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1. Introduction. Let us consider a series 2 an. Denote by <r(

n

Λ) and τ(

n

a)

the n-th. Cesaro means of order <x(cc > — 1) of the series Σ α n and of the
sequence j nan) respectively.

Following T. M. Flett [1], the series 2<zn is called summable \C,a\k

(k^ 1) if the following series, which are equiconvergent with each other
(see e. g. [1]),

Σ I*"11 & - "Ά I *> Σ n'11 τ<«> Ifc (1)
n n

and J2n-l\<r^ -<τί"-υ\k

n

are convergent.

The series 2 an is called strongly summable (C, a)k {a > — 1, k > 1) if

there exists a constant 5 such that

as (2)

If the series 2 an is strongly summable (C, Λ)fc and is summable (C, Λ), that
is, if the relation (2) holds and oiα) tends to a finite limit as n -* 00, then
the relation (2) is equivalent to :

I * ^ (3)

as we see easily by the Minkowski inequality. In the case of Fourier series

the strong summability is often discussed in the form (3) by the reason of

its (C, ά) summability almost everywhere for a > 0. We shall say in the

sequel that the series 2 an is summable [C, ct\k if the relation (3) holds.

We note that the relation (3) is equivalent to

ΣWT=o(») as^oo. (3)

By the Kronecker lemma the convergence of the series (1) implies the rela-
tion (3), but not necessarily the converse. We shall here introduce a gene-
ralization of the absolute summability. If the series



ABSOLUTE SUMMABILITY OF FOURIER SERIES 457

or equivalently if the series
2 » H - I - 1

Σ ( i r Σ ITJ '
fc/p

(4)

(4')

is convergent, we shall say that the series 2 an is summable j C, a} k9V where

k > 0 and p >̂ 1.

We shall note some elementary relations of the three summabilities men-

tioned above:

THEOREM 1. (1) For 0 < k <; />, if Σ an is summable \C, ct}k,p then it

is summable \C9ct\k

(2) For 1 ̂  p <: k9 if Σan is summable \C, a\k9 then it is summable

[C9 a)k,v. In the case 0 < k = p the two summabίlities \C, a)k9P and \C,a\k

are equivalent,

(3) For k > 0 and p ^ 1, if 2 an is summable {C,cc\k,P9 then it is sum-

mable [C, ct]p.

PROOF. (1) By the Holder inequality the sum (4) is not smaller than

Σ(^rΣ W-1'- «ί-τ) ^ Σ Σ V'
n ^ Z J=2» ' n ;=2«

(2) By the similar reason we have

1 2'M"1-1 \

> — —= 9 2

(3) From the convergence of the series (4) we see evidently that

J _ J2 I σ <-» - o5 > I" = 0 ( i ) as n -* «»,

from which we get easily

n - * 00.

Thus we complete the proof of Theorem 1.
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The main purpose of this paper is to mention some results of the sum-
inability {C,ct\kjP of Fourier series. The discussion will be done refering to
the T. M. Flett paper [1] .

2. Notations. We suppose throughout that /(#) is of period 2π and
integrable (— ΊΓ, if). We write

For a < 0 and t ^ 0, denote by Φa(t) the Riemann-Liouville tf-th integral
of φ(t) with origin 0, that is,

Φ.(<) = •=— [\t - u)*-λφ{u)dn,

Φ«(t + 0) = 0

and let Φ0(ί) = φ(t\
Similarly, let ΨΛ(t) be the tf-th integral of ψ(t), and we write

φΛ(t) = T(a + l)Γ«ΦΛ(t),

ψa(t) = Γ(Λ + l)Γ»Ψa(t).

Let the Fourier series of f(θ) be

~W~ <*o + Σ ("n cos nϋ + bn sin »ί) = Σ -̂ nCβ)

and let Sn(^) = αw sin nθ — bn cos nθ so that the conjugate series of f(θ) is

Σ Bn(θ) Hence we have
W = l

oo

φ{t) ~ 2 X) An(0) cos wί
n=0

and ψ(t) ~ - 2 Σ Bn(θ) sin wί.
W = l

We denote by tn

iβ) = tn

{β\θ) and ln

{β) = ίw

(β)(<9) be the n-th Cesaro
means of order β of the sequences \nAn(θ)) and j^J5n(^)l respectively.

