CESÀR0 SUMMABILITY OF WALSH-FOURIER SERIES

Shigeki Yano

(Received June 19, 1957)

1. It is well known that the trigonometrical Fourier series of an integrable function is (C, α) ($\alpha>0$) summable almost everywhere. Moreover, the maximal theorems for (C, α) means of the Fouier series are known (see, for example, [8; §10.22, p.248]).

Recently, N.J. Fine has proved that the Walsh-Fourier series of an integrable function is ($C, \alpha)(\alpha>0)$ summable almost everywhere. In this note, we prove that the maximal theorems for the (C, α) means of WalshFourier series are also true. For functions in $L^{p}, p>1$, proofs are given by Paley [4] and Sunouchi [5]. Our proof is completely different from their ones, and is based on the estimation for (C, α) kernels of Walsh functions and a lemma of Fine [3]. For notations and background materials, the reader is referred to the paper of Fine [2].

Theorem. Let $\sigma_{n}^{(\alpha)}(x)=\sigma_{n}^{(\alpha)}(x ; f)$ denote the (C, α) mean of the WalshFourier series of an integrable function $f(x)$. Then for $\alpha>0$

$$
\begin{align*}
& \int_{0}^{1} \sup _{n}\left|\sigma_{n}^{(\alpha)}(x)\right|^{p} d x \leqq A_{p, \alpha} \int_{0}^{1}|f(x)|^{p} d x, \quad \quad p>1, \tag{1}\\
& \int_{n}^{1} \sup _{n}\left|\sigma_{n}^{(\alpha)}(x)\right| \quad d x \leqq A_{\alpha} \int_{0}^{1}|f(x)| \log ^{+}|f(x)| d x+B_{\alpha}, \tag{2}\\
& \int_{0}^{1} \sup _{n}\left|\sigma_{n}^{(\alpha)}(x)\right|^{r} d x \leqq A_{r}\left\{\int_{0}^{1}|f(x)| d x\right\}^{r}, \quad 0<r<1, \tag{3}
\end{align*}
$$

where the constants A, B with the subscripts are dependent only on the quantities indicated by subscripts.

For the proof of the theorem, we need the following lemma;
Lemma. Let E be a measurable subset of the interval $[0,1], D(x)$ $=\rho(x, E)$, the distance from x to E, and $\left\{h_{n}\right\}, 1 \geqq h_{0} \geqq h_{1} \geqq h_{2} \geqq \ldots . \geqq 0$, be a sequence satisfying

$$
\begin{aligned}
& \sum_{n_{j} \leqq \delta} h_{j} \leqq M \delta, \\
& \sum_{h_{j}>\delta} \frac{1}{h_{j}} \leqq \frac{M}{\delta}
\end{aligned}
$$

for a constant M and for every $\delta>0$. Let us set

$$
\phi(x)=\sum_{j=0}^{\infty} \frac{D\left(x \pm h_{j}\right)}{h_{j}} .
$$

Then for any $R>0$ and for any choice of ± 1, we have

$$
\text { meas }\{x \in E: \phi(x)>R\} \leqq \frac{A M}{R} \text { meas } E^{c},
$$

where E^{c} denote the complement of the set E with respect to $[0,1]$ and A is an absolute constant.

This lemma is due to Fine [3]. Although the lemma is not stated there in this form, a tedious inspection for his proof gives the above formulation. In the following, we apply this lemma to $h_{j}=2^{-5}$.

To prove the theorem, we may confine ourselves to the case $\alpha=1$; the general case $\alpha>0$ can be deduced easily from the case $\alpha=1$ (see [6], [7]). Moreover, the theorem for $\alpha=1$ can be obtained from the following inequalities:

$$
\begin{equation*}
\int_{0}^{1} \sup _{n}\left|\sigma_{2^{n}}(x)\right|^{p} d x \leqq A_{p} \int_{0}^{1}|f(x)|^{p} d x, \quad p>1, \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{1} \sup \left|\sigma_{2^{n}}(x)\right| d x \leqq A \int_{0}^{1}|f(x)| \log ^{+}|f(x)| d x+B \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{1} \sup \left|\sigma_{2^{n}}(x)\right|^{r} d x \leqq A_{r}\left\{\int_{0}^{1}|f(x)| d x\right\}^{r}, \quad 0<r<1, \tag{6}
\end{equation*}
$$

