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A partly ordered set P can be imbedded into complete lattices in
various ways. The first fundamental theorem (Theorem 2) asserts that if
P is imbedded in a complete lattice L J-densely and M-isomorphically (see
the definitions (B) and (y) in §1) then L is completely isomorphic to the
lattice completed by some imbedding operator on P. Imbedding operators
on lattices have been discussed by several authors (see reference in [2]).
Our definition of imbedding operators on partly ordered sets is a generaliza-
tion of that on lattices. The second fundamental theorem (Theorem 3)
gives a necessary and sufficient condition for the infinite distributivity of
the lattice completed by an imbedding operator, which is a generalization
of Dilworth and McLaughlin’s theorem ([2] Theorem 3). Then we introduce
a weak imbedding operator on partly ordered set, and give a necessary
and sufficient condition for the infinite distributivity of the lattice completed
by the induced imbedding operator.

Using these theorems we obtain some theorems. Among them the fol-
lowings are typical: Any partly ordered set can be imbedded in an infinitely
distributive complete lattice preserving all glb. and all distributive lub.
Any infinitely distributive (non-complete) lattice can be imbedded in an
infinitely distributive complete lattice preserving all lub. and all glb. (it
was noted in [2] that the normal completion does not give the answer). Any
upper continuous lattice can be imbedded in an infinitely distributive comp-
lete lattice preserving all glb. and all upper continuous limits.

In this paper U (1) is used for lub. (glb.) in partly ordered sets. While
V(A) is used for set union (intersection). The other notations are the same
as in [1].

1. Preliminaries. A partly ordered set P is said to be imbedded in a
complete L if there is a mapping €, of P into L, which satisfies the con-
dition

(a) O-isomorphism: 6(a) = 0(b) if and only if a = 0.

If P is imbedded in L by a mapping 6, then the collection of all
elements of L which can be represented as joins of elements of 8(P) form
a complete lattice Z* under the same ordering relation as L. P is imbedded
in L* by the same mapping 6. 6: P— L* satisfies

(B) J-density: any element ¢* in L* can be represented as a join of
elements of A(P), that is a* = U f(a\),a» € P. Here {A} may be any index
set.

THEOREM 1. If a partly ordered set P is imbedded in L J-densely, then (a)
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is equivalent to the condition ().
(7) M-isomorphism: 6 (a) = N 6(a\) in L if and only a = (ax

Here and hereafter a = | (U)a, in partly ordered set P means that a
is the glb.(lub.) of {a\}.

PrOOF. Suppose that @ = ] a\, then a < a, for all . By O-isomorphism
of @ this implies 6(a) =< 6(a\) for all A, thatis 6(a) <  0(a\). Let a* = NO(a))
then a@* is representable as | 6(b.) by the J-density of §. We have 6(a\) =
6(b.) for all A and u, and then a\ = b, for all A and . This implies a = Nax
=b, for all u. Therefore 6(a) =6(b.) that is 6(a) = U 6(b.) = a*. Thus we
have 8(a) = N 6(ar). That 6a@) = N6é(a\) implies a = (] an» comes from the
following lemma.

LeEmMMA 1. If P is imbedded in L by a mapping 0, then 6(a) = U a\)
impies a = U an, and dually &a) = | 6(a,) implies a = () an.

ProOF. O(a) = UB(a,) implies O(a) = O(a)) and this implies @ = a, for all
A by O-isomorphism of 6. Let b be any upper bound of {a\}, then 6(b) =
O(a,) for all A, that is 6(0) = U 0(a)) = 6(a), which implies b = a. Thus we
have proved that a = Uan.

2. Imbedding operators on partly ordered sets. Let P be a given
partly ordered set. A mapping ¢ which maps subsets of P into subsets of P
is called an imbedding operator on P if the following conditions are satisfied :

(2.1) $(A)S A,(2.2) A2B implies ¢(A) 2 H(B), (2.3) P(P(A)) = $(A),
(2.4) ¢(a) = (a], where ¢’a) means $({a}) and (a] = {x,x € P,x< a}, that is
the principal ideal generated by a.

A is called ¢-closed if ¢p(A) = A. All the ¢-closed sets form a complete
lattice P, under set inclusion. P, is called the completion of P by the
imbedding operator ¢.

