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H. Busemann [1] dealt with a metric space called a G-space. If a G-space
& is of dimension 2, then we can generally define an angular measure ¥
[§1]. In this note, we define a function F on figures of © which will be
called the excess function [§2]. When the angular measure ¥ is continuous
and the function F is of bounded variation, we define the Gaussian curvature
in the general sense which will be called the generalized Gaussian curvature
of © [§2]. If ®is a G-space with constant curvature in H. Busemann’s sense,
then the angular measure & is introduced [5], [§3]. If the excess function
F defined by means of the angular measure & is of bounded variation, then
& is a G-space with constant generalized Riemannian curvature [§4]. The
main purpose of this note is to show that Gauss-Bonnet’s theorem holds in &
and all G-spaces with constant curvature are divided into three classes ac-
cording as its generalized Riemannian curvature is positive, zero, or negative.

1. In a metric space points will be denoted by small roman letters and
the distance between two points x and y by xy. According to H. Busemann
[1;§4] the axioms for a space & to be a G-space are the following :

A. & is metric with distance xy.

B. © is finitely compact.

C. & is convex metric.

D. Every point x of & has a neighborhood S(x, a(x)) (= {¥|xy < a(x)})
(a(x) > 0) such that for any positive number & and any two points a and
b in S(x, a(x)) there exist positive numbers &(=<¢&) (: = 1,2) for which a
point @, with aia + ab = a;b and aia = d; and another point b, with ab + bb,;
= ab, and bb, = 3, exist and are unique.

For any two points x and y, the axioms A, B, and C guarantee the
existence of a segment T(x,y) from x to y (or T(y, x) from y to x) whose
length is equal to the distance xy. The prolongation of a segment is locally
possible and unique under the axiom D. The whole prolongation of a segment
is said to be an extremal. An extremal r has a parametric rep-esentation
x(t), —o <7<+, such that for every 7, a positive number &(tp)
exists such that x(1)x(1:) = |12 — 7:| for |7 — 1] < &(79) (¢ = 1,2). The ex-
tremal g is said to be a straight line, if its parametric representations
have the property: x(1))x(72) = |72 — 71| for any two real numbers T; and
Ty, If every extremal is a straight line, then © is said to be a straight line
space.

In [1; § 4] the number 7(x) (A = 2) and the term “direction” were intro-
duced. 7\(x) is defined as the 1.u.b. of those B for which every segment



2 Y.NASU

with end points in S(x, B) is a cocentral subsegment of a segment of length
AB. 7m\(x) is positive for every point x and every number A not less than 2,
The number 7(x) is defined as min(ny(x), 1). Then 7(x)is regarded as a conti-
nuous function of a point x. The segment 7{(a, b) of length 7(a) is said to
be a direction with the initial point a.

2. Let © be a G-space of dimension 2 and p any point of &. Let 1; and
12 be two different half extremals issuing from p whose parametric represen-
tations are given by x,(7), 0 <7 < + o0, and x(7), 0 < T < + oo, respectively.
Then S(p, n(p)) is divided by the directions x:(7), 0 < v < %{p), and x(7), 0 <
T < 7(p), into two sectors D, and D.. Similarly S(®, 27(p)) is divided by x,(7),
0 < 7=29(), and x.(7),0 < T < 279(p), into two sectors D, and D,. We assume
D;cDji=1,2). Then only one of D; and D, contains all segments T{(x,)
with x € E[x(7), 0= 7 < 9(p)]” and y € E[xy(7), 0 <7 < »(p'], unless 1; and r,
are opposite. Let D, be such a sector. Then D, is called a convex sector
and D; a concave sector. The segments x:(7), 0 <7 =< 5(p), are called the
legs of Di(z = 1,2). S(p, n.p)) is said to be the normal neighborhood of p.

At a point p an angular measure V¥, is defined as a function on the

set of all sectors of S(p, 7(p)) which fulfills the following conditions 1°,2°,
and 3°.

1. ¥,(D)=0 for any sector D.

2. V(D)= =, if and only if the two legs of D are opposite.

3. If two sectors D, and D, have only one common leg but have no
common part, then V,(D;) + V,(D,) = VD, + D).

In such a way angular measure W, is defined at every point p of &.
Then we denote by W the function ¥,. The function W is said to be an angular
measure on &. It is easy to see that W(D) = 0, if and only if D is a segment.

