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1. Introduction. Let ψ be the class of all polynomials P{w) = a0 + aλw
+ Λ-a^, where the a/s (j = 1,2, , k) are complex numbers and w is
a complex variable. If p > 0 we can form the space Hp, [11], of all func-
tions F(w), analytic in the interior of the unit circle, satisfying

It

(1.1) μP(r;F)=; -~^J

where M is independent of r, 0 g r < 1. It is well known that μp(r F) is
a non-decreasing function of r, and, if p 2:1,

(1.2) ||F|U = {lim,^0r;F)}^

is a norm. In fact, with this norm, Hp is complete; i. e. it is a Banach
space. I n c a s e £ < l , however, ||F||2ί is not a norm since the triangle in-
equality is no longer satisfied.1} IP, nevertheless, can be made into a complete
topological vector space by introducing the metric dP(F, G) = \\F — G\\ζ. In
either of these cases the class 5β is dense in Hp,p > 0. We will make repeated
use of the fact that, if 0 < p, ^p2, then | |F| |P 1 g | |F|| Ps.

Let (M,μ) be a measure space, where M is the point set and μ the
measure. If q > 0, L\M, μ) - Lq will denote the space of all complex-valued
measurable functions, /, defined on M such that

(1.3) 11/11, = I I Wdμ\m <oo.
M

We will refer to ||/||Q as the norm of/. Remarks analogous to the ones made
about \\F\\p apply here: if q ^ 1, Lq becomes a Banach space while, if q <
1, <Uf,g) = ||/-|7||S is a metric. a>

We say that a linear transformation, T, mapping 5β into a class of
measurable functions defined on M is of type (fi, q) in case there exists a
constant A > 0 such that

(1-4) .

*) The research conducted by the first author was supposrted in part by the
United States Air Force under Contract No. AF 49 (638>42, monitored by the AF
office of Scientific Research of the Air Research and Development Command.

1) In order to avoid introducing unnecessary terminology, we shall still refer
to [I-FIIJ, as "the norm of F" when ρ<\.

2) No confusion should arise from the fact that we use the same [notation for
the i#>-norm and the Z^-norm.
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for all P 6 ? . It is well known that if T is of type (p,q), then it has a
unique linear extension to all of IP, preserving (1.4). The least A for which
(1. 4) is satisfied for all P € $ is called the norm of 7\

Calderon and Zygmund, [1] and [2], have proved the following theorem:

THEOREM I. Let Tbe a linear transformation from $ into a class of
measurable functions on M, of types (p0, q0) and (pu &), with norms Ao and
Aτ respectively. IfO^t^l, set

(1.5) \ = ( l - ί ) - i - +t~ and \ = (1 _ * ) - ! + f J L
Pt Po Pi Qt Qo Qi -

Then T is of type (pt,Qt) with norm not exceeding KAl^Al, where K depends
only on pOy qQ} pτ and qu but not on t.

The chief purpose of this paper is to extend this theorem to the case
where the linear transformation is a function of t. To make this statement
more precise we will need a few more concepts.

Let S be the domain consisting of all complex numbers z = x -f- iy such
that 0 < x < 1. Let T(z) be a function defined on the closure, S, of S. We
say that Γ is of admissible growth in case there exists positive constants B
and b,b <τr, such that

(1.6) Γ(z) - Γ(ΛΓ + iy) ̂  B e^

for all x and y satisfying 0 1Ξ x <Ξ 1 and — oo < y < -foo.

Suppose {7Yh z € S, is a family of linear transformations mapping 5β
into Lι{M} //). We say that {Tz} is admissible and analytic in case

(1.7) J (TzP)gdμ

is an analytic function for each P € ψ and g € L~(M,μ),3:> and log||7YP||i is
of admissible growth for each P € *β.

We shall prove the following theorem:

THEOREM II. Let {Tz}} z € S, be an admissible and analytic family of
linear transformations. Let Po,pi> qo and qx be positive numbers and assume
that for all y, — oo < y < -i-cx),

(1.8) IIΓ,, P\\% ^ Ao(y)\\P\\Pϋ and | |Γ 1 + ί ϊ P[|βl ̂  A1(^)||P||Pl

for all Pζty, where log Aj(y) g C3 e
d^ , 0 < dj < TΓ and 0 < Cj, for j = 0,1.

