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Recently, in an Hermitian manifold T. Otsuki and Y. Tashiro [10]®
have studied the holomorphically projective change of the Riemannian con-
nection, i.e.a change which preserves the system of holomorphically planar
curves, and have obtained interesting results. In an almost complex manifold
Y. Tashiro [13] has also studied such a change of a symmetric affine con-
nection with respect to which the almost complex structure is covariant
constant. He has introduced the holomorphically projective curvature tensor
which is invariant under holomorphically projective changes of the connection
and has characterized the holomorphically projective flatness of the connection
by the vanishing of its holomorphically projective curvature tensor. He has
discussed also in [13] holomorphically projective correspondences of Kaehlerian
manifolds. In the present paper we shall concern ourselves with the holo-
morphically projective changes of an affine connection of some type and the
group of holomorphically projective transformations in an almost complex
manifold.

In an almost complex manifold® we call an afflne connection a ¢-con-
nection, if it preserves the almost complex structure. We consider a ¢-con-
nection I';, said to be half-symmetric, which behaves as if it had the sym-
metry I') =I",, in complex coordinates. Restricting attention to half-symmetric
¢-connection, we shall treat some problems concerning the holomorphically
projective changes. The theory of such changes of a half-symmetric ¢-con-
nection is analogous to that of projective changes of an affine connection. ®

M. Obata [9] has recently studied ¢-connections in a manifold, almost
complex, Hermitian or quaternion, and obtained many interesting and sug-
gestive results, which will play fundamental roles in the present treatments.
He has given some simple formulas characterizing completely a ¢-connection
in an almost complex manifold. It is also very useful for us that the torsion
tensor of a ¢-connection is completely characterized by its relations with
tensors intrinsically defined by the structure of the manifold.

1) The number in brackets refers to the Bibliography at the end of the paper.

2) In the present paper we shall restrict attention to manifolds which are of
differentiable class C= and satisfy the second axiom of countability. In_such a manifold
there always exists a Riemannian metric and consequently an affine connection (Cf.
Steenrod [12]). We assume further in the paper that any geometric object, for ex-
ample, any tensor field or any affine connection, is of class C=. We suppose for
simplicity that the manifold is connected. In a complex manifold we consider only
geometric objects which are analytic in real coordinates.

3) Ci.Weyl [16], Thomas [14], for instance.
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In §1 we shall define the half-symmetry and also the semi-symmetry of
a ¢-connection. The existence of a half-symmetric or semi-symmetric ¢-con-
nection will be established. Further, some preliminary lemmas are given.

In §2 we shall define holomorphically projective, briefly, H-projective
change of a half-symmetric ¢-connection, i. e. a change of such a connection
preserving the system of holomorphically planar curves, and characterize
such a change by a formula analogous to that of a projective change of an
affine connection. Other preliminary facts will be given by some lemmas.
In §3 we shall study the H-projectively flat, hal{-symmetric ¢-connection.

M. Obata has studied also in [9] the quaternion structure in an almost
complex manifold. In §4, by using his results, we shall deal with H-projec-
tive changes of a connection with respect to which the quaternion structure
is covariant constant.

In §6 we shall study a projective change which makes correspond a half-
symmetric ¢-connection to another®.

In an almost complex manifold with a half-symmetric ¢-connection we
consider a transformation of the manifold, said to be holomorphically projec-
tive, which preserves the almost complex structure and the system of holo-
morphically planar curves. It might be interesting to study the group of
holomorphically projective transformations. In §6 we shall study such a
group, which is compact, or, which preserves the Ricci tensor, in an analogous
way as in a previous paper [7].

In §7, we shall discuss some fundamental behaviors of the holomorphi-
cally projective, infinitesimal transformations of a half-symmetric ¢-connection
in an almost complex manifold. In §8, by using the results obtained in §7,
we shall study a group of holomorphically projective transformations of order
not less than 2(m? + m + 1) in a 2m-dimensional almost complex manifold on
a program analogous to that developed in [6] or in [15]. Then the following
fact will be established : If an almost complex manifold with a half-symmetric
¢-connection admits such a group, then the group is of the maximum order
2(m* + 2my), the connection is H-projectively flat, and the manifold is homeo-
morphic to the complex projective space.

The author wishes to express his gratitude to M. Obata who has given
valuable suggestions and frequent chances of discussions to the paper.

1. Affine connections in an almost complex manifold. In a differen-
tiable manifold an almost complex structure is defined by assigning to the
manifold a tensor field ¢;* such that®

4) Cf. Goldberg [4], Otsuki and Tashiro [10].
5) Indices take values as below: in real coordinates

a,b,c,...... , gk, =1,2,...... S0
and in complex coordinates
a,b,c,...... s Rad g kI, =1,2,...... ,m, 1, 3,.... ,m;
@&, B,y ...t s Ay iy ¥, Wy oeenen =1,2,...... s M,
@By oo My oy Wy @y =13, . (n=2m).

As to the notations, we_follows Schouten [11] in principle.
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1, if h=1

a, ah - __81{ i = ) ’

¢ b % {Qifh¢i
Then an almost complex manifold, i.e. a manifold with an almost complex

structure ¢, is necessarily of even dimension # = 2m.
The tensor N defined by

1
Nyt = > (s O1vpef* — ¢is® Oirha®)

is called the Nijenhuis tensor of the almost complex structure ¢;* or of the
manifold. In a complex manifold N, vanishes identically.

Let Q% be a tensor in an almost complex manifold defined by ¢:*. M.
Obata has introduced in [9] the following operators :

1
D Q" = 9 (@5 — PR nPd"), Q" = % (Q1" + P Qnbd"),

;- (@i + P scQci"P"n),

ES
2
The operators ¢; and &, can apply also to a tensor @;; just as above. We
have to recall some of formulas given in [9] for the later use as below :

d; + P, = identity, P®; + ®, = identity; O, = O, (r =1,2,3,4);

DDy = PPy =0, D3Py = OP; = 0; OD, = DDs (7,5=1,2,3,4);
(1.1) $o sz + Dby = PF

In an almost complex manifold an affine connection I'Y is called a ¢-con-

nection, if the almost complex structure ¢;* is covariant constant with respect

to I'}, i.e. if Vypi* = 0, where the covariant derivative of a vector field o*

is defined by

Il

1
PIQ ;" = Y (@ — 5Qui"P"), DIQy"

D:Q5:" = % (Qsi" — ¢ P:i"Qa™), PRy = - (Qs" + P Pi"Qer").

Av/] vt = oot 4+ IV]{,{L v
Let I, be an arbitrary affine connection. Then the affine connection I'}, —

:2L (Vs$:*)pa"* is denoted by ®I';. The following theorem is known:

THEOREM A.® Let Il‘j’L be an arbitrary but fixed affine connection in an
almost complex manifold defined by ¢i*. Then in order that an affine con-
nection I, in the manifold be a ¢-connection it is necessary and sufficient that
I}, be written in the form

]
I = ®TY + At

where Au" is a tensor field such that ®:A;" = 0, or equivalently, there exists
a tensor field B;" such as A" = O By’ ’

Theorem A implies that in an almost complex manifold there always
exists a ¢p-connection. Let S;" be the torsion tensor of an arbitrary ¢-con-

6) Cf. Theorem 7.1 in [9].
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nection; then we have?