Let p be a point of © and {p,} any sequence of points which converges

to p. Let D, be any sector of each S(p,, n(p,)) such that Fl,5.. D, = D». If
lim,54 V(D,) = V(D), then the angular measure W is said continuous at p.

A triangle abc is said to be normal, if the vertices @, b, and c are not
collinear and the normal neighborhood of each of these vertices contains the
others. Let D be the convex sector of S(e, #.a)) whose legs contain the
segments T(a,b) and T(a,c). Then V(D) is called the inside angle of the
triangle abc at @ and denoted by bgc (or ccAzb). Similarly abc and ach are
defined. From the definition of normal triangles we see that each inside
angle is less than =». It is also easily seen that the angle between two
segments T(p, @) and T(p, b) is defined. We denote it by apb.

To define the excess function F, we put

F(o) = bac + cl?a + ach — =

for a normal triangle o( = abc). Then F is a function on the set of all

1) E[x1(7),_0§r§r;(p)] means the set of all points of the segment xi(r), 0=r=n(p).

We use the same: notation for half extremals and extremals.
2) FIl means the closed limit introduced by Hausdorff [1], [1]
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mnormal triangles on &. It is easy to see F(o) < 27 for every normal triangle
on ©. We assume that F vanishes for empty set. The following property
of the function F is clear from the definition.

(2.1) If two normal triangles o; and &, are non-overlapping, namely
010, = g0y = ¢» and o; + o2 is also a normal triangle o3 then

K1) + Fo») = Fos).

A set which is expressible as the sum of a finite number of non-overlap-
ping normal triangles is called a figure.

(2.2) If a figure R is expressed as the sum of a finite number of normal

triangles in two ways 2: o and 2:1 o, then the relation

2 Floi) = 2 Fo)
i=1

i=1
holds and this common value is given by
RR) = 22X(R) — nX(R') — S(m — v:),
where R’ is the boundary of R, X(R) and X(R') the Euler characteristics of
R and R’ respectively and »; the angle at each vertex a; measured in R.

(2. 2) easily follows from a result obtained by S. Cohn-Vossen [2] for a 2-
.dimensional Riemannian surface.

From the above the function F is regarded as a function on the set of
all figures on &. F is said to be the excess function on &. In a 2-dimensional
Riemannian space F(R) is the total curvature of a figure R.

On a figure R the upper and lower variations of the function F are

denoted by W(F;R) and W(F; R) respectively. The total variation W(F; R)
+ |W(F; R)| is denoted by W(F; R). If W(F; R) < +oo for any figure R on
&, then the function F is of bounded variation on & and we have by Jordan’s
Decomposition Theorem

(2.3) F(R)= W(F; R)+ W(F; R) for every figure R.
If © is a 2-dimensional Riemannian space, then by Gauss-Bonnet’s Theorem
F is absolutely continuous.

(2. 4) THEOREM. If the angular measure W is continuous and the excess
Sfunction F is of bounded variation on &, then F is continuous at every point.

Proor. At first we prove that the absolute variation W(F'; R)is continu-
ous.

Suppose that W(F; R) is not continuous at a point p. Then a positive
number & and a sequence of normal triangles {o,} which tends to p exist
such that

W(F; o,) > & for each ».

We shall show that it is possible to define a sequence of non-overlapping
figures {R,} such that

3) The interior of a set X is denoted by X°.
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(2.5) PER, and |F(R,)| > &/2 for each v.

The normal triangle o, clealy contains a figure R, such that |F(R,)| >
&/2. If R, >p, the figure R, satisfies the condition (2.5). If R > p, then by
choosing a suitable triangle o; we have a figure R, © o] ( = (R — 4,)°) such.
that R, © 0o, >pand |F(R, & o})| > &/2 since the angular measure ¥ is.
continnous. The figure R, ( = (R, © o)) satisfies the condition (2. 5).

Suppose that the figures R, R,, ...., and R, have already been chosen.
and let o\ be the first normal triangle of {o,} which does not overlap any
of the figures R, R,, .... and R,. In the same way as in the above we can.
see that o, contains a figure R,.1 which fulfills (2.5). Thus we have a.
sequence of figures as described in the above.

