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1. An infinite series Y u, with partial sums s, = >_ %, is said to be
0

N=()
summable by Harmonic means [3], if the sequence {y,} tends to a limit as
n— oo, where

boSo+ bpysy + ... + by s, 1
. 1 Yn = bo + by + een. +b, ’ (b" - n+1>
We write B, =8, + b, + ...... + b, so that B, ~log n.

The main interest of the method lies in the Tauberian theorem associated
with it.

THEOREM A [2]. If 3 u, is summable by Harmonic means, and

u, = O(n~?%) 0<d<«l,
then 3 u, is convergent.

If 8 =1, Theorem A reduces to well known Tauber’s first theorem, in
view of the fact that Harmonic summatility implies (C, 8) summability for
every 6 > 0.

¥ p,. =0, pob >0, Sp, = oo, (so that P, =p, + p, + -..... + pp—> ),
and
DPoSo + D15+ ... + Pn S

. 2) o A Pt e + P |
as n— oo, then we say that s, —> s(R, p,) [1, p. 57]. If we choose P, = exp n*
(0 < @ <1), then the Tauberian condition of Theorem A is also the Tauberian
condition of (R, p,) summability.

The object of this note is to give an indirect proof of Theorem A by
proving the following theorem :

THEOREM 1. If an infinite series 3 u, is summable by Harmonic means
to the sum s, then it is also summable (R, p,) to the same sum, where
P, =expn® (0 <a<1)
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2. Let a, be defined by

2.1) (1 -> a,x')(z b,x’)=1.

r=1 0
We shall be using the following known relations [2].
2. 2 by=3a, b,

r=1
(2 3) Bn =1+ Z ar Bn-n

r=1
1
2. 4) a, =0 (m)
1

(2. 5) ap + Apiyg +oenen —O(logn )

In our case a, =0 by Kaluza’s theorem [1, p. 68].

We shall also need the following lemma :
LEMMA . If P,=expn® (0 <a <1) and m < n'~%, then

(2. 6) ﬁﬁ"—=1+0(;f’§;

PROOF. P;;m = (n_nm)““ exp {(n — m)" — 2")}
=t o(GEo)H - o ()
-1 O( n?f“ )

3. Proof of Theorem I. Without loss of generality we may assume
that s = 0. From (1. 1) and (1. 2), we obtain

n
3.1 Sa=B.Ys— 2 a By YVurs
r=1
and
n
tn = Z yn Cn,k’
k=0
where

B
Cnk = ?k (Pk — QPDrry T e — Qp-k P,.) for & = 0,1,2,..... n.
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For the proof of our theorem it is sufficient to prove [1, p. 43] that
) l_i}m =20 for each k;
(B.2) Gi) Xer=N—1 as n—> oo
(i) D lenwl < H where H is independent of 7.

k=0

1
Since X a, is convergent and ?, = O( )1t is easy to prove (3. 2)

(i). For proving (3. 2) (ii) we observe that

1’1‘- Z By (px — a1prsy — oo — Qni Pn)
' k=0

=‘—ZPr[B B,y — a, B,]

'n rai

=—*Zpr

'Il r=0
= 1,
by using (2. 3).

For proving (3 2) (111) we assume that ny = [nl'a”’"_] and m, = [nl-a—c]
where €is a fixed positive number.

Now
Z Icn,k] ZBklpk Ay Pr+r T e - an—kPn[
k=0 P, %
1 n-ny 1 n—ng
é R Z kak ~ Z Bk (alplﬁ—l + ...... + an—kpn)
P, v Pn k=0
1 n
+F > Bilpr — @i prer — s — @i Pn)
n k=n-ng+l1

=3, + 3, + 2,, say.
First we consider 2,.

3.3) 2= 0B) 5" Loons _ O(B,) exp ( — an,/n'~*) = O(1).

Again using (2. 3) and (2. 5) we have
1

22 = ? Z Bk(alpk+1 4o + a"‘kp")
n k=0
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n-no+1

1
= ? Z Pr(Bo a, + Ba,_, + ...... + B,_,; al)
n r=1

1 n
+ F Z Pr(Boar + ...... + Bn—no ar—(n-—no))

n r=n—ng+2
N-"n9+1+mg

1 n—-ng+1 1
= P Z pT(BT - ]‘) + P Z PT (BOaT + """ + Bn—'no ar—(‘n—'no))
n r=1 n r=n—-ng+2

+ 1 Z pr(Bo a, + ... + Bn—no ar—(n—no))

Pﬂ r=n-"Ng+2+Mg

(0] (M@:@) + 0 (P";rj;m ) B"n_ max (@ + @royt+eeenn. + @y (nenoy)

P" g+ 25 rSn—ng+1+mp

P, B,
+0 (T3 ) o B 8 e+ ¥ )
= O(1)+ O(log n) exp { — a(ny—m,—1)/n'~*} + O(B,/log m,)
(3. 4) = O(1).
Finally
23 = O(Bn/Pn) Z ka - a Pk+1 T e - an—kpnl
k=n-ng+1
n-mo—1
= O(Bn/Pn) Z ]Pk = @ Pr+1 — eeeees - amoPmO+k|
k=n-no+1
n-mo-1
+ O(Bn/Pn) z (amo+l DPmot14ek T -enne + an—kPn)
k=n-ng+1

+ O(Bn/Pn) Z ]pk — Ay Py — -ennes - dﬂ-kpnl

k=n—mg .
=3, + O(log n/P,) Z Pr(amoﬂ + @mgrz Foeen +arnino-1)

r=n-ng+me+2

+ OUogn/P)p, 2. U+a +ay+ ...... +a,_;)

E=n-mg
= 3,, + O(log n P,/P, log m,) + O (B, p, m,/P,)
(8.5 =23, + o)
Making use of (2. 6) we obtain

n—mo—l .
231 =0 (10g n/Pn) Z ]pk — Q1Prs1 — eeees — amopk+mol
E=n—ng+1
n—mo—1
= O(IOg n/Pn) Z Pk+m0 Pk — a; Pk“ — eeeeen — A,
k=n-ng+1 Dram, Dr+my
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n—mo-1
= O(log #/P,) > prsmfl —ay — --.... — )
n-=no+1
n-=mo—1 P
+ O(log n/P,) n§+1 ﬁ:"),_—a,[mo + (mo— 1 a; + oo + @mpi]
n-mp—1
= O(log n/log m,) + O(m,log n/Pun — no) ™) D Prime
n-ng+1

P,logn
= 0 + O( (n—:’::)"“ TP, )

3. 6) = 0(1).
Collecting (3. 3), (3. 4), (3. 5) and (3. 6) we see that (3. 2) (iii) is also
satisfied. This completes the proof of the theorem.

I am indebted to Prof. M. L. Misra for his kind interest and advice in
the preparation of this paper.
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