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1. Introduction. Let P be the class of all polynomials P(w) = a) + aww
+....+aw’, where the as (j=1,2, ....,k) are complex numbers and w is
a complex variable. If p >0 we can form the space H?Y, [11], 'of all func-
tions F(w), analytic in the interior of the unit circle, satisfying

(1.1) po(r ; F) = —2—1—7;f |[Flre®)|?df < M < o,

where M is independent of », 0 <7r < 1. It is well known that u,(r;F) is
a non-decreasing function of », and, if p =1,

(1.2) Fll» = {ljg}ﬂz>(7i Fy}yir

is a norm. In fact, with this norm, H? is complete; i. e. it is a Banach
space. In case p < 1, however, ||F||, is not a norm since the triangle in-
equality is no longer satisfied.? H?, nevertheless, can be made into a complete
topological vector space by introducing the metric du(F,G) = |[F — G| In
either of these cases the class P is dense in H?,p > 0. We will make repeated
use of the fact that,if 0 < p, < p,, then ||F|p =< ||F| v,

Let (M, u) be a measure space, where M is the point set and u the
measure. If ¢ >0, LYM, u) = L, will denote the space of all complex-valued
measurable functions, f, defined on M such that

(L.3) 17ty = 1 [ ™ <.

We will refer to |f|l, as the norm of /. Remarks analogous to the ones made
about ||F||, apply here: if ¢ =1, L? becomes a Banach space; while, if g <
1, d(f,9) = |lf —g|} is a metric.?

We say that a linear transformation, 7T, mapping P into a class of
measurable functions defined on M is of type (p,q) in case there exists a
constant A > 0 such that

L4 TP, = AllP[»,

*¥) The research conducted by the first author was supposrted in part by the
United States Air Force under Contract No. AF 49 (638)-42, monitored by the AF
office of Scientific Research of the Air Research and Development Command.

1) In order to avoid introducing unnecessary terminology, we shall still refer
to |[F)| p as “the norm of F” when p<I.

2) No confusion should arise from the fact that we use the same [notation for
the Hp-norm and the L%norm.
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for all P& P. It is well known that if T is of type (p,q), then it has a
unique linear extension to all of H?, preserving (1.4). The least A for which
(1.4) is satisfied for all P € P is called the norm of 7.

Calderon and Zygmund, [1] and [2], have proved the following theorem :

THEOREM 1. ZLet T be a linear transformation from P into a class of
measurable functions on M, of types (Do, qo) and (b\, q,), with norms A, and
A; respectively. If 0 <t <1, set

1 1 1 1
.5 = = (1 - == d — =(1—-1—=— —
(1 ) Dr (1 2 Do +t y 21 an (77 @ —1 7 +2 aq: .
Then T is of type (b:, @;) with norm not exceeding K Al~'A;, where K depends
only on Py, @, D, and q,, but not on t.

The chief purpose of this paper is to extend this theorem to the case
Where the linear transformation is a function of #. To make this statement
more precise we will need a few more concepts.

Let S be the domain consisting of all complex numbers z = x 4+ ¥ such
that 0 < x < 1. Let I’(2) be a function defined on the closure, S, of S. We
say that I' is of admissible growth in case there exists positive constants B
and 4,5 < 7, such that
(1.6) I'z) = I'(x + i&y) < B &’V
for all x and y satisfying 0<x<1 and —oo <y < +oo,

Suppose {7T.}, z € S, is a family of linear transformations mapping
into ZY(M, p). We say that {T.} is admissible and analytic in case

1 1

L.7) [apia

is an analytic function for each P € P and g € L=(M, p),* and log || T.P||; is
of admissible growth for each P < .
We shall prove the following theorem :

TueoreM II. Let {T.}, 2 € S, be an admissible and analytic family of
linear transformations. Let py,p., qo and q, be positive numbers and assume
that for all y, — o <y <L +oo,

(1.8) Ty Pllo, < A Plln, and || T1+iy Pllg, < AP,
for all P B, where log Ay(y) <C;e¥",0< d; <7 and 0< C;, for j=0,1.
Then, for each t satisfying 0 <t <1, we have

3) This condition is equivalent to the following seemingly stronger one: for
each z) € S there exists a circle, K, with center zp, such that T;P=3 a;(z—=z0)¥
0

for all z € K, where a;, € LY, 2=0,1,2,...... , and the series converges absolutely and
uniformly in the L! norm on each closed subdomain of K (see [3], pg.57). In general,
a function, I, defined on a complex domain, whose values are in a Banach space,
having such a power series developments is called analytic, Then, the theorem
reads: If {r(z)] is analytic for each £ in the dual space, I is analytic.
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1.9 1 TPlle; < Al Pl

for all Pc B, where pr and q; are given by (1.5) and A depends on ¢, py, q;,
C;, d; (7 =0,1), but not on P¥.