, /or ^αc:̂  ί satisfying 0 <Ξ ί ^ 1, z#

3) This condition is equivalent to the following seemingly stronger one : for

each zo € S there exists a circle, K> with center ZQ, such that TZP = 2 ^(2—;zo)fe

o
for all z e K, where αfc e /Λ £-0,1,2, , and the series converges absolutely and
uniformly in the L1 norm on each closed subdomain of K (see [3],pg.57). In general,
a function, 1% defined on a complex domain, whose values are in a Banach space,
having such a power series developments is called analytic, Then, the theorem
reads: If £[Γ(V)] is analytic for each ί in the dual space, r is analytic.
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(1.9) \\TtP\\vSA\\P\\p,
for all P € Φ, where pt and qt are given by (1.5) and A depends on t, pj, q^
Cj, dj (j = 0,1), but not on P*\

We will devote the next section of this paper to the proof of theorem
II. In the third and final part we will apply this theorem obtaining a new-
proof of the following theorem of G. Sunouchi, [7]. The case p = 1 of this
theorem is due to Zygmund, [9], who also conjectured, in [10] and [12], the
full statement of theorem III:

THEOREM III. Let F € IP, 0 < p ^ 1, a = ~ - 1 and σ%ψ; F) the Cesaro

means of order a for the Fourier series development of F(eiθ). Then

0

for all F € Hp, where AP depends on p but not on F.

We make no claim that the proof of theorem III given here is simpler
than G. Sunouchi's original proof it is, however, an illuminating example of
the applicability of theorem II. We ,are indebted to Prof. Zygmund for
suggesting the possibility of this application.

2. Proof of Theorem II. We present the proof in a sequence of lemmas.

LEMMA 1. Let Y{z)bean upper-semi-continuous real-valued function defined
on S, of admissible growth there, and subharmonic^ in S. Then, for each
ZQ ~ XQ + iy ^ S we have

S J Γ(ί> + JVo]) ω(l - xo, y)dy+ J(2.1) Γ(*o) S J Γ(ί> + JVo]) ω(l - xo, y)dy+ J Γ(l + i[y + yoj) ω{x»,y) dy

Consider the mapping of S into the closed disc C = {ζ \ζ[ < 1} given by

(2. 2) ζ = e , %- .

4) A similar theorem dealing with transformations acting on L*> spaces was
proved by E.M. Stein, [6].

5) Γ is subhoarmonic in an open domain D if
(i) Γ is upper semi-continuous in D;
(ii) Let D' be any subdomain which, together with its boundary Bf

y lies in
Ώ, Let ψ be any harmonic function in Df, continuous in D' Π B', such that Ψ ^ r
on B'. Then Ψ^Γ in Df.

Subharmonic functions may assume the value -oo. We refer the reader to [5] for
the material on subharmonic functions used in this paper.

6) This lemma, in the setting when Γ is the logarithm of the modulus of an
analytic function was first used by I.I. Hirschman/ [4], to prove certain convexity
theorems for linear transformations on Lp spaces.
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The inverse of this mapping, h} is defined for ζ Φ 1, — 1 and has the
form

7ΓZ ( 1 — ζ

where we are taking that branch of the logarithm for which log 1 = 0. We
can then form the function Φ(ζ) = T(h(ζ)). This function will then be
subharmonic in the interior of C and upper semicontinuous in C with the
exception of 1 and — 1. Let ζ = p έθ, O g / X l , denote an arbitrary point
in the interior of C and z = x -f ίy its corresponding point under the mapping
h. Γ is of admissible growth thus, there exist positive constants B and b,

b < 7τy such that T(z) <Ξ Be^v[ for all z € S. We investigate this last inequality
in terms of ζ = p eiθ and the function Φ. For the moment assume p ^ 1/4.
It follows immediately from the expression for &that

Thus

S -1 I log 4 + log jj^ ?2)T + " * i S Ϊ W
Hence, the condition for admissible growth becomes

Ψ(p eiθ) ^ 4 B I cos (0/2) | "W 7 ί | sin (0/2) | ~^.

Since b < π, this inequality asserts that ^(/> gffl) is bounded from above by
an integrable function of θ, independently of p ^ 1/4. But, if p < 1/4, then
Ψ(pe!θ) is certainly bounded from above since Ψ ίs subharmonic. We thus
have

(2.3)' Ψ(pe*>)^g(θ)

for all p < 1, where g ^ Lι{— 7r, 7r).