LemMMA 2. Let Q = {A\} be the collection of all p-closed sets of P for an
imbedding operator ¢ on P. Then L satisfies the following conditions.

(2.5) every A\ is an ideal of P,i.e., if a€ A\ and x=< a then x € A\, (2.6)
every principal ideal is a member of Q,(2.7) Q is M-complete, i.e., for any
subset {B,} of Q, NB,€ Q, (2.8) P<€ Q.

Conversely if a collection of subsets of P,Q = {A,}, satisies these four
conditions, then there exists an uniquely determined imbedding operator ¢ on
P such that Q is the collection of all ¢-closed sets.

It is to be noted that the null set may or may not be included in Q.
The proof of this lemma is simple and so omitted.

THEOREM 2. Let ¢ be an imbedding operator on P, then P is imbedded in
Py J-densely by the mapping ¢*: ¢*(a) = (al. Conversely if P is imbedded in
L J-densely by a mapping 6: P— L, then there is an imbedding operator ¢
on P such that ¢* = Y0, where ¥: L— Py is a complete isomorphism of L
onto Py.

ProOF. O-isomorphism of ¢* is clear. Let A = {a,} be any element of
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P;, then A = | ¢*(a\) as A = V(a\]. Thus P is imbedded in Py J-densely.
Conversely suppose that P is imbedded in a complete lattice Z J-densely
by a mapping 6. For every element a* € L define Y(a*) = {x; x € P, (%) <
@*}. Then Q = {Y(a*); a* € L} satisfies all the conditions of Lemma 2. Thus
there is an imbedding operator ¢ on P such that Q is the collection of all
¢-closed sets. Now we prove that Y gives a complete isomorphism of L
onto Py. By J-density of @ Yr(a*) =r(b*) if and only if ¢* = b*. Thus Y gives
a one-one onto mapping of L onto Py, giving a complete isomorphism.
That ¢* = {0 is clear from

Yla) = {x; x€ P. 0x)<6a)} ={x; xE€ P, x<a}.

By this theorem if we intend to imbed P into complete lattices J-densely
we may consider only imbedding operators on P.

3. A condition for the infinite distributivity of P;. In this section
we give a necessary and sufficient condition for the infinite distributivity of
P,. Let S = {s\} be any subset of P and let x be any element of P. Define
xNS={y;y€P, y<x y=s, for some s, € S}. Thus xS is the intere-
section of (¥] and (S], where (S] is the ideal in P generated by S, i.e., (S]
= {y; y€ P,y<s, for some s, € S).

LEMMA 3. Let ¢*: P— Py be a mapping of P into Py induced by ¢, then
&(S) (as an element of Py) = | ¢*(srn). Moreover if B is the set union of subsets
B's, then ¢(B) = U H(B,).

LEMMA 4. Under the same condition as in. 'Lemma 3d@anNd)= o*a)N

¢*(b).
These lemmas are clear from the definition of ¢ and ¢*.

THEOREM 3. For the infinite distributivity of Py it is necessary and su(ficient
that the following condition is satisfied :

) x N &) = Pp(x N S) for any element x of P and any subset S = {s,} of P.

A complete lattice is called infinitely distributive if x N (U a) = U (x N
a,) holds for any element x and any subset {a,\} of the lattice.
ProoF. Necessity of the condition. Let us suppose that P, is infinitely
distributive and let ¢*: P— P, be the induced mapping. Then
%N (S) = (21 A H(S)
¢*(%) N (U ¢*(sy)) by Lemma 3
U ¢*(®) N ¢*(sy)) by the infinite distributivity of Py

Il

= J ¢*(x N s) by Lemma 4
= d(V(x N sn) by Lemma 3
= @x N S).

Sufficiency of the condition. For the proof it is sufficient to prove that AA
(¢(V B) = $V((AAB))), where A and By's are ¢-closed sets. Put B = VB,
then the above equality becomes A A¢$p(B)=¢'A AB). As A N p(B)2¢(A
AB) is clear it is sufficient to prove that A A $(B) S ¢(AAB). Let x€ A
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FaAN ¢(B), then
(x] = (%] A $(B)
= ¢(x 1 B) by the condition (8)
S HAANB) asx€ A and A and B are ideals.
This implies that x € ¢(A A B).