We will devote the next section of this paper to the proof of theorem
II. 1In the third and final part we will apply this theorem obtaining a new
proof of the following theorem of G. Sunouchi, [7]. The case p = 1 of this
theorem is due to Zygmund, [9], who also conjectured, in [10] and [12], the
full statement of theorem III:

Tusorem I, Zet FE H,0<p=<1, a= L —1and c%@; F) the Cesiro

?
means of order « for the Fourier series development of F(e'). Then
27
loa(®; F)|» } e
(1.10) [ sup (A D ap | < Azl
0

for all F € H?, where A, depends on p but not on F.

We make no claim that the proof of theorem III given here is simpler
than G. Sunouchi’s original proof; it is, however, an illuminating example of
the applicability of theorem II. We are indebted to Prof. Zygmund for
suggesting the possibility of this application.

2. Proof of Theorem II. We present the proof in a sequence of lemmas.

LEMMA 1. Let 1'(z) be an upper-semi-continuous real-valued function defined

on S, of admissible growth there, and subharmonic® in S. Then, for each
20 = Xy + 2y € S we have

@1 T@)s= f TGy + 35]) (L — 0, 3) dy + f D+ iy + 30]) () dy

1 sin 7rx »
where w(x,y) = 9" " cos mx--cosh my

Consider the mapping of S into the closed disc C = {¢; |{| < 1} given by

em‘z__i
2.2 = e
( ) g eriz +l

4) A similar theorem dealing with transformations acting on L? spaces was
proved by E.M. Stein, [6].
5) r is subhoarmonic in an open domain D if
(i) r is upper semi-continuous in D;
(ii) Let D’ be any subdomain which, together with its boundary B’, lies in
D. Let ¢ be any harmonic function in D', continuous in D'} B’, such that ¥ =T
on B’. Then ¥=r in D',
Subharmonic functions may assume the value —oo. We refer the reader to [5] for
the material on subharmonic functions used in this paper.
6) This lemma, in the setting when I is the logarithm of the modulus of an
analytic function was first used by I.1. Hirschman, [4], to prove certain convexity
theorems for linear transformations on L? spaces.
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The inverse of this mapping, %, is defined for ¢ =1, —1 and has the
form

e=n)= Logli T L

where we are taking that branch of the logarithm for which logl = 0. We
can then form the function ®() = I'"(B()). This function will then be
subharmonic in the interior of C and upper semicontinuous in C with the
exception of 1 and —1. Let { = pe? 0=<p< 1, denote an arbitrary point
in the interior of C and z = x + 7y its corresponding point under the mapping
h. T is of admissible growth; thus, there exist positive constants B and b,
b < 7, such that I'(z) < Be"’! for all z € S. We investigate this last inequality

in terms of ¢ = pe® and the function ®. For the moment assume p =>1/4.
It follows immediately from the expression for hthat

) 1+¢l
y=— lo -z
Thus
1, 11t
ly] = 7r| og 1—¢]
S o flogdlog (oo 108 [ |-

Hence, the condition for admissible growth becomes
W(pe? <4 B |cos(@/2) -~ |sin(0]2)|-b=.

Since b < 7, this inequality asserts that W(pe'?) is bounded from above by
an integrable function of €, indepsndently of p =1/4. But, if p < 1/4, then
W(p e is certainly bounded from above since ¥ is subharmonic. We thus
have
2.3 W(pe®) < g(0)
for all p <1, where g € L} — 7, ).

Let P{r,t) = (1/2)(1 — r%)/(1 — 27 cos t + 7*) be the Poisson kernel. It fol-
lows from the subharmonic character of W that, if p< R <1,

@.4) Wipens L f V(R &) P(p/R, 0 — ) db.

For p fixed, P(p/R, 6 — ¢) is positive and bounded as long as p< R<1.
Thus, by (2.3), the integrand in (2. 4) is bounded from above by an integrable
function G(¢). Let fz(¢) denote this integrand and f($) = V() P(p, § — ¢)(the
last functions being defined for all ¢ except 0 and #). By the upper semi-
continuity of ¥ we have

2.5) lim ;upfn( ®) = f(P).

The functions G(¢) —fx(¢p) bzing non-negative, an application of Fatou’s
lemma yields
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f lim inf {G(¢) — /x($)} d < lim inf f {G($) — 1=(d)} dop.

-7

From this it follows that
lim supf fR(¢)d¢'§f lim sup fz(¢) dp.
B->1 R>1
This result, together with (2.4), yields, upon comparing with (2.5),

1—p?
2.6 10y < - f V(e do.
2.6) Ype) = (e )1_2PCOS(6, & + p ®
The lemma will now follows from (2.6) by a change of variables. We first
restrict our attention to the case 6 = == 7/2. Under the mapping (2.2), these

values of ¢ correspond to the segment 0 <x=<1 of S. Letting z = x, then,
we have

cCosmx — COs X
L p=ltl ==,

@.7) = —j SOSTX

1 + sin7x 1+ sinwx

Clearly, the line in S given by x = 0 corresponds to the lower semicircle of
points e¢ of C such that 0 = ¢ = —7 in such a way that, as y ranges from
— oo to+ oo, ¢ ranges from 0 to — 7. Similarly, the line given by x=1
corresponds to the upper semicircle in such a way that, as ¥ ranges from
— o to + oo, ¢ ranges from 0 to 7. For —n < ¢ <0 we have

. 1 do T
sinp= — ———-, T = ————
¢ cosh 7y dy cosh 7y
while, for 0 < ¢ < 7 we have “ + ” instead of “ — " in these two equations.