Let P(r, f) = (1/2) (1 - ra)/(l - 2r cos ί + r2) be the Poisson kernel. It fol-
lows from the subharmonic character of ΛF that, if p < R < 1;

it

(2.4) ||Ψ(/o eίθ) ^ — I Ψ{R ^) P(p/R, θ - φ) dφ.
ΊT J

— it

For p fixed, P(pJR, θ — φ) is positive and bounded as long as p < R < 1.
Thus, by (2. 3), the integrand in (2. 4) is bounded from above by an integrable
function G(φ). Let MΦ) denote this integrand and f(φ) = Ψ ^ ) P(p, 0 — φ) (the
last functions being defined for all φ except 0 and 7r). By the upper semi-
continuity of Ψ we have

(2.5)

The functions G(φ) —fn{φ) being non-negative, an application of FatouJs
lemma yields
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f lim inf {G(φ) -Mφ)} dφ S lim inf [ {G(φ) ~fn{φ)} dφ.
— it —it

From this it follows that

lim sup / Mφ) dφ<: I lim sup fR(φ) dφ.
—it —it

This result, together with (2.4)7 yields, upon comparing with (2.5),

(2.6) ψ(peiθ)^— I Ψ(β'φ) — JLz.^1^ : ^0.

The lemma will now follows from (2. 6) by a change of variables. We first
restrict our attention to the case θ = ± π /2. Under the mapping (2.2), these

values of ζ correspond to the segment 0 <Ξ ΛΓ<Ξ 1 of S. Letting 2 = x, then,
we have

( 2 7 ) r = - f ΪTSΪ Ϊ Ϊ ' p = ι r ι = " ϊ
Clearly, the line in S given by x = 0 corresponds to the lower semicircle of
points £ίφ of C such that 0 2̂  Φ ̂  — w- in such a way that, as ^ ranges from
— co to + oo, φ ranges from 0 to — TΓ. Similarly, the line given by # = 1
corresponds to the upper semicircle in such a way that, as y ranges from
— 00 to + 00; φ ranges from 0 to TΓ. For — TΓ < φ < 0 we have

. . 1 dφ ΊΓ

cosh my dy cosh 7ry
while, for 0 < 0 < 7r we have " -f- " instead of " — " in these two equations.
Thus, for x fixed, say 0 < # g 1/2 (this corresponds to 0 = — w/2 , for 1/2 <
x <1 we have 0 = 7r/2 and We take the negative sign in the second part of
(2.7). The final result remains unchanged), we have:

J v ; l_2pcos((-τr/2)-0) + ^ v J J
-it -% 0

= J Γrα» s i n ^ ^ + f r (i + w . s i n ^ dy \.
[ J cosh my — cos 7ΓΛT J cosh 77->> + cos *πx \

Thus, letting ω(χ, y) = A -—gΛ^^L—— and comparing with (2. 6), we

have, for 0 < AT < 1,
00

Γ(*) ^ J Γ(ί» ω(l -x,y)dy+ J(2.8)

If 0o = ΛΓ0 + z>o is an arbitrary point of S, (2.1) is an immediate consequence
of the result (2.8) applied to the function T(z + ίyu).
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We remark that, since I P(r, t) dt ~ TΓ, in the special case of Γ Ξ 1 we
—-a.

have proved

(2. 9) J ω(l - χ,y) dy + J ω(x,y) dy = 1, 0 < * < 1.
OO CO

In the next few lemmas we will assume that μ(M) < oo. Then, if 0 <
qx S #2, there exists a constant Cqχ η% such that \\f\\Qι ^ C^ Ji/H^ for all f^Lq^L'\

LEMMA 2. If V(z) is an analytic function mapping a domain in the complex

plane into Lι{M, μ) and 0 < q <Ξ 1, then D(z) = I [ F(^) | 5 dμ is continuous and
M

logD(z) is subharmonic.

Our assumption on V implies that, for each z0 in the domain, V(z) =

2 — ̂ ) f c where ^ € L1, k = 0,1,2, , and the series converges abso-

lutely and uniformly in the Z -̂norm in a closed disc, K, with center ZQ. We
have, for any / G L1,

(2-10) \]f\\q^Cql\\f\\1.

Thus, the continuity of D{z) is immediate. Hence, to show that log D(z) is
subharmonic, it is sufficient to show that D(z) is the uniform limit of loga-
rithmically subharmonic functions in each such disc K. Using (2.10) We see
that D(z) is the uniform limit, on K, of the sequence {Dn(z)}, where

r
= j

ί
dμ.

