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Introduction

G. de Rham [3] proved an interesting theorem concerning structures of
simply-connected, complete and reducible Riemannian manifolds. In this
paper I shall ficst attempt to extend his theorem to affinely connected
manifolds. For this purpose I shall define R-reducible manifolds which are
regarded as an extension of the notion of reducible Riemannian manifolds.
For this manifold, I shall prove that the p-dimensional homotopy group of
any of its maximal integral manifolds is isomorphic into the p-dimensional
homotopy group of the given manifold under the homomorphism induced
by the inclusion map. By virtue of this, it will be shown that a simply-
connected R-reducible manifold is equivalent to an affine product. This is
nothing but an extension of de Rham’s theorem, as mentioned above. Secondly
I shall determine structures of R-reducible manifolds whose fundamental
groups are cyclic of order two, by the above theorem.

Throughout the whole discussion, ‘I shall adopt the following conventlons
I use the word “nbh” for neighborhood. I describe as a path (or a curve)
what is usually called a segment of a path (or a curve), including the
endpoints, and parameters of paths mean always affine parameters. If X is
an affinely connected manifold, I describe as the covering space of X the
universal covering space of X with the affine connection induced naturally
from X by the covering. Let us suppose that the indices run as follows :

a,bc,d=12,.....r; Likl=r+1Lr+2, ....,n;
a,B,y=12 ....,n

I wish to note that integral manifolds R and S in this paper can not be
intrinsically distinguished and lemmas etc. hold good though we exchange
the roles of R and S there.

Furthermore, I wish to note that a part of the idea of this paper owes
to A.G. Walker’s paper [6] and to express my thanks to Professor S. Sasaki
of Toéhoku Univ. for his kind assistance during the preparation of the
manuscript.

1. R-reducible manifolds

Let M be an n-dimensional differentiable manifold (of class C?%) with an
affine connection without torsion of class C! and we assume that M is affinely
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complete. For the definition of differentiable manifolds, see [5], p. 21, and
note that M is connected, separable, and metric. The word “affinely complete”
means that any straight line lying on the tangent space at any point x € M
and passing through x can wholly be developed into M.

When the homogeneous holonomy group % at a point o of M fixes an
r-dimensional plane T, and an (# — 7)-dimensional plane T complementary
to T,, then M is called a completely reducible or briefly, C-reducible manifold.

In a C-reducible manifold M, transplant the two planes T, and T, at 0

to every point x € M by parallel displacement along a curve ox of class D!
and denote the two planes thus obtained by T, and T, respectively, then we
get two parallel plane fields 7,, 7, over M. When we attach at every point
x of a coordinate nbh U a suitable frame (e, ....,e,) whose first » vectors
(e, - ..., e)span T, and the remaining » — 7 vectors (e,+1, .. ..,e,) span T, we
may find Pfaffian forms o® (class C'), o; and o’ such that the connection of
M is expressed by

dx = w%ea,
des = ey, de; = wle;.
As the connection is without torsion, we have
(07 = [0w};], (o) = [@w]]. @
The plane field T, in U is definéd by the system »*= 0, and the field

T, by the system o’ = 0. Since these systems are completely integrable by
(1), we may find their first integrals
xV = f¥(x%), at’ = fr(x®), 2)

where we have denoted the coordinates in U by (x*). As the Jacobian of
(2) is not zero, we transform the coordinates (x*) by (2). Then, for any
point x€U we may find a suitable coordinate nbh V of x covered by the
new coordinates (¥*'). Such new coordinates are called canonical coordinates
and a nbh covered by canonical coordinates is called a canronical coordinate
nbh.

In every canonical coordinate nbh V with coordinates (x*) (we omit
“dashes”)

x! = const. and x* = const.

define the 7-and s-dimensional integral manifolds of the two fields T, and
T, respectively, where s = n — 7. We can express the connection of M in
terms of natural frames (¢*) in V by

dx = dx®ea, des = wbeg.

As the planes T, and T, are parallel fields, we see ! = w} = 0, hence we
get I'j, =T, =T}, =TI"%, =0, where we have put wi=I";,dx". Accordingly,
among many components of I'g,, only I';, and I'j; are non-trivial in general
and usually they consist of functions of coordinates (#%, ....,2") (cf. [1]). If
I';, are functions of coordinates (¥!....., #") only and I'}, are functions of
coordinates (x™*1,.....,4") only, then M is called an R-reducible manifold.
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Now, concerning integral manifolds in a C-reducible manifold M we
have the following well-known properties (we do not give their proofs here):

a) Through every point x€M there pass a pair of two r- and s-dimensional
maximal integral manifolds (cf. [2], ».94). We shall consider each of them
as a differentiable manifold with the system of crordinates and the affine
connection induced naturally from a system of canonical coordinates and
the affine connection in M. We denote the 7- and s-dimensional manifolds by
R(x) and S(x) respectively and sometimes we shall use abbreviated notations
R and S for them.

b) The intersection R(x)(\S(x) is at most countable (cf.[2], p.96).

c) Any path of a maximal integral manifold, say RXx), is a path of M
too, and a path of M through x, whose tangent vector at x is contained in the
tangent space of Rx) at x, is contained in R(x) and is a path of R(x). Hence
R(x) is affinely complete.

Undar thes2 premises we shall discuss structures of R-reducible mani-
folds.

2. Homotopy groups

DEFINITION 2.1. L2t M be a C-reducible manifold. In a maximal integral
manifold, say R, of M, a nbh of a point x€R is called an intrinsic nbh in
R. In M, a canonical coordinate nbh whose coordinates consist only of all
(x*) satisfying the inequalities @* < x® < b* (a®, b® are all const. ) is called a
canonical cubic coordinate nbh or briefly, a C-nbh.

