppose that A <A (=1,2,....) and A, — A, then by the Theorem 2,
e(\n) — e(\) (strongly) ; hence

[ (E(e(N)) — EXeAm))FII
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= ((E(e(\)) — E(eM))F (¥, (E(e(\)) — E(e(Aa)))F(N)I)
= ((E(e(\)) — E(e(un)), (E(e(N)) — E(e(\)))F(¥)I)
= (e(A) — e(\s), (E(e(N)) — E(e(\))F(3)I)
<|er) —e\s)| I/ —0 for all y € L.
Since, by Theorem 2, linear combinations of {F(y)I|y € L} are dense in
L, the above property means that E(e(A)) converges to E(e(\)) with the
strong operator topology. This completes the proof.

From the above lemma, we can define a bounded operator T(x) =

e K
f A dE(e()\)), then it is clear that T(x)I = f Ade(\) = x.
-K - K
Letye M and y =y, + &v: (3, ¥: € M | L;), we shall consider the corres-
pondence ¥y — T(y) = T(») + iT(y,); then it is clear that T(W)I = ¥, + ¥, = .

LEMMA 6.4. Put M = {T(»)|y € M}, then M is a W*-algebra.

Proor. Let T(3), T(y.:) € 1\7, then (aT(.) + BT(y)I = ay, + By: = T(ay
+ By,)I. Since F(y) commutes with 7(x) for any x,y € M, the above equality
means that («T(3) + BT(¥)FWI = T(ay, + By:)FYI; hence aT() + BT(3,)
= T(ay, + By:) € M.

If T() = T(3) + iT(¥:) (N, 2 € Ls N M), clearly T(»)* = T(y,) —iT(3,) =
T(»*); hence M is self-adjoint. :

E®Tx)I = Ey)x € M by Lemma 6.2; hence E(3)T (%) = T(E®)x)I, so
that EQ)T(x) = T(E(¥)%) € M.

Let M be the uniform closure of Jl~l, then T(x)T(y) € Mo (%, € M), for
any element of A} is uniformly approximated by finite linear combinations

of elements of {E(x)[x € M}; hence M is a C*-algebra.

Now we shall introduce a new norm f|«|f on M | Ls; as follows: [x| =
ES] [l zfll—e

inf « for x€M | L;. Then x = A de(\) and Ade(\) + x for any

[z |Sarl
=izl =[x fil+e

& >0.

Put S={x| [|x{|=1, x€ MO L;}, then S is bounded and closed, for
Iz = (%], |2 < (I, DM, and %, € S and %, — x (strongly) imply + x, < I and
+ x<17I; hence |x] <1 Therefore S is weakly compact, so that it is com-

)

plete by the norm | -[ [cf. 2, lemma]. Since |/ x| is equal to the operator
norm of T(x), the self-adjoint portion of M coincides with M ﬁ L; and so
M =M ; hence Misa C*-algebra, and moreover there is a locally convex
topology, by which the unit sphere is compact, so that Mis a W+-algebra
[cf. 8]. This completes the proof.

7. Proof of Main Theorem. Now we shall prove the main theorem.
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The proof is devided into two parts, and the first part is devoted to (1), (2)
of the theorem and the second to (3), that is, the unicity of the absolute
value. By Lemma 6.1, it is enough to prove the theorem under the as-
sumption “{ 7| = 17.

LEMMA 7.1. Preserving the order structure, we can introduce a product
into M such that it becomes a W*-algebra of finite type with the unit I.

Proor. From the discussions of the last section, the mapping x— T(x)

(x € M) is a linear isomorphism of M on ITJ and moreover it is clear that
x =0 is equivalent to T(x) = 0; hence by this mapping, preserving the order
structure, we can introduced canonically a product into M; then M is a
Wk*-algebra with the unit 7.

Moreover,

x,3) = (2,3 = (T(x0)I, T(NI) = (T(Y*T(x)1, 1)

= (T(y"T(x), 1) = (T(y*x)I, I) = (y*x,1) for x,v, € M.
Therefor, put @(x) = (x,1) for x € M, then @(xy) = (¥, x*) = (x,3*) = (yx, I) =
@(yx) for x, y € M. Moreover, ¢(x*x) = (%, x) = 0 implies x = 0; hence M has
a complete trace, so that it is a W*-algebra of finite type. This completes
the proof.