Let R be a figure such that R > R, for each v. Then we have

W(F; R)= X W(F: R)> X |F(R)| > n&/2.

v=1 v=1
But this contradicts to the fact that the function F is of bounded variation..
From this it follows that the upper and lower variations are continuous..
Hence, by virtue of Jordan’s Decomposition Theorem, (2.4) is proved.

When the function F is of bounded variation, we denote by F* the:
additive function of a set induced by F. Then the following (2.6) is obvious-
(See [3; Chap. III, § 6]).

(2.6) Under the assumption of (2. 4) F¥(R) = F*(R°) = F(R) for every figure-
R on &.

For any subset X of & the 2-dimensional Hausdorff measure u(X) is
defined®. We assume that the 2-dimensional Hausdorff measure of every-
bounded set is finite. Then we have by Lebesgue Decomposition Theorem.
and Radon-Nykodym’s Theorem

W@hﬂW&+f%@w
X

where X is a Borel set, T* the function of singularities of F*, and 1/% an.
integrable function uniquely determined at almost all points on &. Putting:
T*R) = T(R), we have by (2.6)

F(R) = T(R) + f % d(%).

The function 1/& will be said the generalized Gaussian curvature of &. If
the function F is monotone, then F is non-decreasing or non-increasing:
according as F is non-negative or non-positive. Hence we have

1 A A A
;d,u(x) =<bac + cba + acb —r or

4) Let X be any subset of S and, for a given & A the class of all countable cover—
ings 3 (X;=X) with diamX;<é&. Then the 2-dimensional Hausdorff mezsure u(X)
is defined as (7t/4)1im{i‘r€f = (diam X))
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f-}e—d,u(x) > bac + cba + ach — =

for every normal triangle o ( = abc) according as F'is non-negative or
non-positive.

3. In this paragraph we study a G-space with constant curvature in
H. Busemann’s sense. If in a G-space every point p has a spherical neighbor-
hood S(p, p(»)) such that the bisector B(a, a')® of any two distinct points @
and @ in S(p, p(p)) is linear® in this neighborhood, then the space is said
to be with constant curvature.

In such a space &, for every point p there exists a positive number &(p)

(58(p) = &(p) < min(p(p), n(p)) which satisfies the following conditions [1; § 15].
(1) The neighborhood S(p, §(p)) is homeomorphic to the interior of a
finite dimensional euclidean sphere; (2) if the dimension of @ is n (=2),

S, 8d)NBla, &) (a,a € S(p, &) is of dimension (7 — 1) (we put By(a,a’) =
B(a,a')NS(p,8(»)) and call this a hyperplane); (3) Every sphere is strictly

convex for 0 < a < 8();(4) every point x of S(p, &»)) has a unique foot f on
a hyperplane B, which intersects S(p, 8(p)); (5) a mapping Q(Bj) of S(p, 8(p)),
which is a motion, is defined as follows:

(a) xQ)(B,) = x for every point x&€ B,, and

(b) if x€S(, 8(p)) — By, the point x’ ( = x(B,)) is determined by xf = /%
= xx'/2.
‘The mapping (B,) is said to be the reflection of S(p, 8(p)) with respect to
B,. All G-spaces with constant curvature are divided into two classes as
follows [5] :

I. The class of G-spaces of Type I. If a G-space & is of Type I, then

the universal covering space & of & has the following properties :

(1) Every extremal is closed; (2) every extremal through a point p passes
through a unique point »’ called the conjugate point of p; every extremal
subarc from p to P’ is a segment of constant length «; (4) every sphere
with radius less than «/2 is strictly convex; (5) the bisector of any two
distinct points is linear and coincides with a sphere of radius «/2.

II. The class of G-spaces of Type II. If a G-space & is of Type II, then
the universal covering space ® of ® has the following properties:

(1) G is a straight line space; (2) every sphere is strictly convex; (3)
the bisector of any two distinct points is linear and of dimension (#z — 1).

On account of (5 and (3)n, the bisector of two distinct points is said
to be a subspace of dimension (# — 1).