(1 2) Njih = 2(132 <I>3 Sjt"-
From (1.2) it follows
1.3) ®; Nj* = 0.

A ¢-connection is said to be half-symmetric with respect to ¢;* or, briefly,
half-symmetric, if its torsion tensor S;* satisfies
(1 4) (I)1 (ba S;ih = 0
Now we have

THEOREM. 1. In an almost complex manifold there exists always a half-
symmelric ¢-connection.
1 1
ProoF Let I'); be an arbitrary ¢-connection and S;" its torsion tensor.
Then, by virtue of Theorem A, the connection
] 1
I =T% — ®; ®s S
1
is a ¢-connection. Since the tensor Sj;* is anti-symmetric in its covariant

1
indices, we see easily that &,P;S;” is also anti-symmetric. Hence, the
torsion tensor S;" of I'. is given by

Jt
1 1
S = Sy* — ®; P3 Syt

Applying ®,®P; to the both sides, we find ®,P;S;i* = 0 because O, D;P,Ps
= ®;®;. This shows that the I'}; is half-symmetric.

(2

We see by means of (1.2) that in an almost complex manifold a ¢-con-
nection is half-symmetric if and only if its torsion tensor Sj;* satisfies

(1 5) Njih' = 2 (Ds Sﬂh’.

It is known that for an arbitrary symmetric affine connection I'}, the ¢-con-
nection @I}, has the torsion tensor S;* satisfying (1.5)». Thus we have

LemMa 1.1. Zet I, be an arbitrary symmetric affine connection. Then the

¢-connection ® 1%, is half-symmetric.

We assume that the torsion tensor S;" of a ¢-connection I';* satisfies
(1.6) Sut— T DS =0, S,=Su"

Then, the ¢-connection I is said to be semi-symmetric with respect to ¢
or, briefly, to be semi-symmetric. The torsion tensor S;" of a semi-sym-
metric ¢-connection satisfies ®;P;S;" = 0 because of ®;P, = 0. Thus we see
that any semi-symmetric ¢-connection is half-symmetric. We have now

THEOREM 2. In order that in an almost complex manifold there exist a
semi-symmetric ¢-connection, it is necessary and sufficient that the Nijenhuis

7) Cf. Theorem 7.3 in [9].
8) Cf. Lemma 7.1 in [9].
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tenor N;* of the manifold vanish identically.

Proor. Let I', be a semi-symmetric ¢-connection and Sj;" its torsion
tensor. Then ®.d;S;* = 0 holds good, since PP, = 0. This together with
(1.2) implies Nj" =

Conversely, if N,," =0, we see that in the manifold there exists a
certain symmetric ¢-connection. In fact, it is known that an almost complex
manifold admits a symmetric ¢-connection if and only if its Nijehuis tensor
N;® vanishes identically®. It is obvious that any symmetric ¢-connection is
semi-symmetric. Thus there exists a semi-symmetric ¢-connection in the
manifold.

In a complex manifold any quantity, say 7", is said to be self-adjoint,
if

’Tj ho— }—h
in complex coordinates. 1 The self-adjoint quantity represents a real quantity
in real coordinates and vice versa. The self-adjointness of a tensor is
preserved by covariant differentiation with respect to a self-adjoint affine
connection. We shall restrict ourselves to self-adjoint quantities.

In a complex manifold the complex structure ¢;* has thé numerical
components

@ (J 18 0 )

# 0 — =18
with respect to complex coordinates (z*, z*). Thus we have easily the fol-
lowing facts: In a complex manifold an affine connection is a ¢-connection,
if and only if

2 =0, I'x =
T g

in complex coordinates.!” It is easily seen that a ¢-connection 1Y, is half-
symmetric if and only if

P)‘_'P)‘

vw!

conj.; Iy, =0, conj.

in complex coordinates, ' and also that a ¢-connection I'jis semi-symmetric
if and only if its torsion tensor S;" has the components

S,y =0, S,2=0, conj. ;

Syt= — St = Ard), conj.,

where A; is a certain vector field.

1.7

2. Holomorphically projective changes of affine connections. Let

9) Cf. Frolicher [3], Obata [9], for example.

10) A=n, if h=a; and A= if h=Ar.
The bar on the central letter denotes the complex conjugate.

11) Cf. Obata [9], for example.

12) The sign “conj.” denotes the complex conjugate ohfe formulas already
written.
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be a half-symmetric ¢-connection in an almost complex manifold. We consider
in the manifold a curve defined by means of differential equations of the
form :
d'th.
2.1) ar
where «a(t) and B(¢) are certain functions of the parameter £. We call such
a curve a holomorphically planar curve.’® The set of all holomorphically
planar curves is called the system of holomorphically planar curves. If the
function [B(#) vanishes identically, the differential equation (2.1) defines the
paths of the connection.
Consider a vector »* at a point p of the almost complex manifold. Then

the plane element at p spanned by the two vectors »* and = %" is called
a holomorphic section containing the vector 2. A curve is holomorphically
planar, when and only when the holomorphic section containing the tangent
vector of the curve is parallel along the curve itself.

For a vector #; we denote by #; the vector ¢, #,. We have now

p dX°dx oy dxt . dx*
Tl g g = g T ROE G

LemMma 2.1. Let I}, and P}"i be two half-symmetric ¢-connections in an
almost complex manifold. Then, the two connections have all holomorphically
Dlanar cvrves in common, when and only when

(2.2) Dy, =T + F8l — Fupih + T8t + Typit
holds for certain vector fields F; and T;.

Proor. When I'}; has the form given by (2.2), itsis obvious that the two
connections I}, and fﬁ have the common system of holomorphically planar
curves. Conversely, we suppose that I'; and T, have all holomorphically
planar curves in common. Thus, on putting

At =T - T,
we have
(2.3) Azt = Uydly + Visdn* + Py,
where U; and V; denote certain vector fields and Py = A

Since the ¢-connections I'}; and f‘j‘,. are half-symmetric, from Theorem A
and the definition of half-symmetry it follows
(2.4) DAt =0, O, D3Py = 0.

We have to note that ®.Q;" + ®¥@Q:* = 0 holds good for any tensor ;"
such that @ " = 0. Taking:aceount of-this fact, we find by virtue of (1.1)

PP Pyt = — PP — DD Pyl
According to (2.4), this inplies
(2.5) Py = @,Ps" — O Pi s — O, D3Py,

15) Cf. Otsuki 2and Tasairo [10], Tashiro [13].



HOLOMORPHICALLY PROJECTIVE CHANGES 279

On the other hand, applying ®. to the both sides of (2.3), we have by
virtue of (2.4)

Pyt = — % (88 (U — V) + $MUs + Vo))

If we substitute this in (2.5), we find

Pyt = U8k + Uit — Viy 8% — Visit
Thus from (2.3) it follows

Ayt = Fy 8 — Fopo + Todt + Tapi,
where we have put

Fy=U;+V,, T;=U;—V,

Lemma 2.1 is thereby proved completely.
We have the following lemma as an immediate consequence of Lemma
2.1.