LEMMA 7.2. Let LM, @) be thz generalized L*-space, associated with the
algebra M and the above trace @, and o be the injection mapping of M (in L)
on M (in LX(M, @)), then p is uniquely extended to the isometric mapping of L
on LAM, @), and satisfies the following relations: (1) p(I) = I and (2) a=0 is
equivalent to p(a) =0, where I is the unit of M.

This is clear.
By the above two lemmas, we complete the first part of the proof.

Next we shall show the unicity of the absolute value. Now put x!|=

inf « for all ¥ € M, then by Lemma 6.1, |- is a norm on M, and moreover
|z Sal

by this norm, M is a Banach space, for it coincides with the uniform norm
/+ll~ on the self-adjoint portion M;, so that || @w + s [le —0 (@, bn € M)
means [ anf~—0 and [b,|l.—0; hence || a, + ib. | = 0. Conversely, by the
axiom I {lx* |l =|'x |, so that ||a@s + 7b, | — 0 means analogously i + 7bn |lw
—0; hence ||]- | is equivalent to ||- /.. Now we shall identify Z with
L¥M, ) under the mapping p and put |x|, = (¥x*)'/?-for all x € L, where
the product is the extended one in L*M, @), then e(|x|) = e ({x].), for x=

27

|x]1%, where # is a unitary element; hence, put = = f é%de (0), then | x|, =

o ©

27

27
xu* = T(x) f e~ dF(e(O)I = f e dF(e(@))T(x)I = f
0 0 0
[x] is invariant under F(») (y € L), the above equality means that [x[:

e~ ¥ dFed, ince



THE ABSOLUTE VALUE OF W*-ALGEBRAS OF FINITE TYPE 83

belongs to [x]; hence [x]|; < [x|. Next suppose that |x|,Lo(v =0), then
(1x],v) = (x,21) = (| 2|12, v1) = (| %], viw*), where |v;| = v. Since v, belongs to
{v], so is v.u*; hence (|x],v) = 0, so that |x| < |x]|,.

LEMMA 7.3. Let{e;|i = 1,2, ...., n} be a finite family of mutually orthogonal

projections and {a;li =1,2,....,n} be a family of complex numbers. Then
n n n
| Sae] = |12 aeli = 2 |ailer.
i=1 i=1 i=1

n |
ProoF. Since |(a,e)*|; is orthogonal to l ( Zaiei)*} , [(ae)*]| is ortho-
f=2 '1

n n
-gonal toj(z a;-&*)'; hence by the axiom I, |aye| = |aile g’Za; e l
i=2 i=1

n
and so |a.e | Ze 'Zaiei

i=1

.

n ”
Analogously, |aje;| ée;‘zat e le, for all j, so thatz |ase;s|

i=1 Jj=1
n n
=e ‘ > ae. ‘e,
i=1 i=1

On the other hand,
n n n n
(Do Sae) = (Ziael, 2 laal)
i=1 i=] i=1 i=1
n n n n
S__(Zej; aieéiej, 28142atet‘31>
j=1 i=1 j=1

i=1

n n n
g(f‘_ e; | 2 e | e, Ze,fzaiei‘ek)

|
k=1 ‘ i=1 Jk=1 i=1

n n n n
- (Ze|Zaale Do Daee)
Jj=1 Ci=1 J=1 i=1
n n n
+ E(e, lzlam \e,,t, es| 20 aier ]e»)
=1 i=1

J*=k
J k=1
n

n
= (1 ae; ., izazei
D :

i=1

n n
> = <2aiei, Zalei> H
i=1 =1
n

e, =0 for j=k and D |aie; | = Eejtzmei{ek-
i=1

i=1 Jk=1

n
2 a;e; El-
i=1 '

n
hence ¢;| > aie;
L=l

n n n
|
= 2aie, so that| S e | = 3 |aile: =
i=1 =1 i=1

“This completes the proof.