But, for each k, there exists a sequence, {sψ}, of simple functions such that
lim ||ΰίfc — s^ld = 0. Thus, since for any two numbers a, b

we have

/
M

ί* 1

/I;

n

n

fc=0

( - ,
\k

q r

M

n 3

I

dμ

ι M

Σ
fc = 0

dμ
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uniformly in z, z € K.

Thus, it suffices to show that log / I V 5/fc) (* ~ ZoT

Clearly, we can write

dμ is subharmonic.

where each pi is a polynomial and Xt is the characteristic function of a
measurable set Et, with Eif]Ej = 0 if / Φ / We obtain

log/ = log 2 \pt{z) [

But ^ lίΐ(^)lV(^)? being the sum of logarithmically subharmonic functions
i = l

is itself logarithmically subharmonic. Thus lemma 2 is proved.

LEMMA 3. Let p = mz.x{po,pi}. For z € S we then have
(2.11) \\TzP\\q^A(z)\\P\\P,
where ^ ^ m i n {l,Qo,Qi}, A(z) is independent of P € ^ 3 and logA(^) is of
admissible growth on S.

It suffices to establish (2.11) when ||P||P = 1. By lemma 2, log||Γ*P||β is

subharmonic in S and upper semi-continuous on S. Since \\TzP\\q ^ CQil\\TzP\\u

log ||TβP||g is of admissible growth on S*. We have

L s cqjτiyop\\QO ^ cQtmA» (y)\\P\\p«

Similarly, | |Γi + i ϊ P| | β < Ctf

Letting C - m3.x{Cq,qo,CQ)Ql}, d^ max{do,di} and applying lemma 1, We have

of dy

But it is easily checked that the expression in curly brackets is bounded
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independently of Xo, 0 < XQ < 1 (this is an easy consequence of, say, (2. 9)).
Thus the lemma is proved.

This lemma assures us that for each z €: S we can uniquely extend Te

to all of IP, preserving (2.11). We denote this extension by Us.

W e fix a number t,O<t<l and let a = ^~ , b = X , a(z) = (1 — z) \
Pt Qt Po

+ z--.-• , and biz) = (1 — z) ~ -f z - , where z-xΛ-iy is any complex
Pi Qo Qi

number. Thus, ait) = a and b{t) = 5. Let / be any simple function defined
on (Ό,2 7r) and put

(2.12)

It is then Well-known that F, and thus any positive integral power of F,
belongs to all IP spaces, j> >0. We can set fit) = 3t{F(eis)} + i 3{F\0)} in
other words, / is a real-valued function plus a pure imaginary constant. Let

(2.13) Fz{w) = ^ ί ^ S - + - M ; |/(S) I «(*>/« efarS/(o rfSt

27r j eis — w
o

Let w be a positive integer satisfying np0, nq0, npl7 nqx > 1. We make the
simplifying assumption that n ~ 2? the proof being easily extensible to the
general case. We also assume that

(2.14) J W)\*ladt=l.
0

Let g be a non-negative simple function on M satisfying

(2.15) J |^ |W-W2))^ = i ;

|

and set Gz = ^ u-wo/wα-ίW). ψ e have

f v%n = sup
M

the supremum being taken over all g satisfying (2.15). We will show that
theorem II can be deduced from the fact that a constant B exists, independent
of F given by the formula (2.12), such that \\UtiF%qt^B\\Fz\\Pv B, of course,
will depend on the other parameters mentioned in theorem II. The method
employed here extends that found in [8].

We thus study the function

Φ(<0== J
7) Since all positive integral powers of Fz are in ΉP^ Uz(F:r) is defined.
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which, for z = t, reduces to I \UJF*)\1{2gdμ,.

M

LEMMA 4. log Φ(z) is subharmonic on S and upper semi-continuous on S.

It suffices to show that Φ(z) is the uniform limit, on each bounded subset

of S, of a sequence {Φn(z)} such that Φn is continuous on S and loga-
rithmically subharmonic.

Set g = 2 * ί̂> Where ^ > 0 and {X[} is a finite collection of charac-
I

teristic functions of mutually disjoint measurable sets E\ a M, and / =
JiPtGte Xk, where c* > 0, \βh\ = 1, and {%fc> is a finite collection of character-
istic functions of mutually disjoint measurable sets &c:(0, 2π). Then

ί
I

Let

and

Ψ(z) = Ψ ^ ) = / \Usψz\
112dμ.