LEMMA 2.2.19 Two symmetric ¢-connections I, and T have all holo-
morphically planar curves in common, when and only when

(2.6) L), =T + Fdl, — Fodn"
holds for a certain vector field F;.
Let I';, and f}‘i be two half-symmetric ¢-connections satisfying (2.2) for

certain vector fields F; and T';. Then the correspondence TV, —rl‘}"l is called
a holomorphically projective change™ or, briefly, an H-projective change of
I, Such two half-symmetric ¢-connections are said to be H-projectively
related to each other.

If we take the anti-symmetric parts of the both sides of (2.2) with respect
to the covariant indices, we have

gjzh = Su" + T[j&"] + ﬁjﬁbt]h,
where S;* and S;* are the torsion tensors of I' and I, respectively. Con-
tracting indices 7 and Z, we find

2
Tj = —n— (Sja.a - Sjaa).

If we substitute this in the right-hand side of the above relation, we obtain
easily

Syt — % ¢4(S{1811’") = St — % Po(SuBi),

14) Cf. Tashiro [13].

15) Such a change has been said to be holomorphically projective by Otsuki and
Tashiro [10] in an Hermitian manifold. In an almost complex manifold Tashiro [13]
has called such a change holomorphically projective correspondence for symmetric
connections. By Schouten and Struik such a change was called “Bahntreue Transfor-
mation”.
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where S; = Sji, S; = Sj®
Consequently, we have

LeMMA 2.3. Let S;* be the torsion tensor of a half-symmetric ¢-connection
in an almost complex manifold. Then the tensor

Syt — % D(S;87)

is invariant under H-projective changes of the connection, where S; = S;a*

COROLLARY. If a half-symmetric $-connection is H-projectively related to
a symmelric ¢-connection, then it is semi-symmelric. Conversely, a semi-sym-
metric ¢-connection is H-projectively related to a symmetric one.

Proor. The first part is an immediate consequence of Lemma 2.3. Then
we shall prove the second part. Let I, be a semi-symmetric ¢-connection
and Sj” its torsion tensor. We consider an H-projectively related ¢-connection
A defined by

2.7 Al =T — %‘ D«S;8D),
where S; = S;i". Denoting by T';* the torsion tensor of A}, we find
{2.8) Ty = Syt — ’;4; Dy(S567)-

The right-hand side vanishes identically, because the I is semi-symmetric.
Therefore, the ¢-connection A% is symmetric.
Now we have easily

LEMMA 2.4. For a half-symmetric ¢-connection I, the quantity
2 3,
2.9) 5 =10 — o Midh — Tada"dn™ —;22— (T8t + /L")

is invariant under H-projective changes of I'. Conversely, if we have I}, =

10}, for two half-symmetric ¢-connections 1", and I, then the two half-sym-
metric ¢-connections are H-projectively related to each other.

The II’; is not an affine connection, but it seems to be a quantity cor-
responding to the projective connection of T.Y.Thomas [14]. The II} trans-
forms like an affine connection under the transformation of coordinates whose
Jacobian determinant is constant.

3. The holomorphically projective flatness. Let I, be a half-sym-
metric ¢-connection in an almost complex manifold. Let us suppose that for
any point of the manifold there exists a certain neighborhood of the point
in which I'}, is H-projectively related to a flat ¢-connection. Then the half-
symmetric ¢-connection I'}; is said to be H-projectively flat.

We consider the half-symmetric ¢-connection A’ formed from a half-
symmetric ¢-connection I', by means of (2.7). Then A}, is H-projectively
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related to I'},. If T is supposed to be H-projectively flat, then A’ is sym-
metric. In fact, the torsion tensor T';" of A’ is given by (2.8). By virtue
of Lemma 2.3 we see that T, vanishes identically because of the H-projective
flatness of I';. Since A% is H-projectively related to I";, the H-projective
flatness of I, implies that of A%. Thus we have

LeEMMA 3.1. I'n order that a half-symmetric ¢-connection I’ e H-projectively
Sflat it is necessary and sufficient that there exist an H-projectively flat, sym-
metric ¢-connection which is H-projectively related to T7;.

Lemma 3.1 implies together with Theorem 2 that the Nijenhuis tensor of
an almost complex manifold vanishes identically if the manifold admits an H-
Drojectively flat, half-symmetric ¢-connection.

As to the symmetric ¢-connection 1Y, Y. Tashiro [13] has recently intro-
duced the tensor
3.1 Ppyi" = Ry + 8 Py — Pun 87 — ¢u” Pin® + Papips® i
in an almost complex manifold of dimension #z >2 and call it the holo-
morphically projective cr, briefly, H-projective curvature tensor ofI'};, where
Ry and Ry = Ryj® are respectivey the curvature tensor and the Ricci tensor
of I'}, and Pj; is defined by

2 2
(3.2) Py = —.m{Rﬂ + — O3(Rys -+ Ru)}-

He has proved that the H-projective curvature tensor Piyu" is invariant under
H-projective changes of I, and that in order that the I'}, be H-projectively flat
in an almost complex manifold of dimension n > 2 it s necessary and sufficient
that Py vanish identically.

The ¢-connection A’ defined by (2.7) is symmetric, if the ¢-connection
I’;‘i is semi-symmetric. Then we see that the H-projective curvature tensor of
A}, is invariant under H-projective changes of Iy, if T} is semi-symmetric.

From the argument above given it follows that iz an almost complex
manifold of dimension n > 2 a half-symmetric p-connection is H-projectively flat
if and only if the connection is semi-symmetric and the H-projective curvature
tensor of the connection Al defined by (2.7) corresponding to the given con-
nection vanishes identically.

The  following theorem has been proved also in [13].

THEOREM B. In order that a Kaehlerian manifold of dimension n > 2 be
H-projectively flat'®, it is necessary and sufficient that the manifold be of constant
holomorphic sectionai curvature.

4, Quaternion manifolds. Let us consider an #-dimensional manifold
admitting two almost complex structures ¢;* and ;" satisfying
4.1 G Yo + PriPa" = 0.

16) If in a Kaehlerien manifold the Riemannian connection is H-projectively flat,
then the manifold is said to be so.
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Such a manitold is called a quaternion manifold and the pair (¢p:*, Y:*) of
two tensors satisfying (4.1) is called a qguaternion structure.'™ Then it is
known that any quaternion manifold is of dimension » = 4 p.

Now, if we put Ki* = ¢, we see that K;* is also an almost complex
structure, i.e. K;°K,* = —8&". If (¢:" Yri")is a quaternion structure, (Yri*, Ki*)
and (K", ¢;*) give the same quaternion structure to the manifold [9].

In a quaternion manifold an affine connection is called a (¢, ¥)-connection,
if the two almost complex structures ¢;* and yr® are covariant constant with
respect to the connection. Then, the almost complex structure K;* is also
covariant constant with respect to any (¢, ¥r)-connection.