DEFINITION 2.2. In an R-reducible manifold M, let U and V be intrinsic
coordinate nbhs with coordinates (x*) and (x’) in two integral manifolds R
and S of M respactively. Lzt I',(x") and I'i(x') be the connection coefficients
of R and S in U aud V respectively. Now consider the product U x V with
coordinates (x¢ x!). We endow the product U x V with the connection
coefficients I'g,(x", ') which satisfy the following relations: I'\,(x% ') = '} (x*),
i, %) =I"j(«*) and the remaining I'g (x4, ") are all zero. Then the product
U x V is called the affine product of U and V. Moreover, when we cover
the product R x S by a set of affine products U x V, we get a differentiable
manifold R x S with an affine connection. This is also called the affine
product of R and S.

Let C(x) be a C-nbh of a point x in an R-reducible manifold M. In
integral manifolds R(x) and S(x), the connected components containing x of
C(x) R(x) and C({x)(1S(x) are intrinsic nbhs and we denote them together with
the coordinates induced naturally from those of C(x) by C(x)|R and C(x)|S
respectively. Then, C(x)|R and C(x)|S are intrinsic coordinate nbhs and the
following lemma is evident:

LEMMA 2.1. C(x) is represented by the affine product of C(x)|R and C(x)|S.

Now, under the same notations it follows by applying Whitehead’s theorem
[7] to M that there exist simple convex intrinsic nbhs U(x) and V(x) of x
such that U(x)=C(x)|R and V(x)cC(x)|S, in the geometries of R(x) and S(x)
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respectively. The word “a simple convex nbh IN” means a nbh such that
any two points in N are joined by one and only one path which is wholly
contained in N. Now, we consider U(x) and V(x) as intrinsic coordinate nbhs
in C(x)|R and C(x)|S covering them respectively. Then, we have:

LEMMA 2.2. Let W(x) be the affine product U(x) x V(x), then Wx)=C(x)
and W(x) is a simple convex. nbh of M.

ProoF. It is evident that W(x)—C(x) from Lemma 2.1. We shall denote
the coordinates of any two points x;, x. € W(x) by (%%),(x%) and express the
unique path in U(x) joining the point (x}, 0) to the point (x},0) by x7 = x%2),
# =0 (0=?=<1) and similarly the unique in V(x) joining the point (0, x;)
to the point (0,x%) by 22 =0, 2! = x/() (0 < ¢ =< 1). Then it is easily seen that
a curve

2 =xt), ¥=2) (0Zt<1)
is the unique path in W(x) joining x; to x,.

DEFINITION 2.3. A nbh W(x) such that we defined in Lemma 2. 2 is called
a W-nbh of x.

When a vector v at a point x of M is given, we shall denote by (x, v, c),
where ¢ is a constant, the terminal point ¥ of the path obtained by developing
the vector cv into M.

LEMMA 2.3. Let vy be a vector tangent to R(x,) at a point x, of an R-
reducible manifold M and v(t) the vector field parallel to v, along a curve x =
HM1) (O=7=<1) o class C' in S(x,), where xy=x0). Let u(r) be a vector at o
= ¢ (constant), obtained by parallel displacement of v(t) along a path (xt),
(1), o) 0 =0 =¢). Put ¥(1r)=(x1), v(7),¢) and yy=30). Then, for0 =T=1,
the following properties are fulfilled :

a) W(T)S,) and ¥(t) is of class C'. b) u(r) is a parallel vector field along
the curve (). c) If x(t) is a path, so is ¥(T).

Proor. A) We shall first prove the lemma in a C-nbh. Let the components
of vy be (v7,0) and the coordinates of x, be (7, x{). Express the curve x = x(1)
by x* = x, x* = x(1), where «x = x%0). Now consider « differential equations
of parallel displacement

dv® dax¥
ar + I'g, 0# =0
along the curve x = x(7). It turns into
dav® davt ; dx®
=0, = +I P=—"— =0.
dr odr T v dr ¢

Solve them under the initial conditions »* = ¢}, v*= 0 when 7 =0, and
we get v* = ¢}, ¢ =0. This is the parallel vector field »(r). Again solve
the differential equations

ax® _ 0% av®

P
dx® dv* dxt dvt
ie, _______va,, __=__vabc;._=¢’___=_t f,
¢ do da v V¥ do v do 3
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under the initial conditions x* = x, ¢* = v%; %' = at), ¢! =0 when o =0,

and we get x* = x°(o, %}, v7), v* = va, %], v, x* = a(7), vV = 0. If we put o

= ¢ in this solution, we get ¥(7), i.e., x* = const., x* = x/(7) and «(7), i.e.,
v* = const.,, ¥ = 0. From these forms, the lemma is easily seen.
NS

B) Next we shall prove our lemma in the large. Let x(7)(t) be the path

(%(r), v(7), &) from o = 0 to o =¢. When we cover the path %3y, by a finite
number of C-nbhs, it follows from A) that there exists &, > 0 such that this
lemma holds good for the arc x = x(7) (0 <7=<3,. Now we suppose that
the lemma holds good for the arc x = x(7) (0 <7 < 7). Similarly by covering

the path x(7y)»(7y) by a finite number of C-nbhs, we see that there exists
8; >0 such that, for ) -8 =7 =<7, HT)SH(Ty — &), ¥7) is of class C!
and b) and c) of the lemma hold good. Hence we may see that the lemma
holds good for a curve x= x(7) (07 <7 too. Summing up these fact,
Lemma 2.3 is easily shown.

When X is an affinely connected manifold, we shall denote by T'x(x) the
affine space tangent to X at a point x € X. Next, when the terminal point
of a curve [, coincides with the initial point of another curve [, we shall
denote by [l the curve [; followed by /,.

