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1. It is well known that the trigonometrical Fourier series of an integrable
function is (C, ) (a > 0) summable almost everywhere. Moreover, the max-
imal theorems for (C,«) means of the Fouier series are known (see, for
example, [8; §10.22, p.248]).

Recently, N.J. Fine has proved that the Walsh-Fourier series of an
integrable function is (C, «) (a > 0) summable almost everywhere. In this
note, we prove that the maximal theorems for the (C,«) means of Walsh-
Fourier series are also true. For functions in L?, p > 1, proofs are given by
Paley [4] and Sunouchi [5]. Our proof is completely different from their ones,
and is based on the estimation for (C, «) kernels of Walsh functions and a
lemma of Fine [3]. For notations and background materials, the reader is
referred to the paper of Fine [2].

THEOREM. Le! o{"(x) = o (x; /) denote the (C,a) mean of the Walsh-
Fourier series of an integrable function f(x). Then for o« >0
1

1
1) f sup le@(x)|? dx < Ap'wf fx)[? dx, p>1,
0 1]
1 1
(2) f sup lo@(x)] dx < A«,f [f(%)|log* |(x)| dx + B,
n 0
1 1 b
(3) f sup le(x)|" dx < A, {f (%) dx } , 0<r<i,
0 )

where the constants A, B with the subscripts are dependent only on the quan-
tities indicated by subscripts.

For the proof of the theorem, we need the following lemma ;

LemMA. ZLet E be a measurable subset of the interval [0,1], D(x)
= p(x, E), the distance from x to E, and {hx}, 1=y =h =h.=....20, bea
sequence Satisfying

> h=Ms,

hy=8

1 M

<
hy>8 h-’ 8

for a constant M and for every 8 > 0. Let us set
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=

Dix+h
P = 2 ezl
S

Then for any R >0 and for any choice of = 1, we have
meas{x € E: @(x) > R} < ARM meas E¢,

where E° denote the complement of the set E with respect to [0,1] and A is
an absolute constant.

This lemma is due to Fine [3]. Although the lemma is not stated there
in this form, a tedious inspection for his proof gives the above formulation.
In the following, we apply this lemma to &; = 2.

To prove the theorem, we may confine ourselves to the case « = 1; the
general case a >0 can be deduced easily from the case «a = 1 (see [6], [7]).
Moreover, the theorem for o = 1 can be obtained from the following inequa-
lities :

@ [ swieswir arsa, [ @i p>1,
0 0
6 [ swiorwl dr=a [ witoge i1 ax+ B,
0 0
1 1 r
(6) f Sup | oar (1)]" dng,.{f i)l dx} , 0<r<1,
[} 0

(see, for example, [5], [6]).
Now let us set®
x40

) =sup = [ |fe) at,

o<inist B
@
o(%) = sup o (x; NI

then the inequalities (4)-(6) are immediate consequences of the following
inequality

7) meas {x: o(x) > aR} < K meas {x: f*(x) > R}, R >0,

where g, K are positive constants independent of f{x) and R; for we get by (7)
1 1
[ ey arsa, [ oy an (s >0)
0 0 .

and so the maximal theorems of Hardy and Littlewood gives the desired
inequalities (see, for example, [8; pp. 241-245]).

1) The functions are supposed to be periodic with pgriod 1.
2) The sets are supposed to lie in the_interval [0,1].
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To prove the inequality (7), we may suppose that f{x) =0. Let aa(x) =
2 <x<(r+1) 2" = Bax). Then, as is known (see [6], [7]),
o 1 () n a(e527))
(8) onm= 1% ft) dt + 325 /) at.

@n(2) J=1 an(vr2Y)
Since f*(x) is lower semicontinuous, the set
Er={x:"x)= R}
is closed.

Define y; = y5x) (= 0) be a point of Ex closest to z; = z;(x) = x } 27,
and denote the distances from »; to aw(z;) and to Ba(z;) by ps(x) and p's(x)
respectively. (We interprete that z; = x for j = 0). Then by the definition of
the set Ex we have

n(2g) 7 Bulzy)

ft) dt = f At) dt + St) dt
@y(zy) an(?y) Yy
: 1 Vs 1 Bnlzz)
= py. —f t) dt + p'( —-~f t) dt
ps(%) o4%) (J)ﬂ ) p(x) p’j(x)y 7@
ay(z 3

={ps%) + py2))IR.
Since
ps(%) and pi(x) < p(z;, Er) + 27",
it follows that
Bnlz3)
ft) dt =2{p(z;, Er) + 27"} R,
@n(zy)

and we have by (8)

o(%) S 4Rsup X {p(z;, Ex) + 2"} 2
n =0

§4Riép(z;,Eu)2’ +2}.