(see, for example, [5], [6]).
Now let us set ${ }^{1)}$

$$
\begin{aligned}
& f^{*}(x)=\sup _{0<1 n \mid \leqq 1} \frac{1}{h} \int_{x}^{x+n}|f(t)| d t \\
& \sigma(x)=\sup _{n}\left|\sigma_{2^{n}}(x ; f)\right|
\end{aligned}
$$

then the inequalities (4)-(6) are immediate consequences of the following inequality

$$
\begin{equation*}
\text { meas }\{x: \sigma(x)>a R\} \leqq K \text { meas }\left\{x: f^{*}(x)>R\right\}, R>0, \tag{7}
\end{equation*}
$$

where a, K are positive constants independent of $f(x)$ and R; for we get by (7)

$$
\int_{0}^{1}\{\sigma(x)\}^{s} d x \leqq A_{s} \int_{0}^{1}\left\{f^{*}(x)\right\}^{s} d x \quad(s>0)
$$

and so the maximal theorems of Hardy and Littlewood gives the desired inequalities (see, for example, [8; pp. 241-245]).

1) The functions are supposed to be periodic with period 1 .
2) The sets are supposed to lie in the interval $[0,1]$.

To prove the inequality (7), we may suppose that $f(x) \geqq 0$. Let $\alpha_{n}(x)=$ $r 2^{-n} \leqq x<(r+1) 2^{-n}=\beta_{n}(x)$. Then, as is known (see [6], [7]),

$$
\begin{equation*}
\sigma_{2^{n}}(x)=\frac{2^{n}+1}{2} \int_{\alpha_{n}(x)}^{\beta_{n}(x)} f(t) d t+\sum_{j=1}^{n} 2^{j-2} \int_{\alpha_{n}\left(x+2^{-j}\right)}^{\beta_{n}\left(x+2^{-j}\right)} f(t) d t . \tag{8}
\end{equation*}
$$

Since $f^{*}(x)$ is lower semicontinuous, the set

$$
E_{R}=\left\{x: f^{*}(x) \leqq R\right\}
$$

is closed.
Define $y_{j}=y_{j}(x)(j \geqq 0)$ be a point of E_{R} closest to $z_{j}=z_{j}(x)=x+2^{-j}$, and denote the distances from y_{j} to $\alpha_{n}\left(z_{j}\right)$ and to $\beta_{n}\left(z_{j}\right)$ by $\rho_{j}(x)$ and $\rho_{j}{ }_{j}(x)$ respectively. (We interprete that $z_{j}=x$ for $j=0$). Then by the definition of the set E_{R} we have

$$
\begin{aligned}
\int_{\alpha_{n}\left(z_{j}\right)}^{\beta_{n}\left(z_{j}\right)} f(t) d t & =\int_{\alpha_{n}\left(z_{j}\right)}^{y_{j}} f(t) d t+\int_{y_{j}}^{\beta_{n}\left(z_{j}\right)} f(t) d t \\
& =\rho_{j}(x) \frac{1}{\rho_{j}(x)} \int_{\alpha_{n}\left(z_{j}\right)}^{y_{j}} f(t) d t+\rho^{\prime}(x) \frac{1}{\rho_{j}^{\prime}(x)} \int_{y_{j}}^{\beta_{n}\left(z_{j}\right)} f(t) d t \\
& \leqq\left\{\rho_{j}(x)+\rho_{j}^{\prime}(x)\right\} R .
\end{aligned}
$$

Since

$$
\rho_{j}(x) \text { and } \rho_{j}^{\prime}(x) \leqq \rho\left(z_{j}, E_{R}\right)+2^{-n}
$$

it follows that

$$
\int_{\alpha_{n}\left(z_{j}\right)}^{\beta_{n}\left(z_{j}\right)} f(t) d t \leqq 2\left\{\rho^{\prime}\left(z_{j}, E_{R}\right)+2^{-n}\right\} R
$$

and we have by (8)

$$
\begin{aligned}
\sigma(x) & \leqq 4 R \sup _{n} \sum_{j=0}^{n}\left\{\rho\left(z_{j}, E_{R}\right)+2^{-n}\right\} 2^{\prime} \\
& \leqq 4 R\left\{\sum_{j=0}^{\infty} \rho\left(z_{j}, E_{R}\right) 2^{\prime}+2\right\}
\end{aligned}
$$