LEMMA 2.4. Let C be a C-nbh of an R-reducible manifold M and 1: x* =
2%(t) (0=t =<1) be a curve of class C' in C. Consider two curves I, : x* = x°(t),
* = x40) and I;: x*=x%1), x*=x@)O=t=<1), then the closed curve 1,1,l-*
gives rise to the unit element of the holonomy group H at (x%(0)).

Proor. Consider the differential equations of developement

dv _dr*, de _p.dv , de _pdi

dt dat - dt * gt "t dt gt
and put x, = (x%(0)). Solve (3) in Tx(x,) along [ under the initial conditions
that x for ¢ = 0 takes %, and e, for ¢ = 0 coincides with the natural frame
(eyw) at x,. We denote the solutions by x(¢) and e.(f) and put y=x1), e =
ex(1).

Again solve (3) in Tu(%) along I; under the same initial conditions for
t = 0. We denote the solutions by x'(#) and e, (¢), then we get (e (1)) = (€iq, €o:)
and put ¥, == «x'(1). Under the above values ¥, and (eq, €;:) as initial conditions
for £ = 0, solve (3) in Tu(x) along [,. We denote the solutions by x”(¢) and
e, (1), then we get e,(1) = (ews, ;) and put ¥, =x"(1). From this it follows
directly that the closed curve [,l,/-1 gives rise to the unit element of the
homogeneous holonomy group % at x,. On the other hand, we may find that
¥ coincides with .. Hence Lemma 2.4 is proved.

We shall here give the following remarks: If / is a path, so are /, and

=T e (3)

1,. The curve obtained by developing lil,[-! is a triangle xy.y.. Vectors x,¥:

— ——
and y.¥, are equal to the natural projections of a vector x,¥; into Tx(x) and
Ts(%y) respectively.

DEFINITION 2.4. Suppose that through a point x, a path /; and a curve

x;;l of class D! are given in M. Let 7, be the vector obtained by developing
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1, into Tu(x) and let v, be the vector at x;, obtained by parallel displacement
of v, along x.;cl. Again let I; be the path obtained by developing », into M.

Then 1, and I, are said to be parallel along the curve x;a;..

LEMMA 2.5. Suppose that a map (not necessarily continuous) f of the square
{(e,7): 0=Z 0,71} into an R-reducible manifold M satisfies the following
conditions : ‘

1) f0,0) 00 =1) is of class C' and f(o,0)=R(0), where o= £0,0).. 2)
f0,7) (0=7=<1) is a path and f0,7)=S(0). 3) fic,7) 0= 17=1) and the path
O, 7) are parallel along f(c,0), where ¢ is an arbitrary constant.

Then the following properties are fulfilled :

a) The closed curve 1, : flo, 01, 7)o, 1)"0, 7)"1(0 = o, 7 = 1) gives rise to
the unit element of the holonomy group H at o. b) If f(o,0) is a path, fla,0)
and f(o,1) are parallel along 10, T).

Note that from Lemma 2.3, fie,1) (0 <o < 1) is of class C.

Proor. Consider a closed curve

l.: flo, 0¥ic, o, D" H0,7) ! 0o <Zc, 0751

Cover the path f(0,7) by a finite number of C-nbhs. By making use of
Lemma 2.3 and 2. 4 for every C-nbh in turn. we understand easily that there
exists 8, > 0 such that a closed curve /s for any 8 in 0 <8 < &, gives rise
to the unit element of H. Now suppose that a closed curve /. for any ¢ in
0<c¢' < c gives rise to the unit element of H. Similarly, cover the path
flc,7) by a finite number of C-nbhs, then there exists &, >0 such that a
closed curve

1: fio1, Of(c, ™oy, 1)~ Ylc — 1, 7)" o3, 0)!
0=o1=c, c—8i=Sos=c¢, 0=S03=c—6, 0=7=1)
gives rise to the unit element of H. Hence it follows that the closed curve
.5 i.e., I, gives rise to the unit element. Summing up these facts a) is
easily proved. If flo,0) is a path, we get a parallelogram by developing I
into Tx(0). Hence b) is also shown easily.

DEFINITION 2.5. When () (0=<f=1) is a curve in M on which points
22 A=0,1,....,m; 0=¢t, <t < .... < t,=1) are specified and curves x(¢)
- =t=<t)(w=12 ....,m) are all paths, then the curve x(¢) is called a
broken-path and the points x(¢,) are called its vertices.

In an R-reducible manifold M, let x(¢) be the broken-line obtained by
developing a broken-path x(¢) of M into Tu(x,), where x = x0). Again let
3(t) be the broken-path obtained by developing into M the natural projection
Y(@) of x(¢) into Ts(x) (relative to Tr(x)), then ¥(2)S(xy). In such a case,
the broken-path ¥(¢) is called the natural projection of x(t) into S(x). Then
we have:

LEMMA 2.6. The point ¥(t) lies on the integral manifold R(xt)).

Proor. For 0=t)<t, < .... < t;=1 we may suppose that every curve
x(2) which corresponds to #,..<¢=<¢ (#x=1,....,k) is a path contained
in a W-nbh W,. Put x, = «o(2,), x, = x'(¢,) and so on. Denote the path ()
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%) = %)= ¥, = . In order to prove the lemma we shall make use of Lemmas
2.3, 2.4 a}nd 2.5 repeatedly.