LEMMA 7.4. For any unitary element w of M, |u| = |u|, = 1.
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n(n)
Proor. For any unitary element #, there is a sequence( > aw e,-(,,))
i(p)=1

n(p)
as the above lemma such that lim | » — 2 Qipy iy = 0; hence [ #! =
Poee i(p)=1
n(p) n(p)
lHm " 2 iy €i(py | = lim | 2 Qi Cip) == U |=, SO that |u| <1 On
Pree i(p)=1 > i(p)=1

the other hand, (|#]|, |#|) = (u,u) = (I,I); hence |#| = I. This completes the
proof.

LEMMA 7.5. Let h be a positive element of L, u a unitary element and e
be a projection which commutes with h, then |ehu| = e|lhule and |hu| =
elhule + (I —e)|hul(I —e).

PrOOF. e(|(ehn)*|) = e(|(ehu)*|)) = e((u*eheu)'?) < u*eu and e(|{(I —e)
hu}Y*|) < u*(I — e)u ; hence |(ehu)*| L |{(I —e)hu}*|, so that by the axiom
I, |ehu| < |hu| and |(I —e)hu| < |hu|, and so e |ehule = |ehu| < e|hule
and (I —e)|(I — e)hu|(I —e) = |(I — e)hu| = (I — e)| hu|(I — e).

Then,

(|hu|, | hu|) = (hu, hu) = (ehu + (I — e)hu, ehu + (I — e)hu)

= (|ehu|, |ehu|) + (|(I — e)hu|, |(I — e)hu|)

= (lehu| + |(I — e)hu|, |ehu| + |(I — e)hu]|)

= (elhule+ (I —e)|hu|(I —e),e|lhule + (I — e)|hu|(I — e))

= (|hu|, |hu|) = (e|hule + (I — e)| hu|(I — e), e|hu|e+ (I — e)|hu|(I — e))

+ (I —e)|hule, (I —e)lhule)+ (e|lhu|(I— e) e|hu|(l—e);
hence by an analogous method with the proof of Lemma 7.1, |ehu| = e|hu|e
and |hu| = e|hule + (I — e) |hu|(I — e). This completes the proof.

LEMMA 7.6. | x| = || x| for all x € M.

Proor. At first, let {e:|2=1,2,....,n} be a finite family of mutually
orthogonal projections, {a;|i=1,2,....,n} a family of positive numbers

n n n

and # be a unitary element, then ’ (2 aies> u] = Daie = ‘(zai ei)u[,,
i=1 i=1 i=1

for by Lemma 6.2, |#| =7 means |e;u| <I; hence |e;u| <e; and by an

analogous method as Lemma 7.4, |e;#| = e;, so that by Lemma 7.5,

[(Z )l = S ol = F e

i=1
Since elements as the above forms are uniformly dense in M, we
can show, by an analogous method with Lemma 7.4 that |/ x| = || x|l for
x € M. This completes the proof.

Finally, we shall complete the proof of (3) of the main theorem.
Put x = hx (h >0, # unitary), then by Lemma 7.5 |¥| commutes with % =
|x].. Now suppose that [x| = |x|,, then there exist a projection e and a
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positive number & ( > 0) such that it commutes with |x] and |x|,, and.e|x|e
>elx|.e + Ee or e|x|e + fe < e|x|.e, and e|x|e and e|x|.e belongs to M.

We shall assume that e|x|e > e|x|.e + Ee¢, then by Lemma 7.5, e|x|e =
lex| and moreover |ex|, = (ehuu*he)''* = ehe = e|x|.e, so that |ex| > |ex], +
fe; hence | ex = ex'.. + & This contradicts to Lemma 7.6; hence e|x|e
P elx|.e + fe. Under the assumption “e|x|e + e < e|x|.e”, we can obtain
an analogous contradiction; hence |x| = |x|. for all x € L. Though we show
|x] = (xx*)1/2, by the trivial modification of the product, we can also consider
1] = (x*x)pl2,

This completes the proof.
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