It suffices to show that each Ψ is the uniform limit, on each bounded subset

of S, of a sequence {Ψn} such that Ψn is continuous on Ŝ  and logarithmically
subharmonic. We have

where

0 . ,, , •

Let {PjV}, n ~ 1,2,3, , be a sequence of polynomials such that

where p = max{^0, Pi} ( see lemma 3). Put

/2) J£Λ {CjCky
iz)la £jSis Tz P\T da.
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The function inside the absolute value sign satisfies the hypothesis in Lem-

ma 2. Thus Ψn(z) is continuous and logarithmically subharmonic on & Let

12 be a bounded subset of S. Then for z € Ω, since IVPjp = UzPjP, and
by Lemma 3 with q = 1/2, we have:

\Ψn(z)-Ψ(z)\
1/2

/

and the last term converges to 0, uniformly in ίl, as n -¥ oo since A(^) is
bounded for z in a bounded domain (since logA(-s) is of admissible growth).
This proves the lemma.

Since,

J

and log A{z) is of admissible growth (lemma 3), logφ(s ) is admissible growth.
We also have, using Holder's inequality and (2.15)

f Γ ) ^ 2 7 0 ί Γ \ (27

« » S I J \Uiv(Fϊv)\«>dμ [ I J gW->l*>dμ J
Jf if

But (1.8) asserts that Tiy is of type (βo,Qo) with norm not exceeding AG(y).
Thus Tiy has a unique extension to Hpo preserving this norm. It is easily
checked that this extension must argee with Uiy on Ffy. Thus,

j J !tt/F*,)\«odμ} ^

: = [

But, by the M.Riesz inequality,8) and by (2.14)

8) The rM.Rί6Sz ϊneίquaiity states - that, if / € L̂ CO, 2τt5, /*>li and F(t^) is
given by formula (2.12), then there exists a constant, Ap> such that \\F\\pSZAp\\f\\p.
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ιI-Po

- A a

ί Cj / \
Thus,

(2.16)

Similarly

(2.17; Φ(l + ,»

We can thus apply lemma 1 to the function Y(z) = log φfc) and obtain Φ(t)
5Ξ C7 where C depends only on t and the behaviour of Φ on the lines x = 0

and Λ: = 1. This can be summed up by the inequality

(2-18) \\Ut{F*)\\qt^σ = B,

where B depends only on t, p0, pϊy d0, J1 ; Co and Cx. In particular, it is in-
dependent of the function F satisfying (2.12) and (2.14) (where / is a simple
function).

Let / be an arbitsary simple function and F the function in (2.12). Then
II/||2^S2||F||3J,e. Thus, by (2.18), since F/| |/ | | 2 P e is a function of type (2.12)
satisfying (2.14),

But llί Hk = | | ^ | | n ? thus

(2.19) LU
for all F of type (2.12) with / simple.

Now let G be any function in IP\p = max{£o,Λ}, that is the square of
a function F^H2P. Let / be the function in Π*(% 2τr) (/*(s) 3t{F(O>

) such that

0

Let {/„} be a sequence of simple functions such that \\fn — / | | 2 j J -> 0 as
and set

fJ — w

Then, by lemma 3 (the extension Ut of Tt satisfies (2.11) for all functions in
Hμ) and by the M. Riesz inequality, we have

\\Ut(F* - Fξ)\U S Mt)\\F* - F%> ̂  A(t)\\F - Fn\UAF + F»||3J>

But the last factor is bounded, since |]/'™/w||2p^ 0 and, by this very last
fact, the entire right-hand side of the inequality tends to 0 as n tends to oo.
Thus there exists a subsequence, {Ut(F2 - F~k)}, such that Ut(F2 - F*k) -+ 0
almost everywhere, thus, Ut Fξ -+UtF'z = UtG almost everywhere. By Fatou's
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lemma, therefore,

j I UtG \ „ dμ S Hm inf J \ Ut F*t \
2t dμ

The last equality being a consequence of the fact that ||F^||?JΪ-> \\G\\Pt, which
is true? since \\Fξk — G\\P -> 0 and

We have thus shown that

(2.20)

for any F € IP*.
But any function G £ iPt can be written in the form

(2.21) G = Gi + Gz,
where Gi (i = 1,2) has no zeros, is a member of /Ft, and
(2.21)' 11^11^-1^11^,11^11,^21^11^.
This is easily seen by the Blaschke product decomposition, G = BGU where
B is the Blaschke product and Gx has no zeros. Thus G = (Z? — l ) d + Gx

is the desired decomposition, with GZ~{B — 1)GΊ. The norm inequalities
follow from the fact that \\Gx\\Pt = ||G||Pί and \B - 1 [ ^ 2 in the unit circle.
Since Gj and Gy have no zeros, they can be written as the squares of their
square roots, and, clearly, these square roots are in H*pt. Thus, by (2.20),
for any G € H»{czH»t)

\\UtG\\qt = \\Uΐ(G1 + G2)\\at S WUτG^ + lif/^L,
g 25(11^11^+11^11^)^ 6 B||G||Pi.