Hence, for x belonging to the set

$$
F=\left\{x: \sum_{j=0}^{\infty} \rho\left(x+2^{-j}, E_{R}\right) 2^{i} \leqq 1\right\}
$$

we have

$$
\sigma(x) \leqq 12 R
$$

Now ${ }^{3}$

$$
\{x: \sigma(x)>12 R\} \subset F^{c} \subset\left\{x \in E_{R}: \sum_{j=0}^{\infty} \rho\left(x+2^{-j}, E_{R}\right) 2^{\prime}>1\right\} \cup E_{R}^{c}
$$

3) E^{c} denotes the complement of the set E with respect to the interval $[0,1]$.
and it follows from the lemma that

$$
\text { meas }\left\{x \in E_{R}: \sum_{j=0}^{\infty} \rho\left(x+2^{-j}, E_{R}\right) 2^{i}>1\right\} \leqq K \text { meas } E_{R}^{e}
$$

Consequently we obtain

$$
\text { meas } \begin{aligned}
\{x: \sigma(x) & >12 R\} \leqq K \text { meas } E_{R}^{\prime} \\
& =K \text { meas }\left\{x: f^{*}(x)>R\right\},
\end{aligned}
$$

which proves the inequality (7).
2. In this section we treat the problem of Cesàro summability of generalized Walsh-Fourier series.

Let $\left\{\psi_{n}(x)\right\}, n=0,1,2, \ldots$, be the generalized Walsh functions of order α. For the definition, notation and backgroud materials, the reader is referred to the paper of Chrestenson [1].

The Cesàro summability of ordinary Walsh-Fourier series is based on the estimation for Fejér kernel of Walsh-Fourier series, and the circumstance is quite same for generalized Walsh-Fourier series. Thus we shall first prove the following lemma.

Lemma. Let $D_{n}(t), K_{n}(t)$ denote the Dirichlet and Fejér kernels, respectively, for generalized Walsh-Fourier series of order α. Then for $n \geqq 0$,

$$
\begin{equation*}
K_{\alpha}^{n}(t)=\left(\frac{1}{2}+\frac{1}{2 \alpha^{n}}\right) D_{\alpha^{n}}(t)+\frac{1}{\alpha^{2}} \sum_{j=1}^{n} \alpha^{i-n} Q_{j-1}(t) \sum_{k=1}^{\alpha-1} D_{\alpha^{n}}\left(t+k \alpha^{-j}\right), \tag{1}
\end{equation*}
$$

where

$$
Q_{j}(t)= \begin{cases}\alpha(\alpha-1) / 2 & \text { if } \varphi_{j}(t)=1 \tag{2}\\ \frac{\alpha}{1-\phi_{j}(t)} & \text { otherwise },\end{cases}
$$

and $\varphi_{j}(t)$ is the generalized Rademacher function of order α.
Proof. For $n=0$, (1) is easily verified. Suppose 'that (1) holds ifor an $n \geqq 0$. Then we use the identity (cf. [1; (5.2)-(5.4)])
'3)

$$
\mathrm{K}_{\alpha^{n+1}}(t)=\frac{1}{\alpha} R_{n}(t) K_{\alpha^{n}}(t)+\frac{1}{\alpha} Q_{n}(t) D_{a^{n}}(t),
$$

where

$$
Q_{n}(t)= \begin{cases}\alpha(\alpha-1) / 2 & \text { if } \varphi_{n}(t)=1 \tag{4}\\ \alpha /\left(1-\bar{\phi}_{n}(t)\right) & \text { otherwise }\end{cases}
$$

and

$$
R_{n}(t)= \begin{cases}\alpha & \text { if } \phi_{n}(t)=1 \tag{5}\\ 0 & \text { otherwise }\end{cases}
$$