Thus, for x fixed, say 0 < x < 1/2 (this corresponds to § = —/2; for 1/2 <
x < 1 we have € = 7/2 and we take the negative sign in the second part of
(2.7). The final result remains unchanged), we have:

¢ 0
1—p -
_fm N o — w2 — gy P _f " f

_ G sin 7rx f . _k_SI_rle_.__ vl
W{ f @) cosh my — cos 7rx -+ P +) coshmy + cosmx Y }

Thus, letting w(x, ¥) = ; “cosh :r;zxéégﬁx and comparing with (2. 6), we

have, for 0 < x < 1,
2.8) T(x) < f T o —x )dy+ [ T+ )t d

If 20 = % + 2y, is an arbitrary point of S, (2.1) is an immediate consequence
of the result (2.8) applied to the function I'(z + iyy).
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T
We remark that, since f P(r,t)dt = o, in the special caseof I' =1 we
—

have proved

(2.9) f w(l—x,y)dy—i—f o(x,y)dy =1, 0<x< 1.
In the next few lemmas we will assume that u(M) < co. Then, if 0<
¢, = g», there exists a constant C, ,, such that i, =< C,,h,,zlifll,,z for all f&Lri),

LEMMA 2. If V(2) is an analytic function mapping a domain in the complex
Dlane into LM, u) and 0 < q <1, then D(z) = f |V(2)|* du is continuous and
M

log D(2) is subharmonic.
Our assumption on V implies that, for each z, in the domain, V(z) =

2 a(z — z,)* where a. € L', k=0,1,2,...., and the series converges abso-
k=0
lutely and uniformly in the Z!-norm in a closed disc, K, with center z,, We

have, for any f € L,

(2.10) Iflle=Co 1 /15

Thus, the continuity of D(z) is immediate. Hence, to show that log D(z) is
subharmonic, it is sufficient to show that D(z) is the uniform limit of loga-
rithmically subharmonic functions in each such disc K. Using (2.10) we see
that D(z) is the uniform limit, on K, of the sequence {Da(z)}, where

n |

2 a, (2 — 20|

|
k=0 ‘

Q
Dy(z) = du.
M
But, for each £, there exists a sequence, {s%}, of simple functions such that
}3)51 lax —s{®l, = 0. Thus, since for any two numbers a, b

fla|*— |b]?] < |a — b, 0<g=1)

we have

D - | > (e — a0

a k=0

¢

d,ul

q Cn q
dp — f > s (2 — )t dﬂ}

k=0

f 2 a(z — 2o}

a [E=0 n

q

= f 2 (aw — ™) (2 — 20) | du

an 'E=p
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[
= | e —sPlYz —zl"du

i k=0
n

= Xz —2l* la — s g —0 as j— oo,
k=0

uniformly in z,z € K.
. n 11

Thus, it suffices to show that log f 2 s (2 — zo)®

i k=0

du is subharmonic.

Clearly, we can write

> sz =zl = S,
k=0

i=1
where each p; is a polynomial and X; is the characteristic function of a
measurable set E;, with E;E; =0 if ¢ =7 We obtain
»n e

> 50 (2 — 2

M k=0

log

du = log 37 [pi(2)|" W(E).

m
But Z |2:(2)|"w(E:), being the sum of logarithmically subharmonic functions

i=1
is itself logarithmically subharmonic. Thus lemma 2 is proved.

LEMMA 3. ZLet p = max{po,p,}. For z € S we then have
2.1 TP, = A P>,
where ¢ <min {1,q, q:}, A(2) is independent of Pc P and log A(z) is of
admissible growth on S.

It suffices to establish (2.11) when |P|, = 1. By lemma 2, log | T.P|, is
subharmonic in S and upper semi-continuous on S. Since ||T.P|lq < Co:[|T-Pl1,
log ||T.P]l, is of admissible growth on S. We have

TP lloe = Corall TevePlloe = Coyaeho WP |0
= Coop APy = Chgy Aol ).
Similarly, |T1+iPlle = Copq A1(9).
Letting C = max {Cy,q, Cy,q,}, d = max{dy, d;} and applying lemma 1, we have

log | T, PJl, < Ceti%l { Cof el w(l — x,5) dy

—oo

co

+ fo e w(x, ) dy }

-—co

But it is easily checked that the expression in curly brackets is bounded
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independently of x,0 < x < 1 (this is an easy consequence of, say, (2.9)).
Thus the lemma is proved.

This lemma assures us that for each z € S we can uniquely extend T,
to all of H?, preserving (2.11). We denote this extension by U..

We fix a number 2,0 < ¢ <1 and let e = 1-, b= --1—, a(z)=(1—z)i
D: qr Do

+2z ; , and b(z) =01 —2) %& + z ‘:1[ , where z= x4 7y is any complex
1 1 .
number. Thus, a(t) = @ and () = 6. Let f be any simple function defined
on (0,27) and put
2.