Let & be a G-space with constant curvature and of dimension 2. The
angular measure @ is introduced as follows:

5) The bisector of two distinct points ¢ and ' is defined as the set {x|ax=a'x}.
6) A set E is said linear, if for any two points x and x’ of E there exists a segment
T{x, z') contained in E.
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Let p be any point of & and a line” g, through p intersect the circle
K, 8(p)/2) at points @ and @’. The line B,(a, @) is perpendicular® to T(a, a’)
at p. Let By(a, a') intersect K(p, 8(p)/2) at points b and #'. Then the segments.
T(a,a&) and T(b ¥) divide S(p,8(p)/2) into four convex sectors aph, bpd,
a71;b’, and d'pa. For these sectors we put

D (aph) = Dp(bpa’) = D(dPb) = Di(b'pa) = 7/4.

Let By(a,b) intersect K(p, 8(p)/2) at points ¢ and ¢’ and By(a, b) K(p, 8(p)/2)
at points 4 and 4. Then each of the above four sectors is divided by either
By(a,b) or Byd,b) into two convex sectors. We denote these sectors by 055,
Ej;b, b/p\d’, d7p\a’, a’/j;c’, Pl b@\d and dpa and put

Dyape) = .... = O,(dpa) = =/8.

We continue this process. If we denote by A the set of points{a,a’;b,¥ ;c,c’;
....}, then the closure A coincides with the circle K(p, 8(p)/2). For any sector
apg, by taking a sequence of points {¢,} (g.€ A) which converges to q, ®, (an)-
is defined as the limit of the sequence (I)p(a/p\q,,) (See [5] in details).

The function &, thus defined fulfills the conditions 1°,2° and 3° in §2.
The definition of the function &, does not depend on any choice of the line
g». In snch a way we define the function &, at every point p of ©. Then
we denote by & the function &,. The angular measure @ thus obtained is
invariant under the reflections with respect to lines.

In the remainder of this note, by means of the angular measure ®,we
study a G-space with constant curvature. For the angle between two segments.

TP, a) and T(p,b) we use the same notation a%b as in §2.

(3.1) THEOREM. The angular measure ® is continuous.

Proor. Let {p,} be a sequence of points which converges to a point p,
and put «a = inf §(p,)/2. Then « is positive. Let D, be any sector of each

S(p,, a) such that F1 D, coincides with a sector D of S(p, «). Then the legs
T., and T, of each D, tends to the legs T, and T, of D respectively. Let
q:, be the end point of each T, and ¢; the end point of T:( = 1,2). Now we
A
prove lim,, ... 41:£v42v = q1Pq:.
Obviously the sequences of points {¢;,} and {g.,} converge to the
points ¢ and g. respectively. Let each g;, be a point on K{(p,, @) such that

A
q,vﬁyq;,, = q1$q:. If we choose suitably such points ¢,, then the sequence
of points {g;} converges to ¢.. Suppose that such points g,, have been
chosen. Then there exists a positive integer N such that S(p, 8(p))>S®., «)
A
for every v = N. Since the angles ¢,.9.(v = N) are invariant under the re-
flections with respect to lines which intersect S(p, 8(p)), it follows that,if

7) Let x and z' be two points on K(p,3(p)). The open segment T(x,z')—z~-z'
is said a line gp.

8) A line @y is said perpendicular to a set E at a point f, if every point on gp
has f as a foot on E.
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for a positive number 8, N is sufficiently large, then ¢,p,9,, < & for every
v = N. Hence we have

A A A A
(@129, — @99 = @b, — qubd,, |
< q;v;?a,,qzy <8 for every » = N.

Thus the theorem is proved.

Making use of the angular measure ¢ we define the excess function
F. Then, by (2.4) and (3.1), we have the following :

(3.2) If the excess function F is of bounded variation, then F is conti-
nuous.

Under the assumption of (3.2), for any bounded subset X there exist a
positive integer M and a positive number &, such that every circular disk

S, v)(PEX, 0 < v <38,) is covered by M circular disks with radius /5.
Next we shall show this.

Let V be a bounded and connected open set which contains X. If we
put & = 125 8(x), then & is positive. Let &, be a positive number not greater

than 8. Let a line g, through p (€ X) intersect a sphere K(p, ) (0 < v = 38,)
at points @ and @' and By(a, @’) K(p,vy) at points b and &. Next divide T(a, a)
and T(b, ") into 24 parts of equal length aa’/24 ( = bb'/24). If &, is sufficiently
small, then the lines perpendicular to T(a, @) and T(b, &) at points of the
subdivisions form the net composed of 24* quadrilaterals P; {=1,2, ....
24%) such that each P; is covered by a circular disk with radius /5. This is
clear from the continuity of the fnnction F.