4. Weak imbedding operators. A mapping o of subsets of P into
subsets of P is called a weak imbedding operator if the following conditions
are satisfied: .

4.1) w(A)2A4, (4.2) A2B implies w(A)2w(B), 4.3) o({a}) = w((al)

= (al.

Notice that the (4.3) is somewhat stronger than (2.4) and lacks the
condition corresponding to (2.3).

Let us call a subset A is w-closed if w(A)= A. Then the collection of
all w-closed sets satisfies the conditions of Lemma 2. Thus we have an
imbedding operator o on P, which we call the imbedding operator induced
by the weak imbedding operator o.

For any subset A of P w(A), the least w-closed set including A, is con-
structed transfinitely as follows. Put o'(4) = w(4), »*A4)= o(0'(A)),....,
if £=7+1 put 0¥(4) = 0w™(A)), if £ is a limit number put w¥(A4) = V,«w’
(A). Then for some ordinal number &, we have 0%(A) = ob*i(A). It is clear
that w(A) = wg(A). :

LEMMA 5. The following two conditions for thz weak imbedding operator
w and thz induced imbedding operator w on P are equivalent :

(1) x NwlA)YS w (x N A) for any x< P and ary subset A of P.

62) x N w(A)S wlx | A) for any x € P and for any any subset A of P.

Proor. Evidently (62) implies (81). Assume (81), then by induction (3 2)
will be proved if x [} wf(A) S w/x ) A)is proved assuming x N (A) = 0%
A) for all n < £, If £ is a limit number this condition is clearly satisfied.
IféE=n+1

2 N 0i(A) = x | w{w"(A))
Sw(xNwi(A) by (81)
S wlwx A) by the inductive assumption
=w(x N A).
By Theorem 3 and Lemma 5 we have
THEOREM 4. Let w be a weak imbedding operator on P. Then for the

infinite distributivity of Pg it is necessary and sufficient that the condition (81)
18 satisfied.

We shall call an imbeddiﬂg operator ¢ is distributive if qu5 is infinitely
distributive. Now we cite here some applications of weak imbedding opera-
tors. Let ¢ be an imbedding operator on P and let & = {S,} be the collection
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of subsets of P including all one element subsets. Let us define a weak
imbedding operator ¢ associated with ¢ and & as follows: ¢ (A) = V $(S.)
where set summation is taken under the conditions that S, = A and S, € ©.
It is easy to show that ¢ is a weak imbedding operator on P.

THEOREM 5. Py is infinitely distributive if and only if the following condition
is satisfied.

(83) x N HS)E (¥ N S) for any element x € P and any S € €.

Proor. Necessity of the condition follows from (8 1) as ¢(S) = ¢<(S) for
S € ©. For the proof of the sufficiency of the condition it is sufficient to
prove that (8 3) implies

(83) xNP(A) S ¢ps(x N A) for any x € P and any subset A of P.

While

XN Pe(A)= (A N[V HSp); SLE A, S, € €]

V (2] A $(Su)] = V [x N $(Su)]
S U éx(xN S by (83)
S ¢(xN A as S, C A.

As it is clear that ¢(A) D ¢4 (A) for all A, and as x| $(A) 2¢p(x N A)
(86 3) is equivalent to

(84) x N $(S) = pe(x N S) for any S € &.

COROLLARY 4.1 If ¢ is a distributive imbedding operator, then 55 s
distributive if and only if

(85) ¢(x N S) = Ps(xNS) for any x € P and any S € ©.

COROLLARY 4.2 If ¢ is a distributive imbedding operator and if & satisfies
the following condition, called meet completeness of S, then dfe is distributive.

(4.4) With any S€ S and any x € P there is an S' € S such that the
ideal generated by S' coincides with x [ S.

|

5. Imbedding a given partly ordered set into infinitely distributive
complete lattices. Let P be a given partly ordered set. In P we call ¢ =
U ar is a distributive join if any & ( < a) can be represented as b = | b,,
where every b, < a\ for some a, in {a\}.

THEOREM 6. If P is imbedded in an infinitely distributive complete lattice
L [-densely by a mapping 0, then &a) = U 6 a)\) implies that a = U a\ and this
is a distributive join.