T

1S

(2.12) Fw = o | SEYns as, w] < 1.
0

It is then well-known that F, and thus any positive integral power of F,
belongs to all HP spaces, p > 0. We can set f(Z) = R{Fe*)} + ¢ 3{F0)}; in
other words, f is a real-valued function plus a pure imaginary constant. Let

9

4
is
€W sy awia ghavsrs) g,
w

ol —

2.13) Fw) = zlr f
0

Let » be a positive integer satisfying np,, nqy, #p,, ng: > 1. We make the
simplifying assumption that »# = 2, the proof being easily extensible to the

general case. We also assume that
27

(2.14) f )| *edt = 1.
0
Let g be a non-negative simple function on M satisfying
(2.15) f [g|Ha-®) gy = 1,
M
and set G, = g (—0@MI0-02) We have

NOLF)I = || |ULFD ] |z, = Supf |U(FH)|'* g du®
M

the supremum being taken over all ¢ satisfying {2.15). We will show that
theorem II can be deduced from the fact that a constant B exists, independent
of F given by the formula (2.12), such that ||UL{F?)|,, < B||F*||s,. B, of course,
will depend on the other parameters mentioned in theorem II. The method
employed here extends that found in [8].

We thus study the function

q)(z) — f |U’2,(F"22)]1/2 g(l—(b(t)lﬂ))/(l—bﬂ)) d/_‘,
M

7) Since all positive integral powers of F; are in H?, U, ,(F;’) is defined.
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which, for z = ¢, reduces to f |USF?)|2 g de.
M

LeMMA 4. log ®(2) is subharmonic on S and upper semi-continuous on S.

It suffices to show that d(z) is the uniform limit, on each bounded subset

of S, of a sequence {®n(z)} such that &b, is continuous on S and loga-
rithmically subharmonic.

Set g = 2 d;X;, where d; >0 and {X} is a finite collection of charac-
11

teristic functions of mutually disjoint measurable sets E;c M, and f=
Skcx€i X, where ¢, >0, |&| =1, and {X;} is a finite collection of character-
istic functions of mutually disjoint measurable sets E.—(0, 27). Then
d(2) = Efdgl—bu)/z)m«bm |ULF2)|* du
L

4

= > f |U, d0-r@mIA=0) (F2)|1/2 gy,
12 EL

Y, = Yry,e = dRO-HDIDIA-VD (2
and

Y(z) = Vi(2) = f |UA M2 dpa.
By

It suffices to show that each ¥ is the uniform limit, on each bounded subset

of S, of a sequence {*V»} such that ¥, is continuous on S and logarithmically
subharmonic. We have

Y, = d-@DIA-D)) 2 (C5€:) " @1 &4, Ay

ik
where

_ 1 f g T Wq
Asw) = B J e“_wxj s) ds.

Let {P{p}, n=1,2,3,...., be a sequence of polynomials such that
I1P5 — AsAsllp — 0 as 71— oo,
where p = max{pq, p:} ( see lemma 3). Put
i 1/2
WVo(2) = f i P RS QIDICR %I (€)' 8,8 T, PP | dp.

o
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The function inside the absolute value sign satisfies the hypothesis in Lem-
ma 2. Thus W.(z2) is continuous and logarithmically subharmonic on S. Let
Q be a bounded subset of S, Then for z € Q, since TP = U, P§’, and
by Lemma 3 with ¢ = 1/2, we have:

| Wn(z) — W(2)]|

1/2

= du

AH-@DO- D (o o la g g T, ( P — AsAe)
J.k

bd
14

< 1@ @i | {3 oo [AGT PR — A |
IX] ’

and the last term converges to 0, uniformly in Q, as #— oo since A(z) is
bounded for z in a bounded domain (since log A(z) is of admissible growth).
This proves the lemma.

Since,

(D(Z) é 2 dl(l—-b(x)IZ)/ (1-—1)[2){ 2 (cj(ck)a(z)/h f leAjAklllz d/.l: }
l JE W

< 2 d, A-P@)21A-02) {2 (cjck)'z(t)Ml ”AJAL-”;,” [A(z)]”z }
2 J,k

and log A(z) is of admissible growth (lemma 3), log ®(z) is admissible growth.
We also have, using Holder’s inequality and (2.15)

1/2 (210—-1) /20
DY) < {f'Uiy(Ffv)IQOd# }’ 70{ fgll(l—bIZ)d’u } o 20
3

M

12,
= ‘l}[lljiy(plu)\q"df"} .