(Here, We used Minkowski's inequality thus, we have tacitly assumed that
qt ^ 1. If Qt < 1 we take the qt powers of the norms and use the triangle
inequality).

Putting A = 6B, we have

(2-22) \\UtG\\Qt^Λ\\G\\Pt

where A depends on t,pj, dh C5 {j = 0,1)9) but not on G € Hp. Since φ € £P
we have proved theorem II. We have, however, assumed that μ(M) < oo.
But this assumption can be easily omitted. For let P € ψ, then TtP is not
zero on, at most, a σ--finite measurable subset, N, of M (for \TtP\qt is inte-
grable). Let X^ be the characteristic function of a measurable subset En c
Â } of finite measure, where Ei^EzCzEs and \J En = JV. We then have,

n

by (2.22), and since TtP = ί/tP,

where A is independent of ?z. An application of Fatou's lemma now gives

9) If gt<l, A = (2Vi-l)lj'9ί 2B; thus, in this case, A depends on qo and qι as
well.
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\\TtP\UtSA\\P\\S,
for all P € Ψ, and the theorem is prored.

3. An Application of Theorem II. Let λ = a + iβ be a complex
number, where a = Ol(λ) > —1. Furthermore, let

(3.1) 2 »*

be a given numerical series. We wish to define the Cesaro means of complex
order λ of the series (3.10).10)

Let

where A$ is the z -the coefficient of the binomial expansion of (1 —
Thus

and

(3.2) A^= Qd

The Cesaro means σ^ are then defined by letting

(3-3) <ri = s£/A£.

Thus, at least formally, if ίr(r) = 2 M '̂'» 0 ^ r < 1,

(3-4)

Moreover, since

g(r)
(1 - r ) 1 + A + 6 (1 - r ) 1 + λ (1 - r ) δ '

we obtain
n

(3.5) srδ= 2 4£*ϊ.

where δ may be a complex number.
We next recall the following well-known fact, [11],

LEMMA 5. If cc> —1, then A*n ̂  na/Γ(a + l ) π ) , and, in particular,

10) in the following paragraphs we recall the standard notions of Cesaro sum-
mability, [11], only to make clear their extensibility to complex orders. The idea of
complex order of summability in the context of multiple Fourier series was used by
the first author in a not yet published paper.

11) " ^ " means that ^ * r
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there exists a constant ba such that

(3.6) (n + l)*fba ^A%^b*(n + l)β, n > 0.

The next lemma extends the above asymptotic estimate to complex
parameters.

LEMMA 6. Let a > —1, — oo < β < -foo, then

(3.7) i s IA;+ 'P/A;I ^ c * e * 2

/or #// integral n, where CΛ depends only on #. m

By (3.3)

AΓ* = Π ( l 4 - ^ ) andA^ Π

Therefore,

and, therefore,

The left-hand side of inequality (3.7) is now an immediately consequence
of (3.8). For the right-hand side we proceed as follows.

H

since c*; > —1. We now use the fact that 1 -f x g β*. Thus

Π (l + ^ ? ϊ ^ ) S exp I /S* 2 (*-l)» } S exp (/3V/6)

S e ^ , since 7r a/6^3.

Finally, we notice that

i + csvα + «a)3 ̂  Q(i + β*) s CΪ β?1,
for some appropriate C«.

Combining these estimates with (3.8) gives,

IAT'P/A I ^ C Ϊ * * 1 .
This concludes the proof of the lemma.