From J/c.:xchl, it follows that the natural projection yo/fl of xu-/il is also
contained in W,. Hence the lemma holds good for ¢, <¢ =< #,. Consider the
path Y. in W, Take a point % such that %% is parallel to 9, along Y
Develope the broken-path y@l V1% X%y into Tu(%) and we denote the terminal

—— —_—

—_—
point by x;,. xx, is equal to ¥, i.e, the natural projection of x,x, into

(t-y <t <t,) by x,_.%, the vector %¥(2) ((,-1 =t < 1) by %, %, and so on, where

Ts(%). Hence %% is the natural projection of %x into S(%), and %%uCWa.
Consequently we may show that the lemma holds good for #; =¢ =7, Next
let y.x., be the path parallel to yx, along 9%, and %% be the path in W,
Then the closed broken-path MRI x:a?._, x;c\l, x;_,}z y’z}l y/&, gives rise to the unit
element of the holonomy group H at x,. Take a point x; such that x;}gs is
parallel to yﬁs along the broken-path y;}m x;;c_, In the same manner as

above, :E:ng is the natural projection of J/c;xs into S(x,) and 321—3\523CW3. Hence
the lemma holds good for #,<?¢=<+#;. If we continue this manner, it is
evident that Lemma 2.6 is proved.

Let E be the p-cube consisting of points (¢, .. .., #,) in the p-dimensional
Euclidean space E” such that 0<# =<1 (#=1,....,p). In particular, the
(p — 1)-faces defined by ¢, =0 and ¢, =1 1in E are denoted by E, and E,
respectively.

LEMMA 2.7. Lot U be a simple convex nbh of M. Suppose that a map ¢
of E into U satisfies the following conditions:

1) ¢ is continuous in E\UE. 2) Whent,, .. .., t,-1are regarded as constants,
Py, .- t0) (02, < 1) defines a path. Then, ¢ is a continuous map.

Since this follows from the theory of differential equations, we do not
give its proof here.

LEMMA 2.8. Suppose that a continuous map ¢ of E into an R-reducible
manifold M satisfies the following conditions: 1) ¢(Ey) = %,, where %, is a fixed
point. 2) When t,....,ts-1 are regarded as constants, ¢(ti, .....t0) 012,
=< 1) is a broken-path which we denote by ¢,..;,-,(2). 3) Vertices of ¢i,...1,,(t»)
consist only of points corrvesponding to t, =0, 1/m, ....,(m —1)/m, 1.

Then there exists a continuous map r: E—S(%) for which the following
properties are fulfilled :

a) Y(Ey)) = HEy) = %. b) Two points, Yr(ty,. .., tr)and ¢, .. .., t») for the
same value (L, ....,tp) lie always on the same integral manifold R. c) For
(t1, .. --,tp) Such that qSt,_,..tp_l(tp) 0O =t,=1) is contained in S(%), Y(ty, -...,
1p) =Py, .. .., tw). '

ProOF. Let ¢;,...s,, (Z,) be the development of a broken-path ¢,....s,—.(t»)
into Tu(%,). Now consider the map )

¢l : E_’Tﬂ(x()) ((tl:i' ey tp)—)¢tl....tp~l(tp))) »

then we get
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'y, ...ty = (mty — NP2y, -t A+ 1)/ m)

‘ + A +1—mt)P ..., to_1, \/m) 4)
for A/m=t,=(A+1)/m A=0,1,..... m — 1). From the continuity of ¢ we
have

brran.. 12ty Ep) > Pry pmy () (A, —0; v=1,....,p — 1)\
Hence, ¢£1+Af1"” ..t,._1+mp_1(7\'/m) - C}Sg’,,,*p_] AWm) (A=0.1,...., m),
ie, @'ty + Aty ...t + Aty , M) (Ey, Lt A m).
Consequently ¢'(¢, ....,¢tp-1, A/m) is continuous. From this and (4, ¢'(Z,

.., Ip) is also continuous.
Next, let ¥y, .1,_,(f,) be the natural projection of a broken-line iy,
(tp) into Ts(x,). Then it follows directly that the map
Vi E—>Ts(%) (... t)) >V, (£))
is continuous. Again let Vv, .-, (¢;) be the development of a ibroken-line
W;l._,xp_l(t,,) into S(%). Consider the map

Y E— S(%) (G 7 R ' SN ( ) §

By the similar manner, it is possible to deduce that the map { is conti-
nuous. It follows directly that Y satisfies a) and c), and b) holds good by
virtue of Lemma 2. 6.

THEOREM 1. ZLet f be a continuous map of the boundary OF of E into a
maximal intergal manifold, say S, of an R-reducible manifold M. If f is homo-
topic in M to a constant map, then it is homotopic in S to a constant map.

Proor. We shall suppose f(E;) = % and fIE,) = x;, where x;, x, € S. This
assumption does not lose its generality of our theorem. Since M has a
metric independent of the connection, we denote the distance between x and
y by d(x,y). From the given conditions, we may extend the map f to a con-
tinuous map E — M and denote such a map again by f. Put D=AE), then
D is a compact subset of M. Next, in a nbh W(x) at a point x there exists
always the greatest positive number (or infinity) & such that W(x)>{y:
d(x,y) < 8}. & is called the radius of W(x).

Choose at every point x of D a W-nbh of x such that the greatest lower
bound of these radii is a positive number. This is possible because D is
compact. We denote the W-nbh by W(x) and the greatest lower bound by
8. Once more, choose at every point x of D a W-nbh of x, contained in a
nbh {y: d(x,¥) < §,/2}, such that the greatest lower bound of these radii
takes a positive number. This is also possible and we denote the W-nbh by
w(x) and the greatest lower bound by J;. Next, at a point £ of E, when
there exists the greatest p-cube with the center ¢, whose (p — 1)-faces are
respectively parallel to those of E and its interior is wholly contained in
Y w(f(t) ND)U(E? — E), we denote the length of the side by p(¢). If the
p-cube does not exist, put p(¢) =2. Then it follows easily that the greatest
lower bound p, of p(¢) for all ¢ € E is a positive number.