Now, let us consider a complex manifold with a quaternion structure
(¢p:*, ¥i*) of class C», where ¢:* represents the complex analytic structure.

Let (2%, 2") be a system of complex coordinates with respect to ¢:*. Then,
in (2,2") ¢:#, ¥ and K;* take the following components respectively® :
VT8 0 0 0 TP
@0 =( )=, )@= (X
0 —A =18 v.x 0. —/=19r 0
It is known that in a complex manifold with a quaternion structure (¢p:*,
Vi), where ¢;" gives the complex analytic structure, the (¢, ¥)-connection T';
is determined if a tensor field T " of type in (1,2): is given the manifold
= —(0Nr® Wra* — V8 Tyge Yzt  conj.;
4.2) \ .
IS, = Ty : , conj.,
the others being zero.'®
Let us suppose that a (¢, ¥)-connection 1Y}, is semi-symmetric with respect
to the complex analytic structure ¢.*. Then by means of (1.7) the torsion
tensor S;" of I'}, has the components :

Siut = —Sa* = A7S), Syt = —Suwk = A8,
the others being zero, where A; is a certain vector field. Thus, taking ac-
count of (4.2), we find

A=A @b bt

Consequently, in a complex analytic manifold with a quaternion structure
(¢i*, ¥:") where ¢ gives the complex analytic structure, there exists a
unique (¢, ¥)-connection which is semi-symmetric with respect to ¢:*.

It is known®*® that in a complex manifold with a quaternion structure
(¢*, ¥:i*), where ¢ gives the complex analytic structure, there exists a
symmetric (¢, ¥)-connection if and only if the Nijenhuis tensor Nj*(yr) of
V¥;* vanishes ideatically. We note here that N;#*(yr) = 0 if and only if O;Yr.X

17) Cf. Ehresmann [2], Libermann [8], Obata [9]
18) - Cf. §2, Chap. I of [9].

19) C.. Theorem 11.1 in [9].

20) Cf. Corollary 2 to Theorem 11.1 in [9].
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= 0. Hence, the vector A; above obtained is necessarily zero, iif Ny () = 0.

Thus, any (¢, ¥)-connection is symmetric in such a manifold, if Nu*y) =0
and the connection is semi-symmetric with respect to ¢ Further, the
unique symmetric (&, ¥r)-connection is given by

(4.3) I, = —@,Yuonpar, conj.; I‘gﬁ =0, conj.

The curvature tensor Ry;" of the symmetric (¢, ¥)-connection given by
(4.3) has the components

R«Zv;} = ‘—Rw;u)‘ = —‘a&((av"’"p.d) ‘!"EA):
the others being zero*. Thus the Ricci tensor Rj vanishes identically. In
fact, we see

R;p = Rgp® = a;((aw'\l’ug) ‘I"EQO =0.
As the Ricci tensor Ry vanishes identically, the H-projective curvature tensor

with respect to ¢:* coincides with the curvature tensor for the symmetric
(¢, ¥)-connection. Thus, we have

TueoreM 3. Let I'}, be a half-symmetric (¢, V)-connection with respect to
b in a complex manifold with a quaternion structure (P, \r;"), where ¢;*
gives the complex analytic structure. If I'; is H-projectively flat with respect

to ¢, and, if Nu"(¥) =0, then I is of zero curvature.

Now we assume that in a Kaehlerian manifold defined by (gj:, ¢:*) there
is given another almost complex structure 4;* which constitutes a quaternion
structure (¢, Yri?) together with ¢;*. We further assume that the Rieman-

nian connection leaves ;" invariant, i.e. %pln-"= 0. Then, we say that
the given manifold is a Kaehlerian manifold with a quaternion structure. It
is known that the Ricci tensor of a Kaehlerian manifold vanishes identically
if the manifold has a quaternion structure.??® Thus we have

THEOREM 4. If a Kaehlerian manifold defined by (g;:, ") has a quaternion
structure (¢p:*, i), and, if it is H-projectively flat with respect to ¢i*, then it
is of zero curvature.

5. ¢-projective changes of half-symmetric ¢-connections. We as-
sume that in an almost complex manifold two half-symmetric ¢-connections

I'}, and f“;‘[ have all paths in common. Then, as is easily seen, on putting A" =

I —T%, we have
Ayt = Fy8}y + Pyt
where F; is a certain vector field and Py = Ay .
Now we shall determine the tensor Pj;* and then the tensor A" The

connections I, and I being ¢-connections, from Theorem A it follows

®,A;5" =0. Thus we see

21) Cf. §11, Chap, III of [9].
22) Cf. Theorem 17.1 in [9].
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Since these two connections are half-symmetric, we have ®&;P; P;i" =
Combining this with (5.1), we find d;P;® =0, since &, + @®; = identity,

(I)3¢4 = O.
Since P = 0, it is easily seen that &, P;*+ ®¥P:#=0. By virtue

of this and (1.1) we have
D, Pt = — Py Pif — DDy Pi s
Taking account of ®; Py* =0, we find now
®, Psi* + O, Pif» =0
because of ®; - P, = identity. Thus we obtain
Pt = @y Py — Py Pi
from which we have, substituting (5.1),
P = Dy(F50}).
We have therefore
LemMA 5.1. In order that two half-symmetric ¢-connections 1, and T,
have all paths in common, it is necessary and sufficient that
(5.2) Il =T + F8n" + Dy(F8})

holds for a certain vector field F;.
If we put A, = 5 Fy, Ty =Fj, from (5.2) it follows

F;"i = P?[, -+ A(jB?) — X(j(l)i)h + T;6:" + Fi‘j¢ih-
Thus the change (5.2) of a half-symmetric p-connection is an H-projective change.
Therefore, two connections 17 and I'%, have all holomorphically planar curves
in common. Two half-symmetric ¢-connections related by means of (5.2) are

said to be ¢-projectively related to each other. The correspondence I'j— I,
defined by (5.4) is called a ¢-projective change of the half-symmetric ¢-con-
nection I"j?,-. From the corollary to Lemma 2.3 we have now

LemMA 5.2. A half-symmetric $-connection is semi-symmetric, if it is ¢-
DProjectively related to a symmetric ¢-connection.

LemMma 5.3. Let T, be a half-symmetric ¢-connetion and Sj" its torsion
tensor. Then the half-symmetric ¢-connection

4 4
(.3) jo= T — - Sl — - 4S8y, Sj = Sy

.. . . h . -
is tnvariant under ¢-projective changes of I'j,. Conversely, if we have 3, =

SN for two haif-symmetric ¢-connections I and ITg‘L., then the two connections
are ¢p-projectively reiated to each otlher.

Proor. It is easily seen that the ¢-connection I; is half-symmetric. Let

S,i* be the torsion tensor of the ¢-projectively related half-symmetric ¢-con-
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nection T}, given in (5.2). Taking the anti-symmetric parts of the both sides
of (5.2) and contracting % and ¢, we find

4 =
F= (5, -
J ”(J SJ);

where S; = Sj*. If we substitute this in (5.2), we have a relation which
shows that the ¢-connection 3, defined by (5.3) is invariant  under the ¢-
projective change (5.2). The first part of Lemma 5.3 is thereby proved.
The second part will be proved easily.