Proor. By Theorem 2 we may replace L by P, for some imbedding
operator ¢ on P and 8 by ¢*. It was proved in Lemma 1 that ¢*(a) = U ¢*
(a)) implies a = |J a,. Now we prove the distributivity of a= | @,. Let &
be any element such that 8 <a = U a,. Put A = {a\}, then (8] = (a] = ¢(A).
Then

b*(b) = (8] = (B] N H(A)
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=b HA)
=¢bNA) by the distributivity of ¢
= ¢*(c.), where {c,} = b A.

This implies that b= Uc, and as {¢.} =6 A we have every ¢, < a\ for
some a), € A.

By this theorem we see that when P is imbedded in an infinitely distri-
butive complete lattice J-densely, the joins in P (i.e. lub.) which can be
preserved are only distributive joins. While we can imbed P in an infinitely
distributive complete lattice J-densely preserving all distributive joins, which
we are now proving in the next.

A subset S of Pis called 8-closed if the following condition is satisfied:

(5.1) If @ = | s» is a distributive join with s, € S for all A and if 6 < a,
then b € S.

The collection of all &-closed sets satisfies the conditions of Lemma 2,
as is easily seen, and so we have an imbedding operator 6 on P. Now we
prove that Psis infinitely distributive and the induced mapping &* preserves.
all the distributive joins.

Let A be any subset of P. Deéfine w(A)={x;x=Ua, an.€ A, Ua\is a

distributive join}, then w is a weak imbedding operator. Clearly & = w.
For the infinite distributivity of P; it is sufficient to prove that ¥ | o(A)<
8(x N A) for any x€ P and any subset A of P, by Theorem 5. If y € x )
o(A), then y <%,y =< U ax for some distributive join U a. with @\ € A. By
the distributivity of U a., ¥ is represented as ¥y = |J b, where {b.} =y N A.
Asy<xwe have yN ASx N 4, and | b. is a distributive join as will be
shown in the next.

LEMMA 6. Let a= U ax be a distributive join in P and let b <a, then
b= U b, where {b.} = b {a\}, is a distributive join.

Proor. Let ¢ < b, then c<a. As a= Ua,is a distributive join ¢ can be
represented as ¢ = Uc,, where {c,} =c 1 {a}. As c<b we have {¢,} =c )
{a\} &b N {a\} = {b.}. and then we have every ¢, < b, for some g in {u}.

By this lemma we have showed that y € x (] w(A) implies that y €
&x N A).

THEOREM 7. Any partly ordered set can be imbedded in an infinitely
distributive complete lattice J-densely, preserving all the distributive joins (and
only those joins).

LEMMA 7. When P is a lattice L the distributivity of a = | a, is equivalent
to the condition :
(5.2) for any x € L U(x N a)) is defined and equal to x ) (U a).

PrOOF. If @ = Ua, is a distributive join in Z, then e | x< a implies a
N x= U by where {b.}=(aNx)N{a)=2xN {a}. Then every b, <x a\
for some A and as every xNax=<x(1a we have xNa= U b.= U (x N a,).
Conversely if the conditon (5.2) is satisfied for a = | @\, then b < @ implies
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b=aNb= U (®bNa)withbd | an =< a.. This shows the distributivity of U a..
In a lattice L a= U a. is called a distributive join if (5.2) is satisfied.
Then by Theorem 7 we have

CoROLLARY 7.1. Amny lattice can be imbedded J-densely in an infinitely
distributive complete lattice preserving all distributive joins and only those
joins.

If in a lattice, not necessarily complete, all joins are distributive then
the lattice is called infinitely distributive.

COROLLARY 7.2. Any infinitely distributive lattice can be imbedded in an
infinitely distributive complete lattice J-densely preserving all joins.

COROLLARY 7.3. Any upper continuous lattice can be imbedded in an
infinitely distributive complete lattice J-densely, preserving all upper continuous
limits.

Here a lattice L (not necessarily complete) is called upper continuous
if @\ T a implies x N ax» T ¥ N @ for every upper continuous limit @\, t @ and
any x € L. The proof of this corollary follows from the fact that if a\ T a
implies x N @\ T @ N ¥ for any x € L then a = | a, is a distributive join.