But (1.8) asserts that T, is of type (bo, @) With norm not exceeding A(¥).
Thus T has a unique extension to H” preserving this norm. It is easily
checked that this extension must argee with Uiy on Fj,. Thus,

1/2q
{ f [UW(F2)|% dﬂ} S A | Fa e
J .
= TGl
But, by the M. Riesz inequality,® and by (2.14)
I pllzp, < Azsoll 12|20,

:8)" The M.Riesz ‘inequality states' that, if' £ L%0, 2#), p>1, and F(w) is
given by formula (2.12), then there exists a constant, Ay, such that || F |, < Ay f .
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1 : 1/2po
= Azpo{f[f[l/rox[fl:.u(pfn,)/anlpolzpo d,u,} = A,

»

Thus,

(2.16) Dliy) = Asp [AdP)]V
Similarly

(2.17) DL + ) < A [A(0)]

We can thus apply lemma 1 to the function I'(z) = log ®(z) and obtain ®(¢)
=< C, where C depends only on # and the behaviour of & on the lines x = 0
and x= 1. This can be summed up by the inequality
(2.18) U« < C* = B,
where B depends only on #, po, 11, di, &, Co and C,. In particular, it is in-
dependent of the function F satisfying (2.12) and (2.14) (where f is a simple
function).

Let f be an arbitsary simple function and F the function in (2.12). Then
I 20 = 2| F||2p,. Thus, by (2.18), since F/||f|2n, is a function of type (2.12)
satisfying (2 14),

2”F” IIUz(F)IIQH,,f, 1ULF), = 1T, (lifﬂ >||qtsB

But ”F”zm = ||F* Iz, thus
(2.19) NU(FH)lo, = 2B F?|| v,

for all F of type (2.12) with f simple.

Now let G be any function in H?,p = max {py, .}, that is the square of
a function F€ H**. Let f be the function in Z2#(0, 27) (f(s) = R{F(e®)}
+ &{F(0)} ) such that

1 e‘-i—w

Fw)= — P f\S) ds.
2 J e —

]
Let {fu} be a sequence of simple functions such that [[fy —f|s» — 0 as n— oo,
and set

1 s )
Fo(w) = o f z“ j—_z Su(s)ds.
0

Then, by lemma 3 (the extension U, of T; satisfies (2.11) for all functions in
H*) and by the M. Riesz inequality, we have

(U(F? — F)lla = AR F* — Fplly = AD|F — Fulls|F + Fullo
< AR Aspllf — fall 2o Aol f + Sl 20
But the last factor is bounded, since ||f —full.p—0 and, by this very last
fact, the entire right-hand side of the inequality tends to 0 as » tends to co.

Thus there exists a subsequence, {U(F*— F, )}, such that Uy(F? — F;)—0
almost everywhere , thus, U, F, 22U F*=U,; G almost everywhere. By Fatou S
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lemma, therefore,

f]UtG[q; dﬂéliginfflUxFﬁk[ath

= liminf 2B||F] |loe}" = {2BlIG},.

The last equality being a consequeace of the fact that [|F2 |l — [|G|l», Which
is true, since [F} — G|, — 0 and p, < p.

We have thus shown that
(2. 20) ULF*)loe < 2B F?||pe

for any F & H*?,
But any function G € H?: can be written in the form

(2 21) G = Gl + Gz,
where G; ({ = 1,2) has no zeros, is a member of H”;, and
2.21y 1Gilloe = [|Gllvg, | G:ll vy = 2{| G-

This is easily seen by the Blaschke product decomposition, G = BG,, where
B is the Blaschke product and G, has no zeros. Thus G = (B —1)G, + G,
is the desired decomposition, with G, = (B — 1)G,. The norm inequalities
follow from the fact that ||Gi|,r = |G|y, and |B — 1| <2 in the unit circle.
Since G, and G, have no zeros, they can be written as the squares of their
square roots, and, clearly, these square roots are in H*?. Thus, by (2.20),
for any G € H*(—H?")
1U:Gllo = NGy + Golloy S |UGlloy + [ UsGallay

< 2B(IGilly, + IGlly) < 6 BGlln,.
(Here, we used Minkowski’s inequality; thus, we have tacitly assumed that
¢:=1. If ¢:<1 we take the ¢, powers of the norms and use the triangle
inequality).

Putting A = 6 B, we have

2.22) 1G], < AlG],
where A depends on t,p;d; C;(F=0,1)” but not on G € H*. Since {§ € H”
we have proved theorem II. We have, however, assumed that u(M) < oo.
But this assumption can be easily omitted. For let P € 3, then T:P is not
zero on, at most, a o-finite measurable subset, N, of M (for |T:P|, is inte-
grable). Let X. be the characteristic function of a measurable subset E, <

N, of finite measure, where £,  E, < E;.... and U E,= N. We then have,
by (2.22), and since TP = U,P,

TP Xaller < AllP | ne
where A is independent of #». An application of Fatou’s lemma now gives

9 If ¢,<1, A=(2%-+1)Y9, 2B; thus, in this case, A depends on ¢p and ¢ as
well.
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I T:Pll,, = A| Pll5",
for all P € P, and the theorem is prored.

