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1. It is well known that the trigonometrical Fourier series of an integrable
function is (C, a) (a > 0) summable almost everywhere. Moreover, the max-
imal theorems for (C, a) means of the Fouier series are known (see, for
example, [8; §10.22, p. 248]).

Recently, N. J. Fine has proved that the Walsh-Fourier series of an
integrable function is (C, a) (a > 0) summable almost everywhere. In this
note, we prove that the maximal theorems for the (C, a) means of Walsh-
Fourier series are also true. For functions in Lp, p > 1, proofs are given by
Paley [4] and Sunouchi [5]. Our proof is completely different from their ones,
and is based on the estimation for (C, a) kernels of Walsh functions and a
lemma of Fine [3]. For notations and background materials, the reader is
referred to the paper of Fine [2].

THEOREM. Let σf\x) = σ£Hx; f) denote the (C,a) mean of the Walsh-
Fourier series of an integrable function f(x). Then for a > 0

t rι

(1) I sup \σia)(x)\p dx^APtcc I \f(x)\p dx, p > 1,
J 71 J
0 0

(2) / sup I σ FKx) 1 dx g Am / \f(x) I log* \f(x) \dx+B*,
J n J

0

1

(3) J sup \a-i*Hx)\r dx^Ar^f \f(x)\ dx I , 0 < r < 1,
0 0

where the constants A, B with the subscripts are dependent only on the quan-
tities indicated by subscripts.

For the proof of the theorem, we need the following lemma

LEMMA. Let E be a measurable subset of the interval [0,1], D(x)
= ρ(x, E), the distance from x to E, and {hn}, 1 > h0 ^ hτ > h2 > . . . . ̂ 0 , be a

sequence satisfying

for a constant M and for every δ > 0. Let us set
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φ(X) = x
j=o rifJ

Then for any R>0 and for any choice of ± 1, we have

AM
meas {x £ E : <p(x) > R} <Ξ —- meas Ec,

R
where Ec denote the complement of the set E with respect to [0,1] and A is
an absolute constant.

This lemma is due to Fine [3]. Although the lemma is not stated there
in this form, a tedious inspection for his proof gives the above formulation.
In the following, we apply this lemma to hj = 2~s.

To prove the theorem, we may confine ourselves to the case a = 1 the
general case a > 0 can be deduced easily from the case a = 1 (see [6], [7]).
Moreover, the theorem for a = 1 can be obtained from the following inequa-
lities :

(4) J sup\<r*(x)\p dx^Apf \f(x)\pdx, p > 1,
0 0

(5) J sup I σ2.(x) [ dx<A f \f(x) I log+ \f(x) \dx+B,
0 0

/

I l r

sup \σ^(x)\r dx^Ar 1 I \f(x)\ dx I , 0 < r < 1,
u ϋ

(see, for example, [5], [6]).
Now let us setn

= sup
0 l Λ | S l

if
h J

o-(*; = sup \σs»(x; f)\t

n

then the inequalities (4)-(6) are immediate consequences of the following
inequality

(7) meas {x: σ(x) > aR} S K meas {x: f*(x) > R}, R> 0,

where a, K are positive constants independent of f[x) and R for we get by (7)

J {<Γ(Λ;)}* dx^AsJ {/*(*)}• Λ (s > 0)
0 0

and so the maximal theorems of Hardy and Littlewood gives the desired
inequalities (see, for example, [8 pp. 241-245]).

1) The functions are supposed to be periodic with period 1.
2) The sets are supposed to lie in thejnterval [0,1].'
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To prove the inequality (7), we may suppose that fζx) ^ 0. Let an(x) -
r2'n ^ x < (r + 1) 2~n = βn<x). Then, as is known (see [6], [7]),

an(x) J~L αfn(x+Z J)

(8) σAx) = -^

Since f*(x) is lower semicontinuous, the set

ER={x:f*(x)^R}

is closed.
Define yj = .y/x) (/ > 0) be a point of £ β closest to zs = 2J(Λ) = x +

and denote the distances from .y, to an(zj) and to iSnfe) by ρ3{χ) and P'J
respectively. (We interprete that Zj = x for i = 0). Then by the definition of
the set ER we have

Vj

^ w) +
Since

/>/ΛΓ) and p/x) ^ p(arΛ & ) + 2—,

it follows that

/

* < * *
p(zj, ER)

and we have by (8)
n

σ(x) S 4R sup 2 {p(zj, ER) + 2'M> 2'
71 >o

Hence, for Λ belonging to the set

we have

Now 3 )

{ € ^ : 2/>(* + 2-̂ , &)2' > l\ {J

3) Ec denotes the complement of the set E with respect to the interval [0,1],
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and it follows from the lemma that

meas \xξEB:*Σρ{x + 2~>, EB)2f > 1 \ ^ K meas EB.
{ }

Consequently we obtain

meas {x: σ{x) > 12R} % K meas EB

= Kmeas{x:f*(x) > R},

which proves the inequality (7).

2. in this section we treat the problem of Cesaro summability of gene-
ralized Walsh-Fourier series.

Let {ψn(x)J, » = 0,1,2, , be the generalized Walsh functions of order
a. For the definition, notation and backgroud materials, the reader is referred
to the paper of Chrestenson [I].

The Cesaro summability of ordinary Walsh-Fourier series is based on
the estimation for Fejer kernel of Walsh-Fourier series, and the circumstance
is quite same for generalized Walsh-Fourier series. Thus we shall first prove
the following lemma.

LEMMA. Let Dn(t), Kn(t) denote the Dirichlet and Fejer kernels, respec-
tively, for generalized Walsh-Fourier series of order a. Then for n ̂  0,

\ 2 2an J a- ̂  fc=1

where

a{a - l)/2 if Ψ0) = 1

a(2) QAt) -
otherwise,

- φj{t)

and ψj{t) is the generalized Rademacher function of order a.

PROOF. For n — 0, (1) is easily verified. Suppose [that (1) holds \for an
n > 0. Then we use the identity (cf. [ 1 ; (5.2)-(5.4)])

'3) Kflf+iίf) - — Rn{t)KAt) + ~ Qn(t)Da«{t),

where

(4) QJt) = \ a ( a " ^ / 2 i f Φ^ = 1 '
w w \a/a-<Pn(t)) otherwise,
and

v } 10 otherwise.

Substituting (1) into (3) and observing that Da<t) = 0 for crn ^ί <l, we
have
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_1 » ; _ B ' ™

= &. + Tn,

say.

Since

1 v
a fc=ϋ

and D»«+i(t + kcrn~ι) vanishes outside the interval 0 <̂  t < arn~ι for k = 0,
and vanishes outside the interval (a — k)a~n'1 <t<(a~k-\- l)a~n~ι for
1 < k ^ a — 1, it follows from the definition of Qn(t) and Rn(t) that

>»(ί) -f A»(ί) ( v + ^—„ ) 2 Z ) * w + 1 ^ + ka'71-1)
\ & toe / J fcas0

-*.(ί) +

By a similar reasoning we get
- n α—l

(7) J = 1

~ Qn(t) 2

Combining (6) and (7) it is shown that (1) holds for n + 1, so that the lemma
is proved.

If we use this lemma, the proofs of Cesaro summability of ordinary
Walsh-Fourier series [2,3,6] and the problem of approximation by Walsh
function [7] can be carried over almost word for word to the corresponding
results for the generalized Walsh Fourier series, so that we do not enter into
the details.
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