For any circular disk S(g, 8y) (9€ X) there exists the combination of finite
number of reflections with respect to lines by which S(®, &) is carried onto
it. Hence if we put M = 24?, then M and §, are tae numbers which fulfill
the condition described above.

Let E be a set contained in a neighborhood S(x, 8(x)). The parameter of

regularity y(E) of E is defined as the uppar bound of the number w(E)/u(S),

where S denotes any circular disk containing E. Let {E,} be a sequence of
closed sets on & which tends to a point p. If there exists a positive number
a such that y(E)=a@ =1,2,....), then the sequence {E,} is said to be
regular.

Let ¥ be a family of closed sets such that the parameter of regularity
of each set exceeds a fixed number a( > 0) and for every point x of the set
X there exists in ¥ a regular sequence of sets {W,} (W,>x) which tends to
x. Theu § contains a finite or countable sequence {X,} of sets no two of
which have common points, such that

(3.3) WX -2 X)=0.

Next we prove (3.3). To do this, we suppose that every set of & can
be covered by a circular disk with radius not greater than §,/5.

Choose an arbitrary set X; of § and suppose that the first A scts X,
X, ...., X, no two of which have common points have been chosen. If X —
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A
>... X, = ¢, then the theorem is proved. If this is not so, we denote by
8\ the upper bound of the diameters of all sets which have no common points

with 2);1 X, and choose an arbitrary set X,.; of those sets with diameter
exceeding 6,/2. If X — 2:: X.+¢, then we continue this process.

Suppose that an infinite sequence of sets {X,} has been chosen, and put
Y=X —2‘:1 X,. It is sufficient to show that, if u(Y) >0, then we arrive
at a contradiction. To do this, associate with each set X, a circular disk
S, with radius v, such that X,<S, and u(X,)/u(S,) > /2, and let S, be the
circular disk with the same center as S, and the radius 5y,. We then have

3.4) S uS) < M2 uS,) < 2Mai 2 w(X,) < + oo.
v=1 v=1 v=1

£

Hence a positive integer N exists such that Zv (S,) < w(Y). From this

it follows that there exists a point x(&€X) not belonging to 2; Na1Soe By
virtue of the assumption there must exist a set X’ (>x) of o such that X’ N X,

=¢ for v=1,2,....,N. From (3.4) we see that the radius v, of S, tends to
zero as v—-+oo, Hence X’ has common points with at least one of the sets X,
(v > N). Let », be the smallest.integer such that X' X,, == ¢. The diameter

of X' does not exceed 8,,-1 ( < 4 v,,). Hence X'<S",,, which contradicts to the

=N+1 I

assumption %€ 2:N+1 S’. Thus (3.3) is proved.

By use of (3.3) it is easily proved that Vitali’'s Covering Theorem holds
on &, i.e., if a set X is covered by a family & of closed sets in the sense
of Vitali, there exists in ¥ a finite or countable sequence {X.,} of sets no
two of which have common points such that (3.3) holds. For any subset Z
there exists a (G)s; set G such that Z=G and w(Z) = w(G). By virtue of this
property and Vitali’'s Covering Theorem it is easily seen that the additive
function of a set F* is derivable at almost all points [3]. Taking account
of the reflection with respect to lines, F is derivable at every point and its
derivative is equal to a constant number 1/k. Hence the excess function F
is derivable at every point,i.e., for any regular sequence of normal triangles
{o.} which tends to a point p lim,s+. F(c,)/u(c,) exists and is equal to 1/k.

Next we prove the following

(3.5) THEOREM. If the excess function F is of bounded variation, then F is
absolutely continuous and its derivative is equal to a constant number 1/k. For
any normal triangle o( = abc) the function F is given by

A A A
o)k = bac + cba + ach — 7.

Proor. It is sufficient to prove that the function T* of sigularities of F*
vanishes on &. It is easy to see that the derivative of the function T* is
equal to zero at every point, We prove the theorem only in the case where
the function T* is non-negative, since its upper and lower variations are



ON ANGULAR MEASURE IN A METRIC SPACE 9

finite.