COROLLARY. If two symmetric ¢-connections are projectively or, equivalently,
¢-projectively related to each other, then they coincide with each other.

Thus we have

THEOREM 5.2 In a complex manifold, if two Kaehlerian metrics have all
geodesics in common, then their Riemannian connections coincide with each
other.

Keeping assumptions as in Theorem 5, we see that the two metrics are
homothetically related to each other 'if, moreover, at least one of the given
Kaehlerian metrics is irreducible.

Let I}, be a half-symmetric ¢-connection in an almost complex manifold.
Let us suppose that for any point of the manifold there exists a certain
neighborhood of the point in which I'}; is ¢-projectively related to a flat ¢-
connection. Then the given half-symmetric ¢-connection I'}; is said to be ¢-
projectively flat. 1f the Riemannian connection of a Kaehlerian manifold is
projectively or, equivalently, ¢-projectively flat, then the manifold is said to
be projectively or ¢-projectively flat. Now we have the following

COROLLARY. If @ Kaehlerian manifold is projectively flat, then the manifold
is of zero curvature.

6. Compact groups of H-projective transformations and groups of
H-projective transformations preserving the Ricci tensor. In an almost
complex manifold defined by ¢;* we consider a transformation leaving the
almost complex structure ¢;* invariant and call it a ¢-transformation. Let

17 be a ¢-connection in the manifold; then the affine connection I, induced®
from I}, by a ¢-transformation is also a ¢-connection. If I'; is half-

symmetric, then I is also.

We assume that a ¢-transformation s carries any holomorphically planar

curve of a half-symmetric ¢-connection I'; into such a curve. Then, the ¢-
transformation s is said to be kolomorphically projective or, briefly, H-projective

with respect to I'},. According to Lemma 2.1 we see that in this case the
half-symmetric ¢-connection I’j’i induced from I, by sis related with I by

23) This theorem has been proved by Bochner [1].
24) Cf. Ishihara {7], for example.
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means of (2.2).
Let us consider a group® of H-projective transformations of a half-

symmetric ¢-connection I in an almost complex manifold. If there exists
in the manifold an H-projectively related half-symmetric ¢-connection which
is invariant under the group, then the group is said to be essentially affine

with respect to the I';.
We have now the following theorems in an analogous way as in a

previous paper. *®

THEOREM 6. A group of H-projective transformations of a half-symmetric
¢-counection is essentially affine, if the group is compact.

THEOREM 7. A transitive group of H-projective transformations of a half-
symmetric ¢p-connection is essentially affine, if its isotropy group is compact.

Corresponding to Theorem 3 in [7] we have the following theorem, if
we take account of the results which will be given in §7 and §8.

THEOREM 8. Let G be a transitive group of H-projective transformations of
a half-symmetric ¢-connection, which is not H-projectively flat, in an almost
complex manifold. If the identily component of the linear isotropy group of G
at a point is irreducible, then G is essentially affine with respect to the given
connection.

Theorem 8 implies together with Theorem B the following

COROLLARY. Let G be a transitive group of H-projective transformations of
a Kaehlerian manifold whose holomorbphic sectional curvature is not constant.

If the identity component of the linear isotropy group of G at a point is ir-
reducible, then G is essntially affine with respect to the Riemannian connection.

In a complex manifold of dimension # = 2m, we consider a symmetric
¢-connection I, and an H-projective transformation s of I'%,. Then the ¢-con-
nection I'}; induced from I'}, by s isrelated to I'}; by means of (2.2). Denoting
by R.;" and R.;" the curvature tensors of Iy and I}, respectively, we have
by virtue of (2.2)

(6.1) Riji" = Ry + 8% Fy, — Fue 8 — @LFnuP? + Flep b,
where Fy; is defined by
Fj = V;F; — (I)s(FjFi).
Contracting z and % in (6.1), we find
(6.2) Rji = Ry + OFy: + Fiy) — ﬂ—;i Fyi,
where R;; and Rj; are the Ricci tensors of I and Tj."i respectively.

We suppose that the transformation s preserves the Ricci tensor, i.e.,

Ry = Ry. Then from (6.2) it follows that

25) We restrict attention to Lie groups in the paper.
26) Cf. Theorems 1 and 2 in [7].
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Dy(Fyi + Fiy) — ”—;-2 Fyi=0

which implies, provided # > 2, F;; = 0. Thus, we have

LemMma 6.1. In a complex manifold of complex dimension m > 1, if an H-
projective transformation of a symmetric $-connection preserves the Ricci tensor,
then the vector field F; corresponding to the transformation satisfies
(6.3) . ViF: = O3 (F;F;).

It is easily seen from the above argument that an H-projective transfor-
mation of a symmetric ¢-connection preserves the curvature tensor if and
only if it leaves the Ricci tensor invariant. We have the following lemma
as in a previous paper.?

LEMMA 6.2. If in a complex manifold with a symmetric p-connection there
exists a non-trivial vector field F; satisfying (6.3), then the homogeneous holo-
nomy group of the manifold has an invariant hyperplane and the restricted
homogeneous holonomy group of the manifold has an invariant covariant vector.

In a complex manifold M with a half-symmetric ¢-connection we denote
by HP(M) and A(M) the group of all H-projective transformations and that
of all affine transformations respectively. We shall denotelby HP*(M) the group
of all H-projective transformations preserving the Ricci tensor. In a Kaehler-
ian manifold we denote by I(A) the group of all isometries and by HP(M),
HP*(M) and A(M) respectively the corresponding groups with respect to the
Riemannian connection. By virtue of Lemma 6.2, we have the following

theorem as in a previous paper®®,

THEOREM 9. Let M be a compiex manifold of complex dimension m > 1
with a symmetric $-connection. If the homogeneous holonomy group of M has
no invariant hyperplane, or, if the restricted homogeneous holonomy group has
no invariant covariant vector, then HP*(M') = AWM). If, moreover, the Ricci
tensor of M wvanishes identically, then HP(M)= A(M).

We can prove the following lemma as in a previous paper. 29

LeMMA 6.3. In a complex manifold with a symmetric ¢-connection, if a
covariant vector field F; satisfying (6.3) has no singularity at any point, provided
the manifold to be complete with respect to the ¢p-connection, then F; vanishes

identicaily.
As a consequence of Lemma 6.3 we have the following theorem just as
in a previous paper.3®

THEOREM 10. If a complex manifold M of complex dimension m > 1 is
complete with respect to a symmetric d-connection, then HP*(M) = AM). If,

27) Cf. Lemma 3 in [7].
28) Cf. Theorem 6 in [7].
29) Cf. Lemma 4 in [7].
30) Cf. Theorem 7 in |7].
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moreover, the Ricci tensor of M vanishes identically, then HP(M) = A(M).