Jj=0
Hence, for x belonging to the set
F={x Xpxi2, ER)2f§1},
=0
we have
o(x) < 12R.
Now3?

{x: o) >12R}chc{erR: S p(x 4 27, B2 > 1} U E
j=0

3) Ec denotes the complement of the set £ with respect to the interval [0,1].
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and it follows from the lemma that

meas {x € Er: 2 plx 3 27, Ep)2' > 1} =< K meas E}.
=0
Consequently we obtain
meas {x: (%) > 12R} < K meas E;,
= Kmeas {x: f*(x) > R},
which proves the inequality (7).
2. In this section we treat the problem of Cesaro summability of gene-

ralized Walsh-Fourier series.
Let {Ya(x)}, »=10,1,2,...., be the generalized Walsh functions of order

«. For the definition, notation and backgroud materials, the reader is referred

to the paper of Chrestenson [1].

The Cesaro summability of ordinary Walsh-Fourier series is based on
the estimation for Fejér kernel of Walsh-Fourier series, and the circumstance
is quite same for generalized Walsh-Fourier series. Thus we shall first prove
the following lemma.

LEMMA. Let Du(t), Ku(t) denote the Dirichlet and Fejér kernels, respec-
tively, for generalized Walsh-Fourier series of order «. Then for n =0,

1 1 1 < <
(1 K.t =(*+ oo | Darlt +~‘,2a"'”Q; 3 Dy(t 4+ ka™),
) ®= (5 + o ) Do)+ G 2™ @i () 2 Dt - hr)
where
ale—1)/2 i @it)=1
2 1) =
( ) Qj( ) {i—_%’:(?)” otherwise,

and @j(t) is the generalized Rademacher function of order c.

Proor. For n =0, (1) is easily verified. Suppose [that (1) holds ifor an
7 =0. Then we use the identity (cf. [1;(5.2)-(5.4)])

‘3) Kone1(2) = ;X:L Ri(OKu(2) + "dl Qu(t)Dar(2),
where

(ol —1)[2 if @u(t) =1,
@ Qule) = {a/ (1 — @ul?)) otherwise,
and

_ | if @) =1,
®) Rlt) = { 0 otherwise.

Substituting (1) into (3) and observing that Da-(#) =0 for a" <1< 1, we
have

Kooty = [ @ut) + Rit) (7 + 50 ) | Do)



CESARO SUMMABILITY OF WALSH-FOURIER SERIES 271

R,.(t)za’ " Qy(t) 2 Dar(t 5 ko)

j=1

= Sn -+ Tn,,
say.
Since
1 ®—1
Dont) = — 2 Deon+1(t + ka™")
k=0

and Dgn+1(t 4+ koe~"') vanishes outside the interval 0 <# < a= ! for =0,
and vanishes outside the interval (¢ —ka " 1<t < (¢ — &+ a1 for
1<k=a -1, it follows from the definition of @«(#) and R,(¢) that

Sp = [Qn(t) + Rn(t)( 2 -+ Zin>] 2 Dynia (t + ka'"‘l)

k=0
a-1

17 ala—1) 1 1

= OT[ 2+ “(‘é‘ + w)} Due(t) + mQrm = Daver ¢+ b
1 1 -1

©) =lg t 2aT1> Dnar(2) + e Qv«.(t) 2 D* ' (¢ 4 ka1

By a similar reasoning we get

Tw= Rn(t) Zaf—n Qs-1(2) 2 D (¢ § ka)
k=1
(7) -1 -1
= Rn(t)z o/t Qj 1(t) 2 2 Degn+1 (t + ! + ka—J)
k=11i=0

Combining (6) and (7) 1t is shown that (1) holds for # + 1, so that the lemma
is proved.

If we use this lemma, the ‘proofs of Cesaro summability of ordinary
Walsh-Fourier series [2,3,6] and the problem of approximation by Walsh
function [7] can be carried over almost word for word to the corresponding
results for the generalized Walsh Fourier series, so that we do not enter into
the details.
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