Let p be any point on &, and put md = 8(p), where m is a positive
integer, Let a line g, through p intersect K{(p,8) at points @ and @’ and 0,
and b, be the supporting lines of K(p,8) at @ and a' respectively. Then g,
divides S(p, 8(p)) into two domains. We denote by D one of these domains.

Let {p,} and {p,} be the sequence of points in D such that p,€E[},], D,
€E[Y], and ap, = a’p, = 8/2* for each v and g,, the line which contains each
T(p,, p,) as a subsegment. Then

(3.6) o N@p = ¢ for every .
Next we subdivide the segment T(a,a&’) by points a®, a@,...., a® as
follows:

Take on g, the point @’ such that aa{® = ap, and let p be the point at
which the line perpendicular to g, at @{ intersects the line g, ,. Further take
on g, the point @ such that a"a® = a{"p{®. Then we can determine the
point p® as above. If aVa’ < aPp{", we end this process. If aPa’ > a®p®,
then we continue this process. On account of (3.6), after finite steps we

arrive at a point ¢ such that ¢¥a’ < alp® and @V €E[T(a,a’)]. Then we

take on g, and g,, the points a*» and p%*" in the same way as above
respectively.

Thus we have v + 1 quadrilaterals a®al*+Vpi+Dp®(i =0,1,2, ....,) for
each », where ¢® = a. We denote by P® each quadrilateral g®a{+Vpi+?
PP, By virtue of the continuity of the function F, each inside angle of P{)
tends to 7/2 as v— + o. Hence it follows that for every point x of T{(a, &)
there exists a regular sequence of quadrilaterals {P{} (P >x) tending to
x.

Now we prove that for an arbitrary positive number & there exists a
positive integer NN such that

3.7 THPW) < EW(PW) for each v = N and each i (0 <i=<v).

If this is not so, then we should have a sequence of positive integers {A}
{(c{v}) such that

(3.8) THPEN) = Eu(PEN)
for each A and a positive integer 7, (0 < <A). Let 0, be the line perpen-
dicular to g, at the midpoint of the segment T(a, a®). Then a{» Q(h,)) = a.
Hence each quadrilateral P{,) is carried by (f,,,) onto a quadrilateral P/,

with the vertex a. The sequence of quadrilaterals {P;} is regular and
tends to @. Hence there exists a positive intagar N’ suca that

T*(P)) < Eu(P;) for every A= N'.

Obviously T*(P{N) = T*P)) and u(P{) = u(Py) for every A, but this contra-
dicts to (3.8). Thus (3.7) is proved.

Between the lines g, and g,,~, there exist N + 1 quadrilaterals P, PY,
.., and P{" which fulfill the condition (3.7). We put
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PP = PYQsy,w) (1=0,1,2,...., N).
Then it is easy to see that the two vertices of each P{) lie on the line
8,Q(g»,~). Hence, in such a way, we get the figure R composed of a finite
number of non-overlapping quadrilaterals P, such that S(p, 3»))>R>S(p, 5)
for a sufficiently large positive integer m and each P, fulfills the condition
(3.8). The figure R is expressed as the sum 3, P,. From this it follows that
T*(5(p, 8)) < TXR) = STXP,)
= &u(R), and
w(R) > pu(S(p, 8)).
Therefore we conclude that T*(S(p, d)) = 0, since & is arbitrary. From this
we see that T* vanishes on &. Thus the theorem is proved.

4. Let & be a G-space with constant curvature and of dimension n( =
2) and & the universal covering space of . In a subspace of dimension (n —
1) of O the bisector of any two distinct points is linear and of dimension
(n — 2). We call this a subspace of dimension (# — 2). Repeating this, in a
subspace of dimension 2, the bisector of any two distinct points is an ex-
tremal [5].

The generalized Gaussian curvature of every subspace of dimension 2
is equal to a constant number 1/k If G is Riemannian, then the number
1/% is its Riemannian curvature. The number 1/k will be said the genera-
lized Riemannian curvature of .

(4.1) THEOREM. If the space & is of type I, then its generalized Riemannian
curvature is positive.