3. An Application of Theorem II. Let A= «a + /8 be a complex
number, where a = J(A) > —1. Furthermore, let

3.1) >

v=0
be a given numerical series. We wish to define the Cesdaro means of complex
order A of the series (3.10).1®
Let

n
A — A
Sn - 2 ‘A'n—y u,
v=0

where A} is the »-the coefficient of the binomial expansion of (1 — x)~'-*.
Thus

1 w
T oaan & Arx, —1<x<1
(1 —xp+r .,2:1;
and
A+ DAFD). A+ B A A
(3.2) A\= -2 = @+n(1+ 2)....(1+ ).
The Cesaro means ¢ are then defined by letting
3.3 ol = sh[AM
Thus, at least formally, if g(z) = 2 ur, 0sr«<i,
v=0
9(7) <
©-4 T—ryn =2 7
v=0

Moreover, since

9r) . g(n) 1
(1 — 7)t+r+d (1 -+ 1—7)P"°

we obtain

n
3.5 s\t = SV A1

v=0

where § may be a complex number.
We next recall the following well-known fact, [11],

LemMA 5. If a > —1, then A% >~ n*|I'(a + 1)V, and, in particular,

10) In the following paragraphs we recall the standard notions of Cesaro sum-
mability, [11], only to make clear their extensibility to complex orders. The idea of
complex order of summability in the context of multiple Fourier series was used by
the first author in a not yet published paper.

11) “=” means that A%T'(e+1)/n% -1 as n > oo.
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there exists a constant bs such that
(3.6) n+ 1)%/bs < A"‘ =< bo (1 + 1)%, n=0.

The next lemma extends the above asymptotic estimate to complex
parameters.

LEMMA 6. Let ¢ > —1, —c0o < B < 40, then

3.7 1< |A9HPJA%| < Cue®
for all integral n, where Co depends only on o.®
By (3.3)

Aﬁ”ﬂ=1il(1+ Hw’3> and A% = H(1+ )

Therefore,
a+i8 id .
7A no_ II (1 + _.zﬁ—)

Az T k+a

and, therefore,

Ax+iB ]2 L ( B:
| = 14+ —
(3.8 Ax | kI_]l + ey

The left-hand side of inequality (3.7) is now an immediately consequence
of (3.8). For the right-hand side we proceed as follows.

H(” (k+a)‘> ( SGE (1+a) ( A (k+a)‘)

s(1+ g fzaw)g(l o)

since a > —1. We now use the fact that 1+ x <e*. Thus

H (1 + == ) <exp {,8 2 (% _1 1) } =< exp (Br?/6)

k=2

< e since 7?/6=<3.
Finally, we notice that

1+ B/ +adl=CiA+ BH=C e,

for some appropriate Cs.

Combining these estimates with (3.8) gives,

| AzP] A3l < €3 o,

This concludes the proof of the lemma.

Let now f(f) be an integrable function over (0, 27) and let it have the
Fourier development

12) The estimate (3.7) is not the best possible, but certainly suffices for our
purposes.
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S e

Let +%+#(@) = 7%+%# (@ ;f) denote the Cesaro means of order «a + 3 (as defined
above) of the numerical series

co + 2 (c,e”+c.,e %)

v=1
Similarly, if Fw) = F(pe®), p <1, is of class H? o%*#@) = c2*8(@; F) will
denote the Cesaro means of order a - 78 of the series

é c, e'va’

v=0

where the Taylor expansion of F(w) is

Fw) = é c, u”.

v=0

We shall also define
Tt B(0) = T80 f) = sup|viH@ )],
1=

and similarly,
g-:”ﬂ(e) - O_zwﬁ(g; F) = s;qIJ) Ia-z-*tﬂ(ﬁ; F)l

LEMMA 7. Let &« >0, Then

(1) TERO ) S Au €7 1HO)D
and
€)) 7580 ; Ol < Ap « €[|f |1, 1<p< oo,
where f*(0) denotes the maximal function of Hardy and Littlewood,
. .
r@ = s L[ 170+ glas
1]

We take for granted the following two well-known facts (see [11]):
If « >0, then

(3.9 TE (05 ) < Auf*0),
and
(3.10) 17Dl < AnllF @), 1<p.

Now let us make use of (3.5) where we take A = a/2, § = («/2) + 78 and
s#/ the Cesdro sums of the Fourier series of f(d). We thus have

13) From now on, Ag will denote a general constant depending only on « which
may be different in various occasions.

14) In what follows, we shall only need the lemma in the case e=1/2 and p=2.
Since the proof, however, is no simpler in this special case, we include the general
case.
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n

(3.11) SEHIB(Q) = 2 Al -1+18 gmi2 ()

v=y
By lemma 5, however,
|20 = |s370)] Ay Z Aa(n + 1)7*P{s3%O)],
and, therefore, by (3.9)
(3.12) [s7/(0)] = Aa(n + 1)*2/*(0).
Substituting this estimate in (3.11), we get
G13) s S Ac( X 1AL o+ D9 )r6)

v=0
Lemma 5 and lemma 6, together, yield
(3.14) |A@D-1+18] < Ay e’ (n + 1 — ) @1 y <.
Using (3.14) in (3.13) we obtain

152°2(0) | S Aw e#750) (2 (4 1= ) @iy + 1 )

= Aa(n + 1)% e f%(0).
However,
[TR+BO)| = |sy+#0)] As+ie| < |Sy+B@)] Az,
by lemma 6, thus
[Ta+®(0)| = Aal|si*#(@)|(n + 1),
by lemma 5. Therefore,
|Ti+BO)] < Au € /(0),

and part (1) of the lemma is proved. Part (2) follows from part (1) by making
use of (3.10). This concludes the proof of the lemma.
It will be our next aim to prove the following theorem

THEOREM A. Let F & H', then

" 180 B " f 0
(3.15) f sup Jog (n + 2) dd<Ae 0 | FXe'®)| db.