6. Set of distributive imbedding operators. In this section we prove
that the set of all distributive imbedding operators forms a complete sublat-
tice of the (complete) lattice of all imbedding operators.

Let II be the set of all imbedding operators on P. For any two imbed-
ding operators ¢ and Y define ¢ = if and only if

(6.1) $(A) DY (A) for any subset A of P. )

As is easily seen (6.1) is equivalent to the condition

(6.2) every ¢-closed set is Y-closed.

II forms a complete lattice under the above defined ordering relation.
The strongest imbedding operator in II is the normal imbedding operator
v and the weakest imbedding operator is the ideal imbedding operator «.
Here v-closed sets are normal ideals and :-closed sets are ideals in P.

LeEMMA 8. Let {¢p\} be a set of imbedding operators on P. then ¥ = ] ¢
is defined as Y(A) = N Pr(A).

Proor. First yr defined by the above definition is an imbedding operator :
Y(A)2 A, A2B implies Y(A)2Y(B), Y(a) = (al, V(Y(A)) = N p\(Y(A) S
ApA(A) = YP(A) and as the reverse inclusion relation is clearly satisfied we
have Y(¥(A)) = Y(A). It is clear that Y <¢. for all A. Let ¢’ be any
imbedding operator on P such that Y < ¢, for all A, then V/(A) S A ¢x(A)
= Y(A). Thus we have { = (..

LEMMA 9. Let {¢p»} be a collection of imbedding operators on P, then w(A)
=V ¢$N(A) is a weak imbedding operator on P and = U,

Proor. That o is a weak imbedding operator is easily followed by the
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definition of w(A). That w = | ¢y follows from the following.

LeEmMA 10. Zet ¢ and o be respectively an imbedding operator and a weak
imbedding operator on P such that ¢(A) =2 w(A) for every subset A of P, then

¢ = .
This follows from the definition of w.

THEOREM 8. All the distributive imbedding operators on P form a complete
sublattice 114 of 1I.

For the proof it is sufficient to prove that Y = (] ¢r and @ = U ¢, in
Lemmas 8 and 9 are distributive assuming all the ¢y’s are distributive.

For ¥r: a N Y¥(A) = (al A (A ¢x(A) = A((a] N px(A))

= N@xa N A)) by the distributivity of ¢,
=Y(a N A).
For w: By Theorem 4 it is suufficient to prove that ¢ N ®(A) S w (@ N A).
a | o(A) = (al N(V $a(A4) = V((a] A\ pxA))
V ¢xa U A) by the distributivity of ¢,
=wla A)S wla N A).

7. Similar imbedding operators. Two imbedding operators ¢ and

on the same partly ordered set P are called similar if the induced mappings
*: P— Py and ¥*: P— P, preserves the same joins, i.e.

(7.1) ¢*a) = U ¢Xa) if and only if Y*(@) = U ¥*(an).

This condition is equivalent to the condition

(7.2) (a] = $(A) if and only if (a] = ¥(A), where A = {a\}.

Clearly similarity is an equivalence relation and each equivalence class
is M-complete and convex in II, that is if {¢,} is a set mutually similar
imbedding operators then (] ¢, is similar to those operators and if ¢ =+,
&~ and if ¢ = 6 = then @ is similar to ¢({).

I

THEOREM 9. Any similar equivalence class contains at most one distributive
imbedding operator.

The proof of this theorem is rooted in the following
LemMMa 11. If ¢ =, b~ and if ¢ is distributive, then ¢ = .
Proor. Let A be any subset of P and let x € ¢(A), then

(] = (2] A $(A) = x N $(A)

=@ N A) by the distributivity of ¢
=Y(x N A) as ¢~
SY(A).

This implies x € Y(A). Thus we have ¢(A) = yY(A), that is ¢ =Y as the
reverse inclusion relation is an assumption.

Proor oF THEOREM 8. Let ¢ and v be two similar distributive imbed-
ding operators. Then ¢ ] Y is similar to ¢ and » by M-completeness of
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similar class. By Lemma 11 ¢ = ¢ 1 ¥ =Y.

THEOREM 10. The imbedding operator & introduced in Theorem 7 is the
strongest distributive imbedding operator.

This fact comes from Theorem 6 and Theorem 9.
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