Let now f(θ) be an integrable function over (0, 2 7r) and let it have the
Fourier development

12) The estimate (3.7) is not the best possible, but certainly suffices for our
purposes.
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» eιv

Let τ%+ίβ(θ) = τ*+/e (#;/) denote the Cesaro means of order a + */3 (as defined
above) of the numerical series

Similarly, if F(w>) = F(peiθ), p < 1, is of class fl* o-J+W = σ£+*(0 F) will
denote the Cesaro means of order a -\- iβ of the series

oo

v = 0

where the Taylor expansion of F(^) is

Άw) = 2 ^ ^v

We shall also define

and similarly,

σi+tβ(θ;F) = sup

LEMMA 7. £e/ α > 0, Then

(1) τ%+V(θ ;f)SA

and
(2) | | τ ϊ + ' ^ ;/)|]p ^

where f*(θ) denotes the maximal function of Hardy and Littlewood,

f*(θ) - sup ~ - { \f{θ,.' + *>

We take for granted the following two well-known facts (see f 11]):
If a > 0, then

(3. 9) τ*'3 (θ f) S Accf*(θ),

and

Now let us make use of (3. 5) where we take λ = a/2, S = (a/2) -f iβ and
s*/3, the Cesaro sums of the Fourier series of f(θ). We thus have

13) From now on, Λa, will denote a general constant depending only on as which
may be different in various occasions.

14) In what follows, we shall only need the lemma in the case « = l/2 and ρ~ 2.
Since the proof, however, is no simpler in this special case, we include the general
case.
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By lemma 5, however,

\τV\θ)\ = \sfJ\
and, therefore, by (3.9)

<3.12) \s*J2(θ)\ 5 Aa(n + l)*'2/*(0

Substituting this estimate in (3.11), we get

/ n

(3.13) \s^!β(θ)\ ^ Aa( 2 \Λ^~ι^\

Lemma 5 and lemma 6, together, yield

Using (3.14) in (3.13) we obtain

:£ Aa{n

However,

by lemma 6? thus

iτr'WisAΛ|s-
by lemma 5. Therefore,

and part (1) of the lemma is proved. Part (2) follows from part (1) by making
use of (3.10). This concludes the proof of the lemma.

It will be our next aim to prove the following theorem

THEOREM A. Let FQ H1, then

/

lit 2τc

sup W*HlIA dθ^A e*P f I F(eJΘ) | dθ.
»sop log ( « + 2) ~~ J ' v n

0 0

REMARK : We note that, when β = 0, the above theorem reduces, to the
case p = 1 of theorem III.

For the proof of this theorem we need the following lemma:

LEMMA 8. Let F € IP and define

Then
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a lie lit

\l/2 if \

[Wψ F)Fdθ) S -A ̂  J IF(e!θ)\*dθl

Let F\eB)~ 2 t^e'1*. Then, as may easily be verified

σW*>+iβ(θ F) - σ^+'KΘ F)

Using ParsevaΓs identity and lemmas 5 and 6 we obtain

o »-«
n

Therefore,

(« + I ) ' 2 [log (w -t- 2)]-1 2 (« + 1 - z')

Where the last inequality follows by inverting the order of summation and
noting that

CO CO

2 2 (» + W-* Dog (» + 2)]"1 in + 1 - i;)-»

Therefore,

J [ΩW Fypdθ^AePJ {F^Y* dθ,
0 0

which is the desired result.
We now proceed to the proof of Theorem A. By the decomposition (2.12)

and (2.21)', we see that it is sufficient to restrict our attention to the case
When F has no zeros in \w\ < 1. We then write F(w) = G\w). We next use
the well-known relation
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(3.17) sW F) = >•G) 4λ--

(Which follows easily from (3.4), for example).
We set λ = iβ and then obtain

I σ'fφ F) I - I sf(θ F)/Λf \ S I s£(β F)!

by lemma 6, But, from (3.17) and Schwarz's inequality we get

Therefore,
n

\σg(θ; F)\ S 2 |s(-

By lemmas 5 and 6, however,
n n

G)|2 = 2

2 (» + D"1

Thus, for n ^ 0,

σ4"(g F)
log (M + 2)

log (n + 2)

, G) | 2

v + 1

log (n

β
= A e (v i + 2)

Finally,

I a-^φ F)f log (« + 2) I S A^2{Ω^2((9 G)}a + i l ^ σ -

Therefore, by lemma 7, when p = 2, and lemma 8?

sup log (M + 2)
\G(e'θ)\*dθ
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/ \F\e">)\dθ,
0

since F(e'θ) = [GV*)]*. This concludes the proof of theorem A.
We next prove a modification of theorem III in the case p - 2~k, k —

0,1,2
THEOREM B. Let p = 2~*, ft = 0,1,2, ...., «/*</ J«?f α - (l/ί>) - 1 = 2* - L

