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1. Introduction and notations. Let A be a square matrix of order »
with elements belonging to the field of complex numbers. Further, let c(A)
stand for an arbitrary characteristic root of A, whereas c¢(A) denotes the
complex conjugate of c(A).

In a recent paper [2], this author has found the upper bound for an
arbitrary characteristic root ¢(AB) of the product of two matrices A and B
in terms of their elements. The purpose of this paper is to find the upper
bounds for the real and imaginary parts of ¢(AB) in terms of the elements

of the associated Hermitian matrices (4 + A47)/2, (A — A")/2i, (B + B’)/2 and
(B — B")/2i. In what follows, R;(A) will denote the sum of the absolute
values of the elements of an arbitrary matrix A in the i-th row, T:(A) will
denote the sum of the absolute values of the elements of A in the i-th column,
and R(A), T(A) will stand for the greatest of the R;(A) and T:(A) respectively.

2. Upper bounds for the real and imaginary parts of c(AB).

THEOREM. Let A and B be two commuting n-square complex matrices.
If S(A), S/(A), S(B), S/(B) are the sums of the absolute values of the ele-
ments in the r-th row of (A + A)/2, (A — A)/2i, (B -- B)/2, (B — B’)/2i respec-
tively, and if S(A), S'(A), S(B), S"(B) are respectively the greatest of the
S,(A), S/(A), S(B), S/ (B), then

E(AIL;QL@ ’ < S(A)S(B) + S"(A)S"(B), @
and L _
:Q\AQL;;@ X < S(A)S"(B) + S(A)S(B). @
Proor. Any square matrix A = A'; A + 17 4_‘2‘;4' = P+ i@, say, where

P = (p:5), Q = (q:5) are Hermitian matrices; and any square matrix B =

.@_1*2'_3_' + B_E_;_Ef = U + iV, say, where U = (u;;) and V = (v:5) are Hermitian

matrices. Thus
AB = PU — QV + i(PV + QU), 3)
and A'B' = PU — QV — i(PV + QU). @
Now, if A is a characteristic root of AB, there exists a complex unit
vector £ = (%, %,, ....%)T, such that
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Ax = ABzx.
Premultiplying the above equation by ¥, we have
Ax'%x = ¥’ ABx,
, A = x’ABx. (5)
Taking the conjugate transpose of (5) we have
A= x(BANx
= W (A'B)x, ®)
since AB = BA implies A'B’ = B'A’.
From (5) and (6) by addition and subtraction, we have
A

or

Mt A (PU — QV)x, 7
and A ;Z.’” = ¥(PV + QU)x. @)
From (7) and (8) we determine the upper bounds for L“z'z and [7“1'27271:'

Since these relations are identical in form, it is sufficient to carry the com-
putation through one of them only.
Taking the absolute values in (7), we get

;»;2@ = |¥(PU — QV)xl
|

= !Er.s Oy x—rxs - Zr,s Brs Exsl
where a,; and 3,s denote the elements of PU and QV, respectively, in the
(r, s)-th position, or,
[ ]
‘(i(@;ﬁﬁ)‘ = lzr.s Olys X Xs | + lzr,s ,31’5 2:%s | . (9)

Let & = |x[, so that Z‘g’i =1and £& <1/2(§: + £). Now, we con-

sider the two terms on the right-hand side of (9) separately.

er,s Oys xrx:l é Er,slasrlfrfx
= 1/2 zr,SIarsl(EE + Ei)

~1/2 {gf;’;.larsl + 2‘:535 ;‘ars]}

= 12| 3 & rR(PV) + DETUPV) 3

Supposing that R{PU) and T,(PU) attain their maximum values respec-
tively for » = % and s = 2, we have

|2 arnm | S 12{RPD) + TPOY.
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But, by definition,

R(PU) = ‘Epn,susx + lzﬁhsum + ...+ \21’,%”3”

= 2 | Dus| 2451 + 2 VDus| lotsa] + ... + 2 [ Das| |2sn]

= 1pul D (the] + 1Dl 2 (] 4 -+ | Panl 2 ok
t t t

= |pu|Ri(U) + Pl RLO)Y + ... + |Dunl Ra(T)
S RO Pl + 1Dl + oo .. 4 [DanD).
= R(P)RU)

< R(P)RU) = S(A)S(B); (10)
and T(PU) = 'Zplsusk + (Epzsuw + ...+ [2?1’1?“3&:
< i) lusel + 2 1Dus] ol + .o + 2 | Dns| 200
= ol 2 1pa] + lan] 2 1Pl + oo + ] 2 |2l
= |uw|Ti(P) + |2 | To(P) + .. .. + || Tu(P)
< T(P)TW(U)
1n

S T(P)TU) = S(A)S(B),

since for any Hermitian matrix H = (h), T(H) = max T«(H) = mflxz [Brs
r

= max 2 |Bsrl = max Ry(H) = R(H).

The inequalities (10) and (11) give
(S rs %% < S(A)S(B). (12
Similarly, taking |3S.s%%| and proceeding as we did in establishing (12),

we shall prove
|2 Brs %xs) < R@R(V) = S"(A)S"(B). (13)

Combining (12) and (13), we obtain
-Similarly, starting with (8), we can establish the inequality (2).
This completes the proof of the Theorem.

The condition, that A and B commute, imposed on the matrices in the
Theorem, is necessary as shown by the following example:
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[0 i /0 -2 /1 0
A=, 0)’ B“(~i o) 48=(, 4)*3‘4'

Here S(A) = S(B) = 1/2, S"(A) = S"(B) = 3/2, ¢(AB)= 1,4, and 4 is not
less than or equal to 5/2.

8. Some particular cases of (1) and (2). (i). Let A and B be commuting
n-square Hermitian matrices, so that AB is also Hermitian and all ¢(AB)
are real. In this case S(4)= R(4), S(B)= R(B), and S'(A) = S'(B)=0.
Thus, for matrices A and B defined above, (1) reduces to

[c(AB)| < R(A)R(B), (14)
a result proved in [2].

(ii). Again, if A and B are commuting skew-Hermitian matrices of the
same order, A+ A’ =B+ B =0, (A— A")/2 = AJi, and (B — B')[2i = BJi.
Also AB is Hermitian, so that all {the characteristic roots of AB are real,
S'(A) = S(B) =0 and S"(A) = R(AJi{) = R(A), and S"(B) = R(B/i) = R(B). In
this case also (10) reduces to

[e(AB)| = R(A)R(B). (15)

(iii). Let us put B = I, for which S(B) =1 and S"(B) = 0. In this case

(1) and (2) reduce to

} c<A),;2F@> ) =S(4), w0

. )| < s a

results due to E. T. Browne [1], and W. V. Parker [3], giving the upper bounds
for the real and imaginary parts of an arbitrary characteristic root of A in
terms of the elements of the associated Hermitian matrices (4 + A4’)/2 and

(A — A)/2i.
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