Moreover, take a positive integer m such that 1/m < p, and divide E
into m? p-cubes, whose sides are of the same length 1/m and their faces

.t,,-ly



ON THE REDUCIBILITY OF AN AFFINELY CONNECTED MANIFOLD 21

are respectively parallel to those of £E. We call every one of the p-cubes a
small p-cube and its (p — 1)-faces small (p — 1)-faces. We denote by A,,..,, a
small p-cubei.e., the set of points (¢, ....,1p) satisfying g,/m=1t, =< (g, + 1)/m
w=1....,p;4=01, ....,m—1), and by o,,....,, its center. Put x,....,,
=/04...q,), then we have

ﬂAqr )W (X ... q,,)-

In two small (p — 1)-faces ¢, = g,/m and ¢, = (g» + 1)/m of A, .,, take
points (¢4, .. .., to—1, @u/m)and (¢y, .. .., ts_1, (@» + 1)/m) respectively and consider
inw(%,,..q,) only one path I(¢, .. ..,t,) with the parameter ¢, (g»/m < t, < (g» +
1)/m), joining a point f(¢; ...., tp-1, @y/m) to a point f(ty, .. .., tp-1,(@w + 1)/m).
‘Then from Lemma 2.7 we get a continuous map

Bopeetpt Agpcay > Wy ogy)  ((Frs oo tp) =1, oo Ep)). (5)

Choose another small p-cube A’ whose #,-coordinates satisfy gq,/m < t»
=(g» + 1)/m and suppose N:=A'NNA,.. ., +0. We denote any point of N
by (¢}, ....,%,_1, t») and put w’ =w(f{0')), where 0’ is the center A’. Let ! and
I be two paths joining a point f{#}, .. .., ¢,_;,@»/m) to another point f(¢}, ....,
2, 1 (@ + 1)/m) in w(%,...,,) and w’ respectively. Let ¥, be a point of AN)
and ¥ be an arbitrary point of w(xq‘..,qp,) then

A, 90) = A, %gy...q,) + B (Fyy g Yo) < 80/2 + 8/2 = 8.
Hence, W(Xyy...q,) =W (o).
Similarly, w' W(yy).
However, since W(y,) is a simple convex nbh, we have ! = /. Consequently
if ¢:A’ = w’ is the continuous map analogus to (5) and ¢ is any point of N,
we get
Pup-a(t) = B ()

From this and (5), we get a continuous map ¢q, of the part {(t; ....,%»):
a/m=t,<(qy + 1)/m} of E into M, regarded as the union of maps ¢,,...q,
with ¢, = const. Then, we have ¢,,(t1, ----, too1, @o/m) = f(1, .. .., too1, @n/m)
and qsq,;(th e tpoy, (@ FD/m)y =ty o tpo, (@0 + D)/m)for 02y, +v 0, by
=1

Again if we make the map ¢: E— M as the union of maps ¢,,(g» =0,
1,...., m—1), ¢ is evidently continuous and satisfies

Sy oot A m) = Py, e e, AMm) A=0,1,....,m). (6)

In the next place, we take a small (p — 1)-face contained in ©FE, such
that gy/m =1, =(g» + 1)/m, for example B, .. ,, ={(0, %y ....,2): @/m=t1.
S@+D/m, .....¢p/m=1t, < (g + 1)/m}. B,,.,, is a small (p — 1)-face of
Ag,..qpy Now we have f(B,, ..., )=S from the assumption of /. On the other
hand both AB,,..,.) and ¢(B,,. ., )w(xy,..q,). Consequently f(B,,..,,) and
¢(B,,....;) are contained in a simple convex intrinsic nbh V, i.e. a connected
component of w(%y,.,)NS in S, by virtue of Definition 2.3 and (6). Take
any point (0,2, ....,2»)EBy,..q, and make in w(xy,,..,,) a path X0, ¢ .. .., ¢t T)
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(0=Z7=1) such that I(0,¢, ...., £,,0) =702, ....,tp) and 1O, ¢y ...., ¢, 1)
= ¢(0, ¢, ....,2p). From Lemma 2.7 we get a continuous map
‘ 5'12“"'7)): B"ﬁ""’ll X I__>V ((0) t27 ""atlhT)_>l(0’ t27 .. ":tlhT))7 (7>

where 7= {7:0 < 7 =< 1}. Again choose another small (» — 1)-face B, contained
in 9F, such that g,/m=<t,=<(gy+)/m and BB, ,, +0. Let A be the
small p-cube containing B and o be the center of A. Put w = w(f(0)) and
let (0, ¢, ..., 1p) be a point of B,, . ,,NB. Let | and I’ be paths joining A0,
Lo ... tp) to 0,2y .. .. 1) in w(Ky, .,,) and w respectively. Then we get
I =1, because w(xu,,;,,,,,,) and w are contained in a W-nbh. Here we note that,
if A= Ay,.q> we have [ =10 directly. Then, as the union of maps (7) of
all small (p — 1)-faces is contained in the part (3E),, of OF such that g,/m
==+ 1)/m, we have a continuous map

ly, - (BE), x I—S,

where /,, in ¢, = q,/m and ¢, = (g, + 1)/m is independent of + from (6). ,,

=finT=0and [, =¢ in 7 =1. Consequently we have a continuous map
g:0Ex I—S (8)
by making the union of maps /,, (¢, = 0,1, ....,m —1). g satisfies g(Ey x I)

=% 9(E\ x I)=x and g(t x 0) = £f(t), 9(f x 1) = ¢(¢) for t€2E. From (8),
f19FE is homotopic to ¢|2FE in S, leaving x, and x, fixed.