Proor. In @ every subspace @ of dimension 2 is compact and covered
by a finite number of triangles oi:(z =1,2,...., m). From (2.4) it tollows
that

2 F(a‘i) = 47
i=1
since X(é) = 2. Therefore we have by (3.5)

> o)k = dor.

i=1
Since 2:1 ploi) = ;w(@) >0, the number 1/% is positive. Thus the theorem

is proved.

On & the following properties can easily be proved by classical argu-
ments.

(4.2) (i) Let abc be a rectangular triangle with ach = 7r/2 and m(a, b) the
midpoint of the segment T(e,b). Then the distance between m(a, b) and
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E[T(,c)] is greater than the half of ac. (ii) Every equidistant curve to an
extremal i turns its convexity toward p. (iii) For an extremal subarc x(t),
a<T1=p, and an extremal 1, the function f(7) = x(T)E[t]( = infs.my x(T)x)
is a concave function.

Next we prove the following

(4.3) THEOREM. If the space & is of Type II, then its generalized Rieman-
nian curvature is non-posttive.

Proor. It is sufficient to prove that, if 1/k is positive, we arrive at a
contradiction. Let © be a subspace of dimension 2 of & and let p be any
point on & and f the foot of p on an extremal t (5p). Further let x(1), —
< T < o0, be the parametric representation of r such fhat x(0) = f and
7o a fixed positive number. Then, for any positive number =( > 7,), we have
by putting x(7) = b and x( —71) =¥

4.4) p(BEE) R = BB + pbb — (m — D)

> ppaa)lk,
where x(1y) = a and x( — 7)) =a. We can easily see that, on &, for any
positive number & there exist two positive numbers a and @ such that, for
any three points x,¥ and z which satisfy the conditions xy = xz = a and yz
=2a(1 — B3), the inequality ygz =7 — &/2 holds.

Assume that w(paa’) > kE >0, and put M7) = pb ( = px(7)) and 23 = &.
The function f(r) = A(r) — 7 + 87 is continuous on the interval =y <71 < + 09,
and lim,5+. f(7) = +co. Hence f{r) attains its minimum at some value T on
To =T < +oo and fulfills the condition

Mr4+o)—(T+a)+ 8T+ o) —{\M1)— T+ &7} =0 for o =0.
Therefore

4.5) Mt + 0) — MT) = o(1 — 8).

Put ¢ = x(7) and ¢ = 2( — 7), and let d and e be the points on T(p, c) and
on the prolongation of the segment T(f,c) respectively such that cd = ce =
a. If we put ¢ = a in (4.5), we then have

dez=2a(l —R)
since de — a > M7 + a) — Mr). Hence we see pcd =m — &/2. Let d’ be the
point on the prolongation of the segment T(f,¢’) such that ¢’d’ = a. Then
we see p/c\’d’ = o — &/2 since on € the bisector property holds in the large.
On the other hand 7= — c?)c’ =0 is obvious. Hence we see from (4.4)
ol pc:z\a’)/ k< ,u(pc/é') k< pAcc’ + p?’c
= (mr — ped) + (m — pc'd)
<é&/2+¢€/2=¢,
which contradicts to the assumption 0 < &€ < ,u,(pan’). Thus the theorem is
proved.
If the number 1/% is equal to zero, then & has the same property as a
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euclidean plane, i.e., the theorem in plane geometry holds on @ We can
introduce Lebesgue measure which coincides with Hausdorff measure p. If
1/k < 0, then the following properties of S is also easily proved by classical
arguments.

(4.6) (i) Let abc be a rectangular triangle with ach = /2 and m(a, b) the
midpoint of the segment 7(a,b). Then the distance between m(a,b) and
E[T(b,c)] is less than the half of ac. (ii) Every equidistant curve to an ex-
tremal p turns its concavity toward g. (iii) For an extremal subarc x(7), @ =
7=/, and an extremal g the function f(7) = #(7)E[r] is a convex function.

In virtue of (3.5), (4.1), (4.2), (4.3) and (4.6), if & is a G-space with con-
Stant curvature and the excess function is of bounded variation, the space
& is of Type I or Type II according as its constant generalized Riemanrgan
curvature is positive or non-positive. Specially, if 1/2 = 0, the space & is
regarded as an n-dimensional euclidean space.
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