REMARK: We note that, when @ = 0, the above theorem reduces to the
case p = 1 of theorem III.

For the proof of this theorem we need the following lemma :
LemMmA 8. Let F & H*? and define

e (31000 ) = o0l Y
O F) = (2 o+ 1) log (n + 2) .

n=0

Then
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s o
3.16) (Df [Q%0; F)] d(-)) gAeﬂ{of | F(e)| dﬁ}.

Let F(e') ~ > ¢, e". Then, as may easily be verified

v=0

oPYB@; F) — o 1N+ ; F)
”
2 Aﬁf_l,,’g)“ﬂ ve, e,

(3wl 2

Using Parseval’s identity and lemmas 5 and 6 we obtain

-1

f [oD+B(0) — oTIM+EG) |2 d8 < A(n + 1) 2 | AT 32, |3
0 v=
<A+ 1) 24+ 1— ) e |2t
v=0
Therefore,

é f?n la_ﬁl/2)+iﬁ(€;F) — 0'7(;—1/2)+m(9; F)lz d0
J (n+1)log(n + 2)

n=0

< Ae® 0 (n+ D2 log 1 + 2] 2 (1 41— )7t o208

n=0 v=o
SAe P33 ol
ve=0

where the last inequality follows by inverting the order of summation and
noting that

oo

> le ] 2 (n+ D2 flog (7 + 2)] (n + 1 — »)~?

v=0 =y
co 2v oo oo A
=Swle{Z+ 3 |5 Solal{ )
v=y n=y N=2p+1 v=y v

Therefore,
27

2
f [QF@; F))*dd < Ae*® f [F(e)|*db,
0 0

which is the desired result.

We now proceed to the proof of Theorem A. By the decomposition (2.12)
and (2.21), we see that it is sufficient to restrict our attention to the case
when F has no zeros in |w| < 1. We then write F(lw) = G*w). We next use
the well-known relation
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n

(3.17) SO; F) = 2 sO%0 5 G) Q0 5 G)

v=0
(which follows easily from (3.4), for example).
We set A = 78 and then obtain

|00 ; F)| = | s}}0; F)]AF| = [s50; F)
by lemma 6, But,from (8.17) and Schwarz's inequality we get
|20 )l < 20 [s10+2 (0 G|

v=0

Therefore,
n
[0 ; F)] < 2 [sG1D+82(0; G)|2.
v=0
By lemmas 5 and 6, however,

n n
2 [sCUD+BIG ; G)|* = 2 | AN D+BI2|2| e CUD+IBG ; G)|2

v=0 v=U

< Aepa 2 (v + 1)—1 10_5—1/2)-»1,3/2(9 . G)Iz
v=0
Thus, for n =0,
PO : F) l
log (n + 2)

Ae‘g‘l 10_(71/‘_’)+1ﬁ/2v(0; G) li
élog(n+2)2 v+1

v =0

- -mﬁ_z‘Aelgz - é‘ la$—112)+iﬂ/2 (0; G) — a.l(lll2)+1'ﬂ/2(0; G)IZ
= log(n+2) <~ v+1
2AC Sy |o8P0; G
Tlogn+2) &~ yril

2 [ IDBR (GG — cUDTRING ; G|
SAS T g+

—
+ Ae® sup |oUDE2(0; G|
v

Finally,

|518(60; F)/log (n + 2)| < AeH{QPHO; G) + Ae™{a{+P1(0; G}

Therefore, by lemma 7, when p = 2, and lemma 8,

2
f sup
nz0
0

2n

0T a0 < aew f |Ge®)|2 o
0

log (n + 2)

335
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2z

< ae [ Fen) do,
0
since F(e®) = [G(e®)]:. This concludes the proof of theorem A.
We next prove a modification of theorem III in the case p =27 k=

THEOREM B. Zet p=2"* £=0,1,2,...., and let « = (1/p)—1=2*—-1.
Suppose FF € H°. Then

27

[o% 8@ ; F)|? I .
<f e log(n+2) dg) = Aw e |[Fly.