We denote by HPYM) the identity component of the group HP*(M) and
use analogous notations for the other groups. We have now the following
theorems as in a previous papers®.

THEOREM 11. If the restricted homogeneous holonomy group of a complete
Kaehlerian manifold M has no invariant vector, and, if M is of complex dim-
ension m >1, then HPXM)= I(M). If, moreover, the Ricci tensor of M
vanishes identically, then HPy (M) = I,(M).

THEOREM 12. If M is a compact Kaehlerian manifold of complex dimension
m > 1, then HPYM) = I{M). 1If, moreover, the Ricci tensor of M vanishes
identically, then HPyM) = I,(M).

7. Infinitesimal H-projective transformations. In an almost complex
manifold defined by ¢;» an infinitesimal transformation #”" is called an infini-
tesimal ¢-transformation, if #”* preserves?® the almost complex structure
(;bi", ie. , if
(7 1) di; ¢ih = uaaa¢£h, —_ qSi“aau" + ¢b"'aiub = 0,

u

where £ denotes the operator of Lie differentiation3® with respect to z". Let
w

I, be a half-symmetric ¢-connection in the manifold. We call an infinitesimal
¢-transformation #* an infinitesimal H-projective transformation of T%, if we
have

(7.2) £ T = Fodlh — Fudh -+ T8 + Tpi

for certain vector fields F; and T;. If the connection I}, is symmetric, the
condition (7.2) is reduced to

(7.3) £ T = Fdlh — Fudh.

Let #* be an infinitesimal H-projective transformation of a half-symmetric
¢-connection I'}, in an almost complex manifold. Contracting 7% and 7in (7.2),
we find

; n42
£Pj‘1= _é— Fj+Tj.

Further, contracting % and j in (7.2), we have
n+2

a,%]?‘gj = 7* Fj.
From these two relations it follows that
2 1 _ 2 .
R= g D= ETh

31) Cf. Theorems 8 and 9 in [7].

32) If the Lie derivative of a geometric object vanishes with respect to an infi=
nitesimal transformation ", then we say that u* preserves the geometric object.

33) Cf. Yano [17].
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If we substitute this in the right-hand side of (7.2), we obtain
(7.4 £1I5, = 0,
w

where II% is the quantity defined By (2.9) corresponding to I'y,. It is easily
verified that the Lie derivative £ II} is a tensor. By using (7,4) we have

LEMMA 7.1. Let u" be an infinitesimal H-projective transformation of a
half-symmetric $-connection I'Y; in an almost complex manifold and p be a point
of the manifold such that w* does not vanish at p. Then, in a certain neigh-
borhood of p there exists a system of coordinates (x') such that 0, 11}, = 0.

This lemma implies together with Lemma 2.4

LEMMA 7.2. ZLet G be a one-parameter groud of p-transformations in an
almost complex manifold with a half-symmetric ¢-connection I'},. If the infini-
tesimal transformation induced by G is H-projective with respect to 1"}, then
the group G is that of H-projective transformation of T

By means of Lemma 7.2 the problems concerning groups of H-projective
transformations is reduced to those of infinitesimal H-projective transforma-
tions, as far as connected groups are concerned.

Let us consider two infinitesimal H-projective transformations #* and o".
We define as usual the product w”* of #" and 2" by

wh = U " — v Oats".
Then, as is well known, we have3®

(7.5) g1 = £ &) — £ &)

In an almost complex manifold with a half-symmetric ¢-connection I',
we construct the half-symmetric ¢-connection A%, defined by (2.7) corresponding
to I;,. It is easily seen from (7.2) that for an infinitesimal H-projective
transformation #" of T,

(7.6) £ Al = Fodly — Fodo!
holds. We suppose that £ AY = Gl — 5( " holds good for another infini-

tesimal H-projective transformation . Then from (7.5) it follows easily
@.7) £ Ay = Hy8 — Hopo',  Hy=£G,— £F,,

w
where w" is the product of #* and »". We see thereby that in an almost
complex manifold with a half-symmetric ¢-connection the set of all infinitesi-
mal H-projective transformations of the ¢-connection forms a Lie algebra.
Now we shall consider the integrability conditions of the differential
equations (7.6). It is well known3?>

?r;l Ry = Vk(%, Ay — Vj(% A)—2 Tw“(flz AL,

34) Cf. Yano [17].
35) Cf. Yano [17].
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V; denoting the operator of covariant differentiation with respect to A% where
Ry;* and Ty" are respectively the curvature tensor and the torsion tensor
of A%. Substituting (7.6) in the right-hand side cf the above relation, we
have

(7.8) %; Ryt = —Sf'i,Vj}Ft + VFi 8 + ¢LthJJ—ﬁi ~- VLkF‘J.¢l”

— 2T (F @bty — ﬁ(a‘ﬁl)’b)-
Contracting 2 and %, we find
(7.9) a'€ Ry = Dx(V;F; + ViF5) — o Vth ZFa O, Ty

because of T = Tp%? = 0, where Ry denotes the Ricci tensor of A}, Now
we have to note that for any infinitesimal ¢-transformation #" the operator
£ commutes with each of the operators ®,, i.e., £ &, = P, L(r =1,23,4).
w ‘ w %

If we apply @; to the both sides of the above relation, we have, provided
n>2,

D(V;F: + ViFy) = —rz'_*z 3::, Dy(Ry: + Rij)
because of ®,®; Ty" = 0 and hence
; 2
(7.10) VjFi = % Pji + nF 2 Fa®, Tji

where Pj; is the tensor constructed formally from A% by means of (3.2).
By virtue of (7.6) and (7.10), if we put ;" = y;u", we see that #", F;
and #;* form a system of solutions of the differential equations

Vjuh = ufhy
Vi = 20V Ta" +2 4 Ta"— u'Ray" —F 587 + Foupn®,

ViFi = uJaPyi + Paites® - Pjatti® + + i Fa®, T 0.

We have thereby

LEmMA 7.3. Let u" be an infinitesimai H-projective transformation of a
half-symmetric ¢-connection in an almost compiex manifold of dimension n > 2
and F; the vector field given in (7.6) corresponding to u". If all of u", F; and
viu" vanishes at a point of the manifold, then u" vanishes identically.

We take a point py of an almost complex manifold with a half-symmetric
¢-connection I'},. It is easily seen that the set of all infinitesimal H-projective
transformations of I') vanishing at p, forms a subalgebra & fof the Lie
algebra @ of all H-projective infinitesimal transformations of I'}:. The algebra
&, is called the isotropy Lie algebra of & at p,. Let T, be the tangent
space of the manifold at the point po. Then in T, there exists a system of

complex coordinates (£, £)) in which the value (¢;*); of the almost complex
structure ¢:* at p, has the components

TR
") = («/—18“ 0 —).

7.11 R
¢ ) 0 — A =18
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respect to I". Thus the argument developed above concerning A} applies

also to the flat ¢-connection I'}; in U.