Hence it is sufficient to show that ¢|oFE is homotopic to a constant map
in S. In fact the continuous map ¢: E—M satisfies wholly the conditions of
Lemma 2.8. Moreover ¢(E;) = x,€S and ¢(OE)=S. Hence we have the con-
tinuous map

v E—S. )
For any point t€oFE — E, + oF,, ¥(t) = ¢(t), hence Y(OE,) = x;. On the other
hand, Y(E\)CR{x,), hence Yy(E,)=S R(x,). Consequently Y(E.) = x;, from b)
of §1. Since we have VY(¢) = ¢(¢) for tESE, it follows from (9) that ¢|oF
is homotopic in S to a constant map.

COROLLARY. The p-dimensional homotopy group of any maximal integral
manifold of an R-reducible manifold M is isomorphic into the p-dimensional
homotopy group of M under the homomorphism induced by the inclusion map.

ProOF. We shall attempt the proof with respect to an integral manifold
S. Consider the inclusion map 7 S—M and we get the homomorphism i7x:
m(S) = m(M) induced by 7. Let N be the kernel of 7. Since any element of
N is mapped to the unit element of 7,(M) under i, N is of the unit element
of 7,(S) from Theorem 1. Consequently our Corollary is proved.

3. Simply-connected R-reducible manifolds

S.Sasaki [4] proved that any two points of M cannot necessarily be
joined by a path, but we have: g
LemMma 3.1. Any two points xand ¥ of M can be joined by a broken-path.
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Proor. Consider a curve ! joining ¥ and ¥ and cover [ by a finite number
of simple convex nbhs. Then we can make a broken-path joining x and ».

LEMMA 3.2. L2t x and ¥ be any two points of an R-reducible manifold M,
then Rx)NS®) = 0.

This is evident from Lemmas 2.6 and 3.1.

DEFINITION 3.1. Let o(x) be a vector field over an integral manifold S
of a C-reducible manifold M, where x&€S. If »(x) and v(x,) at any two points
x;, and x, are parallel regardless of curves %% of class D'in S, v(x) is called
a parallel vector field over S.

LEMmMa 3.3. Let vy be a vector al %, tangent to R(%) of an R-reducible
manifold M. When S(x) is simply-connecied, there exists a vector field v(x)
over S(xy) parallel to v, where x&S(x).

Proor. Consider a closed curve I of class D!, with the endpoint x, in
S(x,) and let »; be the vector at the terminal point %, obtained by parallel
displacement of v, along /. From the proof of Lemma 2.3, it follows that
v; is tangent to R(x). Suppose v; v, Then there exists ¢ >0 such that
Y =3, where y, = (%, m,c) and ¥, = (%, v3,¢). From Lemma 2.3, 3, € R(x)

NS(,). Contract I to 5 and we get a curve y:}(. as the locus of y,. Here

J/’:})UCR(J@)HS(J/U). This is contradictory to b) of §1. Hence », = v;,. From this,
Lemma 3.3 is easily shown.

Lemma 3.4 Under the same assumption and notations as Lemma 3.3. put
Y= v(x), c) and ¥, = (%, vy, ¢), where c is a constant. If S y,) is simply-connected
too, Sx,) is equivalent to S)y,) under the map

I S(#%) = S)  (x—>)

The word “equivalent” in such a case means th: equivalence as affinely
connected manifolds.

Proor. Let #(y) be the vector at v, obtained by parallel displacement of
v(x) along a path (x, 0(x),¢t) (0=<¢=<¢). For two distinct points x and x. in
S(%)), »: and ¥, are als» distinct, where y, = (%, v(x,), ¢) etc. In fact, if y, =

¥, we have the closed curve ! in S(3,) as the image under f of a curve x/l}g
of class D! in S(x). From Lemma 2.3 #’y,) and #(y,) are parallel along /.
However since S(¥,) is simply-connected, #(y,) = #(y.) by virtue of Lemma
3.3. Hence we get x, = %, because x, and x, are represented as (¥, #(3),
—c). This is contradictory to the fact that x and x, are distinct points.
Consequently, when we put S'=£S(%)), then S(x) and S’ correspond one-
to-one under f to each other, where S'<S(y,). Moreover S(x,) and S are
equivalent under f. In fact if we cover a path 9/6_)7 = (x,v(x),2) OZt=c) by
a finite number of C-nbhs, we get in S(%) and S’ two intrinsic nbhs of x
and y respectively, equivalent under /. From, this fact the equivalence of
S(x%y) and S’ is easily shown.
Hence it is sufficient to show S(¥,) = S’. Take a point 3 €S(¥,) and make
a curve y@l of class D' in S(y,). We get a vector () at y,, by parallel

displacement of (¥, along »,. Put x, = (y, u(»), —c). From Lemma 2,3
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xE€S(x) and (%, v(x), ) = y,.. Hence S(¥) = S'.

DEFiNITION 3.2. In an R-reducible manifold M, let /; be a broken-path
x)’;a 51},.. ..xh_Alxn in R(x) with the vertices x;, %, ...., % and let / be a curve
x‘,/;o of class D! in S{x,). First displace x;xl parallelly along /, and we get
a path yf,}l at y, and a curve x/l_';’l as the locus of x,. Again displace J?x,
parallelly along x/&, and we get a path ny_ at ¥, and a curve x:yz as the
locus of x:. Continuing this process successively, we get a broken-path Yo
Y1¥s. .. .Yor¥s and a curve %y, The broken-path Yo% ¥i9:.. . . Yer¥s is called
to be parallel to 1, along 1.

It follows that the broken-path ¥,y YY1 . . . Yu_1¥, coincides with the deve-
lopment of the broken-line at ¥, parallel to the development of the given
broken-path /; and xr,,j’,,CS(x,,) v=12,....,h) from Lemmas 2.3 and 2.5.
Moreover when / is a broken-path, the curve %%, coincides with the broken-
path obtained by parallel displacement of ! along /.