This theoren reduces to theoren A when p = 1 (i.e. 2 = 0). We therefore
assume the theorem known for the case 2 — 1 and then deduce it for the case
k. As in the proof of theorem A, we may assume that F(w) has no zeros
when |w| < 1. Again we write F = G?, and use the relation (3.17). We take
A=« + 18, where a = (1/p) —1=2¢—1. We thus obtain

|50 )| = X, [se DB (0 G|

v=0

§ Awesz 2 (y + 1)u~1la_l(,a71);2+13;2 (9’ G)]",

v=0
and, therefore,

o390, F)| 5 A0 2<v I I

Hence,

lo_w+15(0 F)[ Auesz (V‘+ l)a 1‘0.(04 1) /2+iB|2 (€,G>|2
[iog (7 + 2] = (n + e 2 flog (v + 2)]'”

< Anef sup{ I @ DHBE (G G)|*/[log (v + 2))/7}.
[ =i}
From this it follows immediately that

27 2
+iB(A. a—1);2+18)2
f sup Lo ™6, | do < Ap, ef’ﬁzf sup —~ Eri CR12) )
0

log (n + 2) v=0 “log (v + 2)

We now apply the case 2 — 1 to the right-hand side. Since p = 27%2p =
2-%+1 and, since a = (1/p) —1, (¢ —1)/2 = (1/2p) — 1. Therefore, the case
k — 1 yields

2 21

[a2+8@ ; F)|” b Bt A ﬂ,f o1 9
f SUp S r ) WS AL AR, o | |G b

o
271

= AP g20* f | Fle™)|» db.

0
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This concludes the proof of theorem B.

Proor oF THEOREM III. (Forthe statement of the theorem, see section 1).

We assume that 27%-1 < p < 2%, since the case p = 2% is already covered
in theorem B. Let py= 2% and p, = 2-%*. We shall prove the theorem by
interpolating (i.e. using theorem II) between the indices p, and p,.

Now fix n/f) as an integer-valued step-function on [0,27], so that 2 <
n(f). We first show that

(3.18) ( f " lot0@: P da)l'” <A, ( f HIP(e"")I”dG)jm

" Tlog n(0)

for every polynomial P(w), where A, does not depend on n(#) and P(Theorem
IITI will then be an easy consequence of this).

Consider now the family of operators on P ( = class of polynomials defined
in §1) defined by
(3.19) TAP) = o3R(P)
where

az) = 26+l — ] — z20%

We notice that «(0) =21 —1=1/p)) —1 and a(l)=2¢—1= (1/p;) — 1.
Keeping P € P fixed we claim that the following three facts hold
(1) T«(P) is analytic from z in the strip S = {z; 0 < R(2) < 1}, into LM, p),
where M = (0,27) and du = df/log n(0).

27

@) log | l(l)g;(f() ;') df is of admissible growth in S.
ATwP)| P 1o\ ‘

@ (f orsy d8) " S APl

and

( f B 07 < 4,)] Pl

where log A;()<ay* + b,7= 0,1, and @ and b are independent of P and #(f).
We now show (1). Suppose that

Plw) = 2 Cx WP

By the linearity of T, it is sufficient to restrict ourselves to the case P(w)
= wk. Now

Axp L eMA%)  if k=n0)
TAw*) = ¢*2)(™0) = <} n(8)—k n(s =
L) = ol e) = 0 otherwse

Since n/@) is constant on each of a finite number ~f intervals, then either
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T{w") = A%, e™] A%
or T (w*) =0
on each such interval. However,
AV A+ a)....(1+ ak@)/(@ — k)
As T 1+ ak)... .1+ a@)/n)
is a rational function in 2, since a(z) = 2%¥+1 — z22%* — 1. Moreover, since
28 — 1< R(a(2))=28+1 — 1 when 0 <Rz 1,

this rational function has no poles in S. Clearly, therefore, we may write

(3.20) T(w*) = 2 [QA2)X; (0)] e,
j=1

where m is the number of different values the function #/f) assumes, X; is a
characteristic function of an interval and @; is a rational function which is
analytic in S.

We now show (2). It is sufficient to see that

| T |
log ;/‘ Tog n(6 0) do

is of admissible growth in S. This last follows from (3.20) and the fact that
each log|Q(2)| is of admissible growth in S, since @; is a rational function
with no poles there.
Finally, we prove (3). The two inequalities follow directly from theorem
B. For example,
Tw(P) = o240 ; P)
a(zy) = 2%+l — 1 — gy 2, Thus, the case 2 + 1 of theorem B implies

TAP)|? 1/p, 1
( f \TLPI 9)™ Shenier 1P

(whee p, = 2- "‘1), and where Ai., is independent of #n(@) and P. Similarly
for p,. Thus we have (3) with @ = 2%*! and b = max {log Ay:1, log Ai}.

By (1), (2) and (3), we may now apply the interpolation theorem (theorem
IT) to the operator family {T.}. For this purpose we choose ¢, so that 0 < ¢
< 1, and set p = p;, where

11—t
1= L1 e 2,
b= pm p1 25 4

The conclusion is

2

([ iz gy - ([C1o 0:pr gy
1T4P) ( 9
J logn(G) log

= AzllPllp-
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A; depends?only on ¢ and the bounds obtained for A.¥) and A.(%) in (3) above.
More simply,

4

om ([0 ) ea([ i)

with A, independent of »n(d) and P.

However, «(t)= 2v*! —¢2¢¥ — 1, thus a(?) = (1/p) —1. To conclude the
proof of theorem III we first observe that (3.21) may be extended to all fun-
ctions in H?. Then we see that n#(d) may be chosen in such a way that

|0',, (0 F)l” 1/p
(f l(c‘:)gn(ﬂ) de)

is as close to

27
700 DI gp)”
( B[ fgﬁp log (n + 2) 0

as we wish.
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