Let #" be an infinitesimal H-projective transformation of I'j. Denoting

by v; the operator of covariant differentiation with respect to I'j, we see
according to (7.2) that

(7.14) V) Vi " = F; 8% — Fobo'
holds in U for a vector field F;, since T'};is flat. From (7.10) it follows that
(7.15) V;Fi =0

holds in U if n = 2m > 2.

We consider another infinitesimal H-projective transformation »" of I',.
Denoting by G; the vector field corresponding to »*, we see from (7.7) that
the vector field H; corresponding to the preduct w" of »"* and o" is given in
U by

(7.16) H;=GuV;u" — FaV; 0"
because of (7.15). We see further on account of (7.14) that
(7.17) Vi = Vi 4 Ve 0" — Vi % Va 0"

+ u(Gud — Gapa') — vA(F bl —Fupa)
holds in U. From the definition we have in U
(7.18) w" = UV " — v Vaul.
The tensor V; #" has self-adjoint components, such as given in (7.12),in

complex coordinates (£*, £') in the tangent space T, at po. If w" is the product
of two infinitesimal H-projective transformations #™ and ", denoting by a*(»),

a(x) and a,Nu) respectively the values of #* F; and V%" at a point p, with
respect to (E* '), we have by virtue of (7.16), (7.17) and (7.18)
a\w) = a*(w)as\(v) — a®(v)aNu),
aw) = a,u)asv) — a,(v)au),
aNw) = a,(w)a M v) — a.4(v)a*(u)
— (a(u)aNv) — a,(v)aNn))
— (au(u)a™(v) — as(v)a™(u)) 8.

For an infinitesimal H-projective transformation #* we define as below:

. 1 ’
b(u) = — mal a,"(u), bu) = a.u),
1
bo)'(u) = —a\(u), b,,_"('u) = a,,f‘(u) — h—‘_l_—l aw’”(u)S’l)_.
Then the above relations can be witten as follows:
m m
(7.19) br(w) = 2 b(w) b2(v) — > b (v) b (w),

r=0 r=0
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Let %" be an element of ¢; and F; the vector field corresponding to it.

Then, from (7.1) it follows

(%) o(Vat")o = (Vitt®)o (Pa™)o,
(viz")y denoting the value of V" at p,, since #" vanishes at p,. Thus,
taking account of (7.11), we see that (Vi#"), has self-adjoint components

L a,Nu) 0 )
(7.12) s ( . )
in complex cocrdinates (£*, £') introduced in T,. Denoting by a.(%) the com-
ponents of F; in (E* Er), we shall define the complex (m + 1, m 4 1)-matrix

0 a(u)
0  a’Nw )
corresponding to #", where n = 2m.
Consider two elements #" and v" of &, and their product w" € &,. Then,
since #* = " = 0 at p,, from (7.7) it follows
a(w) = [a(w), alv)],
where the right-hand side denotes the commutator prcduct of two matrices
a(u) and av). If we denote by ¢ the set of all complex (m -+ 1,m + 1)-
matrices of the form
0 a,
A= ( 1] a”"\ )’

then it forms a Lie algebra over the field of real numbers, which is denoted
also by 8. The correspondence #"— «(x#) determines therefore a homo-

morphism « of @, into <. Thus, on account of Lemma 7.3 we have
LEMMA 7.4. The isotropy Lie algebra &, is isomorphic to a subalgebra of

5, i.e.the homomorphism o is an isomorphism, if the manifold is of dimension
n > 2.
We define for an element #" of &, a complex (m, m)-matrix
Bu) = (a\(n)),

where @, (%) is the coefficients of «(#). The set L, of all complex (m, m)-
matrices forms a Lie algebra over the field of real numbers, which is denoted
also by £,. Then, the correspondence #"— B(#) determines a homomorph-
ism B of & into Z.. The image B(®;) of &, by B is called the linear iso-
tropy Lie algebra g, of & at the point p,.

Let us consider an almost complex manifold of dimension 222z which admits
H-projectively flat half-symmetric ¢-connection I'j. Then the Nijenhuis tensor
Nj;® of the manifold vanishes identically. We take a point p, of the manifold.
There exists then a neighborhood U containing py in which I'}, is H-projecti-

vely related to a flat ¢-connection I, because I'}; is H-projectively flat. Any
infinitesimal H-projective transformation of I'}, is also H-projective in U with

(7.13) ) = (
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where (p,q = 0,1, ....m).

Now we make correspond the complex matrix
bo%(2e) b.(u)
boNae) buNu)
to an infinitesimal H-projective transformation #" of I',. Here we have to
note that the trace of B(xu) vanishes. Let S £,.; be the set of all complex
(m + 1, m + 1)-matrices whose trace vanishes. Then it forms a Lie algebra
over the field of real numbers, which is denoted also by S L,+:.. The cor-
respondence #" — B(x) determines a homomorphism B of the Lie algebra &
of all infinitesimal H-projective transformations of I'j, into the Lie algebra
S Lu+1. Further, from Lemma 7.3 it follows that the homomorphism B is
an isomorphism if # = 2m > 2. By virtue of the argument above given we
have

(7.20) Bu) = (

THEOREM 13. Zet & be the Lie algebra of all infinitesimal H-projective
transformations of an H-projectively flat, half-symmetric ¢-connection in a
complex manifold of complex dimension m >1. Then © is isomorphic to a
subalgebra of the Lie algebra S L1 1. €. the homomorphism B defined by (7.20)
18 an 1somorphism.

8. Th group of H-projective transformations of sufficiently high
order. We shall now study a manifold admitting a group of H-projective
transformations of sufficiently high order. For this purpose we shall give
some preliminary lemmas. Let us consider an almost complex manifold with
a half-symmetric ¢-connection I'}. We denote by & the Lie algebra of all
infinitesimal H-projective transformations of I'% and by &, the isotropy Lie
algebra of & at a point py of the manifold. The linear isotropy Lie algebra
of & at p, is denoted by g,.

Let #" be an infinitesimal H-projective transformation of I'}, and A}, be
the half-symmetric ¢-connection defined by (2. 7)corresponding to I'%. It it easily
seen from (7.6) that

Fo= e b
Substituting this in (7.10), since £T:* =0, we have
(8.1) ViFi = a\f( I,
the quantity IT;; being defined by

Il = Py + AL, Ty,

4
(n + 2)*
where Py is the tensor defined by (3.2) and Tj" is the torsion tensor of Al.
The quantity II;; is not a tensor, but its Lie derivative £ II; is a tensor.
If we substitute (8.1) in the right-hand sidé of (7.8), we find

8.2) £ Moy = —2 Tof(Fab" — Fapo"),
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where I1:;" is defined by
IMys" = Resi" + 85I — ey 8 — i Ty pi® + Tiwja) s pi™.
The quantity Il;;" is not a tensor, but its Lie derivative £ II.;" is a tensor.
w

LEMMA 8.1. If the kernel of the homomorphisms B:y—>gy is not the
trivial subalgebra {0}, then the torsion tensor Tyu" of A}, vanishes at po.