LeEmMA 3.5. When all S of an R-reducible manifold M are simply connected
and a broken-path xtvo of M is given in R(x;), we have: a) There exists over

S(x;) @ broken-path field parallel to x,y,. b) If y is the terminal point of its
broken-path at any point x of S(%), S(x%) and S(¥,) are equivalent wunder the
map
f: S®)—>S)  (x—Y).

This is obvious from Lemmas 3.3 and 3. 4.

DEFINITION 3.3. We call such a map f as is defined in Lemma 3.5 an
equivalent map with respect to a broken-path on70

LEMMA 3.6. Suppose that all R and S of an R-reducible manifold M are
simply-connected and g, and hy are any two broken-paths in R(x) joining %, to

Yo. Then the equivaleut map with respect to g, coincides with the one with
respect to h.

PrROOF. Let g(x) and &(x) be two broken-path fields over S(x,)) parallel to
gy and ny respectively, where x<S(x). It is sufficient to show that the
terminal point ¥, of an element ¢(x,) coincides with the terminal point y;

of an element Z(x,). If we consider a broken-path x.,Axl, y is also regarded

as the terminal point of the broken-path at ¥, parallel to x;a\cl along g, and
so is ., along k. Since any R is simply-connected, ¥, coincides with y, from
Lemma 3.5.

THEOREM 2. When all R and S of an R-reducible manifold M are simply-

connected, the affine product M= R(0) x S(0), o € M, is equivalent to the
covering space of M.

Proor. We put Ry, = R(0) and S, = S(0). A point % of Mis always repre-
sented by (¥, z), where y€R, and z&€S,. Let o’.; be a broken path in R, joining
o to y and 0z a broken-path in S; joining o to 2. Let x be the terminal point
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of the broken-path at z, obtained by parallel displacement of 5)7 along o0z in
M, and x€S(¥)(NR(z). From Lemma 3.6 we see that the point x does not

.depend on the brok:zn-paths 3} and 55, but does depend upon the points y
and z. Now consider a map
f: MM (x— 2).

A) Let x be a point of M. We can take a point ¥ of Ry S(x), for Ry
S(x) =0 by virtue of Lemma 3.2. Let z be the terminal point of the broken-
path at x, obtained by parallel displacement of oy along y/J},\ where 0y and
j} are arbitrary broken-paths in R, and S(x) respectively. Then z€S,. Now

if we denote by ¥a point (¥, 2) in AZ, f(;) = x. Consequently f(ﬁ) = M.
B) Let 35, A€]J, be all points of RyS(x) for x&M, where J is the index-
set. Let zx be a point determined from ¥, in the same manner as A), then

2, €R(x)NS,. Make two broken-paths oy and 0z, in R; and S, respectively.
On the other hand, consider a W-nbh W(x). By virtue of Definition 2.3, W(%)
is necessarily represented by the affine product U(x) x V(x), where U(x)<
R(x) and V(x)<S(x). Let U(y,) be the image of U(x), obtained by the equi-

valent map with respect to 52;;1. Let V(z\) be the analogous image of V(%)
with respect to 5};1. Denote by ;\ a point (,2\) in 1\~4, then the product
W,‘ = U(y,\) X V(z)) is regarded as a nbh of 7:; and is equivalent to W under f.
C) We have fi(x) = UW}'A from B). Now we shall verify
WAN W, =0, MpeT (hEp).
In fact, suppose that VFA(]WV + 0, then there is a point ;E WA(W?’
Put u fm) and ueW\x) Let uxA be one and only one path in W,\, and

ux,L in W,L Since f(u x\) and f(u x,L) are contained in W(x), these are the

same path #x. Hence the directions at % of two paths uxA and ux,L can not
coincide, because x, + x,. Consequently there exist two distinct points u,

and ;J in W)\ such that ;1 EZZ, ;36 ;x': and f\;l) =f(z2;) € W(x). This co-
ntradicts to the equivalence of W,\ and W(x) under f. Hence VT’,\QVVM = 0.
Summing up the above results, we see that the map f: M — M is a cover-
ing.
¢ COROLLARY. When an R-reducible manifold M is simply-connected, M is
equivalent to the affine product R(o) x S(o), where oc M.
It follows directly from Corollary of Theorem 1 and Theorem 2. This
Corollary is an extension of de Rham’s theorem referred in the introduction.

4. R-reducible manifolds whose fundamental groups
are cyclic of order two

DEFINITION 4.1. Let p(x) be the number of points contained in R(x)}S(x)
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for a point x of a C-reducible manifold M. p(x) is called the multiplicity at
x of M. Especially if p(x) is constant over M, the number p is called the
multipiicity of M. It may be finite or infinite.

LEMMA 4.1. When all R and S of an R-reducible manifold M are simply-
connected, P(x) is constant over M, where x€M.

Proor. Consider the affine product M= R(0) x S(0), where 0o € M. From

Theorem 2, M is equivalent to the covering space of M. Denote its cover-
ing by f, and the number p of points contained in f~}(x) is independent of
x. From the proof of Theorem 2, p is also the number of points contained
in R(o) x S(x). From this it is easily proved that p(x) is constant over .

LEMMA 4.2. Let M be the covering space of ar R-reducible manifold M.

Whenr [ is its covering and 0 is any point of M, the following properties are
Sfulfilled :

a) M is an R-reducible manifold and equivalent to the affine product Eo
X §g, where ﬁa and §U are the r- and s-dimensional maximal integral manifolds
through 0 rvespectively. b) Any maximal integral manifold, say Eo, is the
covering space of R(0) and f is its covering, where o= f(?i).