Suppose F € ZP. Then

log (n + 2)
0

This theoren reduces to theorem A when p = 1 (i.e.* = 0). We therefore
assume the theareji known for the case k — 1 and then deduce it for the case
k. As in the proof of theorem A, we may assume that F{w) has no zeros
when \w\ < 1. Again we write F = G2, and use the relation (3.17). We take
λ = a + ή8, where α: = (1/ί) — 1 = 2* — 1. We thus obtain

and, therefore,

WT*(Θ; F)\ S /L

Hence,

[log(» +"2)]I>" = {n + 1)- ^ [log(p + 2)]""

^ Aα eP sup {I o ( -».-« 'fl/* {θ G) I V[log (v + 2ψ»}.

From this it follows immediately that

0 0

We now apply the case k — 1 to the right-hand side. Since p = 2^, 2p =
2-ft+1 and, since α = (1/^) — 1, (α — l)/2 = (l/2ί) — 1. Therefore, the case
ft — 1 yields

\F(etΰ)\»dθ.
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This concludes the proof of theorem B.

PROOF OF THEOREM III. (Forthe statement of the theorem, see section 1).
We assume that 2~fc-1 < p < 2~k, since the case p = 2~fc is already covered

in theorem B. Let p0 = 2~fc~: and pi = 2~\ We shall prove the theorem by
interpolating (i.e. using theorem II) between the indices po and plt

Now fix niθ) as an integer-valued step-function on [0,277], so that 2 <Ξ
n{θ). We first show that

0

for every polynomial P(w), where AP does not depend on n(θ) and P(The:>rein
III will then be an easy consequence of this).

Consider now the family of operators on $ ( = class of polynomials defined
in §1) defined by

(3.19)

where

We notice that α(0) = 2*+1 - 1 = (l/p0) » 1 and a{l) = 2* - 1 = (Ifa) - 1.
Keeping P € $ fixed we claim that the following three facts hold

(1) TZ{P) is analytic from z in the strip S= {z;0^ $t(z) ̂  1}, into
where M = (0,2ττ) and dμ = dθ/lσg n(θ).

(2) log f ^^~ljc dθ is of admissible growth in S.
J log n (θ)
0

and

where logΛ/Λ^ΛEV* Λ-bj ~ 0,1, and α and £ are independent of P and w(#).
We now show (1). Suppose that

0

P(W)= ^
fc-0

By the linearity of TZJ it is sufficient to restrict ourselves to the case P(w)
= wh. Now

Since n{θ) is constant on each of a finite rαrnber ^ί intervals, then either
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or Te(u/°) = 0

on each such interval. However,

A$*l* (1 + a(z))..-- (1 4- a(z)/(nf - k))

is a rational function in z, since a(z) = 2fc+1 — 2 2* — 1. Moreover, since

2* - 1^ 31 (a(z))^2*+1 - 1 when 0 g 9k ^ 1,

this rational function has no poles in S. Clearly, therefore, we may write

m

(3.20) ΓΛM*) - 2 Γ ^ 2 ) % ^ ( ^) ] ^

where #z is the number of different values the function n{θ) assumes, X3 is a
characteristic function of an interval and Q3 is a rational function which is
analytic in S.

We now show (2). It is sufficient to see that

o

is of admissible growth in S. This last follows from (3.20) and the fact that
each log\Qj(z)\ is of admissible growth in S, since Qj is a rational function
with no poles there.

Finally, we prove (3). The two inequalities follow directly from theorem
B. For example,

a{iy) = 2fc+1 — 1 — iy2k. Thus7 the case k + 1 of theorem B implies

o

(whee pQ = 2-fc"1), and where Afc+i is independent of n(θ) and P. Similarly
for plm Thus we have (3) with a = 2-fc+1 and & = max {log Ab+i, log Ab}.

By (1), (2) and (3), we may now apply the interpolation theorem (theorem
II) to the operator family {Tz}. For this purpose we choose t, so that 0 < t
< 1, and set p = ̂ ?J where

The conclusion is

log
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At depends'only on t and the bounds obtained for A0(y) and Aι(y) in (3) above.
More simply,

With As independent of n(θ) and P.
However, a{t) - 2fc+1 - t2* - 1, thus a(t) = (1/P) - 1. To conclude the

proof of theorem III we first observe that (3.21) may be extended to all fun-
ctions in IP. Then we see that n(θ) may be chosen in such a way that

logn(θ)
0

is as close to
- 2 *(f

0

as we wish.
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