Substituting (1) into (3) and observing that $D_{\alpha^{n}}(t)=0$ for $\alpha^{-n} \leqq t<1$, we have

$$
K_{\alpha^{n+1}}(t)=\frac{1}{\alpha}\left[Q_{n}(t)+R_{n}(t)\left(\frac{1}{2}+\frac{1}{2 \alpha^{n}}\right)\right] D_{\alpha^{n}}(t)
$$

$$
\begin{aligned}
& +\frac{1}{\alpha^{3}} R_{n}(t) \sum_{j=1}^{n} \alpha^{i-n} Q_{j-1}(t) \sum_{k=1}^{\alpha-1} D_{\alpha^{n}}\left(t+k \alpha^{-j}\right) \\
& =S_{n}+T_{n}
\end{aligned}
$$

say.
Since

$$
D_{x^{n}}(t)=\frac{1}{\alpha} \sum_{k=0}^{\alpha-1} D_{x^{n+1}}\left(t+k \alpha^{-n-1}\right)
$$

and $D_{\alpha^{n+1}}\left(t+k \alpha^{-n-1}\right)$ vanishes outside the interval $0 \leqq t<\alpha^{-n-1}$ for $k=0$, and vanishes outside the interval $(\alpha-k) \alpha^{-n-1} \leqq t<(\alpha-k+1) \alpha^{-n-1}$ for $1 \leqq k \leqq \alpha-1$, it follows from the definition of $Q_{n}(t)$ and $R_{n}(t)$ that

$$
\begin{align*}
& \quad S_{n}=\frac{1}{\alpha^{2}}\left[Q_{n n}(t)+R_{n}(t)\left(\frac{1}{2}+\frac{1}{2 \alpha^{n}}\right)\right] \sum_{k=0}^{\alpha-1} D_{\alpha^{n}+1}\left(t+k \alpha^{-n-1}\right) \\
& =\frac{1}{\alpha^{2}}\left[\frac{\alpha(\alpha-1)}{2}+\alpha\left(\frac{1}{2}+\frac{1}{2 \alpha^{n}}\right)\right] D_{\alpha^{n+1}(t)}+\frac{1}{\alpha^{2}} Q_{n}(t) \sum_{k=1}^{\alpha-1} D_{\alpha^{n+1}}\left(t+k \alpha^{-n-1}\right) \\
& (6) \quad=\left(\frac{1}{2}+\frac{1}{2 \alpha^{n+1}}\right) D_{\alpha^{n+1}}(t)+\frac{1}{\alpha^{2}} Q_{n}(t) \sum_{k=1}^{\alpha-1} D^{\alpha^{n}+1}\left(t+k \alpha^{-n-1} j .\right. \tag{6}
\end{align*}
$$

By a similar reasoning we get

$$
\begin{align*}
T_{n} & =\frac{1}{\alpha^{3}} R_{n}(t) \sum_{j=1}^{n} \alpha^{j-n} Q_{j-1}(t) \sum_{k=1}^{\alpha-1} D_{n}\left(t+k \alpha^{-j}\right) \tag{7}\\
& =\frac{1}{\alpha^{3}} R_{n}(t) \sum_{j=1}^{n} \alpha^{j-n-1} Q_{j-1}(t) \sum_{k=1}^{\alpha-1} \sum_{i=0}^{\alpha-1} D_{\alpha^{n+1}}\left(t+i \alpha^{-n-1}+k \alpha^{-j}\right) .
\end{align*}
$$

Combining (6) and (7) it is shown that (1) holds for $n+1$, so that the lemma is proved.

If we use this lemma, the proofs of Cesàro summability of ordinary Walsh-Fourier series [2,3,6] and the problem of approximation by Walsh function [7] can be carried over almost word for word to the corresponding results for the generalized Walsh Fourier series, so that we do not enter into the details.

Bibliography

[1] H.E.Chrestenson, A class of generalized Walsh functions, Pacific Journ. Math., 5(1955), 17-31.
[2] N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc., 65(1949), Math 372-414.
[3] ——Cesàro summability of Walsh-Fourier series, Proc. Nat. 'Acad. Sci., 41(1955), 588-591.
[4] R.E.A. C. Paley, A remakable series of orthogonal functions II, Proc. London Math. Soc., Ser. 2, 34(1932), 241-279.
[5] G. Sunouchi, On the Walsh-Kaczmarz series, Proc. Amer. Math. Soc., 2 (1951), (1951), 5-11.
[6] S. Yano, On Walsh-Fourier Series, Tôhoku Math. Journ. Ser.2,3 (1951), 223-242.
[7] - On approximation by Walsh functions, Proc. Amer. Math., Soc, 2 962-967.
[8] A. Zygmund, Trigonometrical series, Warsaw 1935.
Tokyo Metropolitan University.