Proor From the condition of the lemma it follows that there exists an
infinitesimal H-projective transformation #" such that #" and V:%" vanishes
at the point p, but the vector field F; corresponding to #" does not vanish
at pp. We have to note that the Lie derivative g% I1:;™ ista linear combina-

tion of #* and v:u". Thus £ 115" vanishes at p,. From (8.2) it follows that

Tyos* (Fadl — Fada) = 0
holds at p,. Contracting » and 7, we obtain T%;*F, = 0. Multiplying ¢*, and
‘contracting, we find Tn;"F: = 0. Consequently, it follows Ti* Fi — Ty an"ﬁ

=0, which becomes T%;*F, =0 in complex coordinates (£ £') introduced
in the tangent space T, at p,. Thus we have T}, = 0 at p,, since the vector
field F; does not vanish at p,. Lemma 8.1 is thereby proved.

Now we consider a semi-symmetric ¢-connection I'j.. Then the connection
A} defined by (2.7) corresponding to I'}, is symmetric. i.e. Ty"* =0. Let 2"
be an infinitesimal H-projective transformation of I';. Taking account of
T," =0, from (7.8) and (7.10) we have ‘

(8.3) £ Py =0,

where P.;" is the H-projective curvature tensor of A”. As the integrability
condition of (7.10), i.e. of V; F; = £ Pj;, we have
3

8.4) 3;; Pyji = Pyt Fo,

where P;; has been defined by P.;i =2 v Pjx. The relation (8.4) being
established, we have easily

LEMMA 8.2. Let I'}, be a semi-symmetric ¢-connection. If the kernel of the
homomorphism B:8,—q0 is of the maximum dimension 2m, then the H-
projective curvature tensor of N}, vanishes at po.

The closed and connected subgroups of the group of all real (n, #n)-matrices
has been determined by H.C. Wang and K. Yano [15], if it is of dimension
not less than #* —2x% 4+ 5. Now we have Lemma 8.3 establishing a similar
fact concerning subalgebras of the Lie algebra &,. We shall use the follow-
ing notations denoting the subalgebras of 2, :

ng = {(a',,,)‘)[a“” = 0},
M ={eMa?=0, p=273,....,m},
MW ={@Mla=0 ¢g=23,....,m),
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$(4) = {(@.)|au* = At$,», A: non-vanishing complex number},
where ¢ is a real variable. We see at once that dim S%, = 2(m? — 1), dim
M=dim W =2m* —m + 1), dim F(A)=1. We denote by F(A) x S8
the Lie algebra generated by 3(A) and ©2X,.

LEMMA 8.3. Each subalgebra of L is, i its dimension is not less than
20m* — m + 1), conjugate to one of the Lie algebras: £,, 3 (A) X S&u, S Ln,
m, M. .

By virtue of Lemma 8.3 we have

LEMMA 8.4. ZLet 9 be a subalgebra of the Lie algebra 2. If dim § =
2m* + 1), then the kernel of B in D is of dimension 2m and the image (D) is
conjugate to one of the algebras indicated in Lemma 8.3.

We consider an almost complex manifold of dimension # = 2m > 2 with
a half-symmetric ¢-connection I'}, which admits a group of H-projective trans-
formations of order not less than 2(m? +m + 1). Let G be the group of all
H-projective transformations in such a manifold; then we may assume that
G is effective in the manifold. We denoted by & the Lie algebra of all
infinitesimal H-projective transformations induced in the manifold by G.
Then we see dim & = 2(m?* + m + 1), because G is effective in the manifold.
Taking an arbitrary point p, of the manifold, we mean by &, and g, res-
pectively the isotropy Lie algebra and the linear isotropy Lie algebra of ©
at p;. It is easily seen that dim &, =dim & —2m, i.e.

dim G =2(m? 4- 1).

Thus, from Lemmas 7.4 and 8.4 it follows that the kernel of B in &, is of
.dimension 2m and the linear isotropy Lie algebra g, = B((,) is conjugate to
one of the Lie algebras indicated in Lemma 8. 3. i

Since the kernel of B in &, is of dimension 2m, the point p, being taken
arbitrary, Lemma 8.1 implies that the ¢-connection I'%, is semi-symmetric.
Thus, from Theorem 2 it follows that the Nijenhuis tensor Nj;" of the manifold
vanishes identically if dim G = 2(m? + m + 1). Furthermore, from Lemma 8.2
it follows that the given half-symmetric ¢-connection I'}, is H-projectively flat
if dim G = 2(m* + m + 1). Hence, by virtue of Theorem 13 the Lie algebra
& is isomorphic to a subalgebra of S¥,.;. On the other hand, we have
supposed dim & = 2(m? + m + 1). From Lemma 8.3 it follows thereby that
& is isomorphic to S L,.; itself. We see further that the group G is transi-
tive in the manifold, since the manifold is connected.

The Lie algebra S £,,.; contains the Lie algebra U of all unitary matrices

(6¥)such that b, + b,» =0 (p,q = 0,1, ....,m). The Lie algebra Ul generates a
compact group G’ in the group G. We see easily that the orbit of G’ is 2m-
dimensional in the manifold. Hence, the gronp G’ being compact, it is transi-
tive in the manifold and then the manifold admits a Kaehlerian metric with
constant holomorphic sectional curvature. Therefore, the manifold is homeo-
morphic to the complex projective space of complex dimension .3 Summing

36) Cf. Igusa [5).
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up the above arguments, we have

THEOREM 14. Let G be an effective group of H-projective transformations
in an almost complex manifold of complex dimension n = 2m >2 with half-
symmetric ¢-connection. Suppose that the group G is of order mnot less than
2(m? + m + 1). Then the connection is H-projectively flat and the group G isof
the maximum order 2(m?* 4 2m) and transitive in the manifold. The manifold
is further homeomorphic to the complex projective space.

We shall give without proof the following theorem which will be proved
by using Lemmas 8.1 and 8. 4.

THEOREM 15. Let G be an effective group of H-projective transformations
of a half-symmetric ¢d-connection in an almost complex manifold of dimension
n = 2m. If the connection is not semi-symmetric, then dim G < 2m? for m > 1.

COROLLLARY. Let G be an effective group of H-projective transformations
of a half-symmetric d-conneciion in an almost compiex manifold of dimension
n =2m. If the Nijenhuis tensor of the manifold does not vanish,then dim G
=< 2m? for m > 1.

A similar fact holds good for the group of affine transformations of ¢-
connections. A ¢-transformation is called an affine ¢-transformation of a ¢-
connection, if the transformation leaves the ¢-connection invariant. Thus, we
have the following fact: Zet G be an effective group of affine p-transformations
of a ¢-connection in an almost complex manifold of dimension n = 2m. If the
b-connection is not symmetric, or, if the Nijenhuis tensor of the manifold does
not vanish, thern dim G < 2m? for m > 1.

A ¢-transformation is called a ¢-projective transformation of a ¢-connection,
if the transformation preserves the system of paths of the connection. Here
we have easily the following facts by virtue of Lemma 5.3: Any group of
d-projective transformations of a half-symmetric $-connection is essentially affine.
If the connection is symmeiric, then the grcup leaves the connection invariant.
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