Proor. It follows that M is separable (since (M) is at most countable)
and metric. Thus a) is easily shown. Hence, it is sufficient to show f(l?u) =Ry,

because 7?0 is simply-connected. For a point ;61?(,, consider a curveﬂf)} in
ﬁa, then ]’(gﬁCR(o). Hence ]’(E,)CR(O). Next, for a point y€ R(0), consider

a curve oy in R(0). We get a curve ;y~ in E,, such that )‘(337) = oy. Hence
f(R)>R,. Consequently /(Ry) = R(o).

LEMMA 4.3. Wher an R-reducible manifold M has multiplicity one, M is
equivalent to the affine product R(o) x S(0), where o€ M.

This is easily proved.

In the following we shall adopt the following convention: For any mani-
fold X, m(X) =1 means that X is simply-connected, and 7(X) = 2 means
that the fundamental group of X is cyclic of order two.

THEOREM 3. When = (M) = 2 for an R-reducible manifold M, M has either
one of the following structures :

a) m(R)=1, m(S)=1for any R, S of M and M has multiplicity two.

b) m(R) = 1,7m(S) = 2 for any R, S of M and M is equivalent to the affine
product R(0) x S(0), where oc M.

c) m(R)=1for any R of M, and all S of M are divided into two non-
vacuous classes, one satisfying m(S) = 1 and the other satisfying = (S)= 2.
The multiplicity at a point of S is two or one according to m(S) =1 or 2.

Similarly the structures obtained by exchanging R and S do also exist.

Conversely there exist R-reducible manifolds M with any one of the struc-
tures mentioned above and w (M) = 2.

Proor. From Corollary of Theorem 1, 7i(R) and 7(S) for any R and S
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are of order one or two, because 7 (M) = 2. Consequently we have only
the following cases :

A) 7(R) =1 and 7(S) =1 for any R and S.

B) m(R) = 1 for any R and 7(S) = 2 for any S.

C) m(R) = 1 for any R and there exist at least two S, and S, such that
m(S) = 1 and 7(S,) = 2.

D) There exists at least a pair R, and S, such that 7 (R;) =2, and
7(Sy) = 2. Here we do not enumerate cases obtained by exchanging R and S.

The case A). By virtue of Lemma 4.1, there exists the multipicity p of

M. Suppose p +=2. From Theorem 2, the affine product M= R(0) x S(o) is
the covering space of M and let f be its covering, where o€ M. For a point
xeM, f~Y(x) does not consist of two points. Hence =(M) =+ 2, so we have
arrived at a contradiction. Consequently p must be two.

We shall show the existence of the case A) by an example :

Let R and S be 7-and s-dimensional spheres respectively. For a point

€ ﬁ let f{») be its antipodal point, and similarly, for a point z € § let f(z)
be its antipodal point. Define the isometcic map of the metric product ﬁ X
S onto itself by
(,2) = (19), i2)).

We denote this map by f again and put M=RxS. In M if we identify

any point x € M with f(x), we get a reducible Riemannian manifold M. It
follows easily that M satisfies a) of Theorem 3.

The case B). Suppose that the multiplicity at a point o is not one, and
R(0)NS(0) contains at least a point x distinct from 0. We shall use notations

of Lemma 4.2 and consider 0 as a point of f-i(o). By virtue of = (R) = 1,
f: E,—>R(0) is an equivalent map. Hence there exists one and only one point
;e ﬁ:] such that f(;) = % For a curve %0 in S(x) consider a curve of f-l(;a\))
with the initial point ; then it follows that there exists a point 0~ S §(§5
such that f(o;) = 0, Where S(x) is the s-dimensional maximal integral manifold
through % of M.

On the other hand, since .‘S\; is the c:)vering space of S(o) and m(S\o))
= 2, there exists a point 01 < So such that f(o ) = o, distinct from 0. Hence
f~1(0) contains at least three point 0, 01 and 0.,. This is contradictory to the

fact that M is the covering space of M. Consequently the multiplicity of M
exists and it is one. From Lemma 4.3, M is equivalent to the affine product
R(0) x S(0) and satisfies b) of Theorem 3.

The case C). Itis shown by Lemma 4.2 that the multiplicity at a point
of S is two or one according to 7 (S)=1 or 2. By an example, we shall

show the existence of the case C). Let ﬁ be the 7-dimensional Euclidean
space and o be a point of R. Let S be an s-dimensional sphere. Let f{%) be
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the symmetric point of y € ﬁ with respect to o and f{z) the antipodal point
of z€ S. Consider the metric product M= R xS and denote again by f the
isometric map of M onto itself, such that

¥,2) > (), /(2).

In M if we identify any point x € M with %), we get a reducible Rieman-
nian manifold M. It follows easily that M satisfies ¢) of Theorem 3.

The case D). By Lemma 4.2, we can show that this case does not
occur,

BIBLIOGRAPHY

[1] M. ABE, Sur la réductibilité du groupe d’holonomie, I. Les espaces a conmexion
affine, Proc. Imp. Acad. Tokyo, 20 (1944), 56-60.

[2] C. CHEVALLEY, Theory of Lie groups I. Princeton Univ. Press, (1946).

[3] G. DE RHAM. Sur la réductibilité d’un espace de Riemann, Comment, Math. Helv,,
26(1952), 328-344.

[4] S. SAsAKI, A boundary value problem of some special ordinary differential equations
of the second order, J.Math. Soc. Japan, 1(1949), 79-90.

[5] N. STEENROD, The topology of fibre bundles. Princeton Univ. Press, (1951).

[6] A.G. WALKER, The fibring of Riemannian manifolds, Proc. London Math. Soc.,
third series, 3(1953), 1-19.

[71 J.H.C. WHITEHEAD, Convex regions in the geometry of paths, Quart. J. Math,, 3
(1932), 33-42.

YAMAGATA UNIVERSITY