We use A = A(tf, β, ...) to denote a positive constant depending on the
parameters a, β, , but it will be different in each occurrence.

The inequality of the form

L ^ A-R

is to be interpreted as : if the value of the expression R is finite, so is the
expression L and the inequality mentioned holds.

REMARK. AS an integral analogue of the summability \C,oc\k,p. we may,
e. g., consider the convergence of the series which appears in the first term
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of the right of the inequality in Theorem 2 below, and the analogue of

Theorem 1 will be shown, but we do not treat it here.

3. One of the present authors obtained the following theorem [4].

THEOREM T. If K p ^ 2 and β> 1/p, then for 8 > p - 1,

log-1- \δdt.

Generalizing this theorem to the form of summability \C,a\k}Pi we shall

establish the following theorems.

THEOREM 2. / / l ^ ί ^ 2 , k 1 and β > a + sup ( I / A l/k') (k' =

k/(k — 1)), then we have
kip

.7 = 0

0 ^ α ^ 1, Âe second term on the right may be suppressed.

THEOREM 3. If 1 < p < 2, k ^ 1, £ > a + sup (l//>, 1/*')

α = 0 or a ^ 1 - sup (l//>,

\J0 /.7 = 0

Λ = 0 the second term on the right may be suppressed. Ifp = l the

inequality holds when k J> 1, a >̂ 0 α zJ β > Λ + 1.

Theorem T is an easy consequence of Theorem 3 with a = 0, k — 1.

As a remaining case of Theorem 2 we shall prove the

THEOREM 4. If K p ^ 2 , k ^ l and 0 < a < inf ( 1 / / , l/£) (p =

ρ/(p— 1)), Me# we have
2 n + 1 - l vfc/p oo τ r / 2 ' I / \ | P v klP

Theorem 2 and 3 correspond to Theorems 1 and 7 of the Flett paper [2]

respectively, but they do not mutually coincide.

4. The proof of Theorem 3 is similar to that of Cases I —III in Theorem

2, and we shall give the proof of Theorem 2 and 4.

We need some preliminary lemmas.

LEMMA 1. If g(u) is integrable and oί^l, then

k.(«) |^^V f\g(u)\du,
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LEMMA 2. Let δ > 0, p ;> 0 and let

Pn(t) = Pn(p, δ, t) = £ ' E&? > f e*

where the dash signifies that when p — 0, the term corresponding to j = 0

w -— E{a~ι\ and generally we write

For all t we have

Pn{t) = O(«*+β),

and for ir/n tS- t ^ π we have

) + y + OWt) + O ( « r

where Q(p, t) depends only on p and t and satisfies the relation

Q(p9t) = V(p + lyp+Wr11-1 + O(l).

If in addition p^il, then for τr/n ̂  t <: π, we have

where Rn(t) = O(« p- 2r δ- 2) + O(^- 3

For ir/n ^ t ^τrf all O's are uniform and

(I - e-
u)s = (2 sin^-Y e^'tw\

LEMMA 3. Let 0 <; / < 1, p ;> 1, δ > 0 and let Pn(ρ, δ, ί) be defined in
the preceding Lemma. If we write for 0 < u ̂ S τr>

ϋΓn(β) = ^ n ( / , A «,«) = — ^ — - f ( ί - u)-ιPn(t)dt,

and K'n(u) = O(nι+P+*)

uniformly in 0 < u 5jΞ ττ/2,

uniformly in ir — ir/n ̂  U^ΊΓ. Further for ir/n 5S u < TΓ

£„(") = L.(«) - M,(«),

where
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+P nίu-l%iβ

RejMn(«)! =

and

M'n(u) = OU"-f(7r - «)-'-}

uniformly in *π/n ^ u <C π. Here £ is any fixed number such that 0 <

£ ^ 1.

These Lemmas 1-3 are all due to T. M. Flett [2].

LEMMA 4. Suppose that F(t) is of period 2ir and integrable (— TΓ, TΓ)

If 1 < k^r< oo, 0 ^ σ < I/A', λ = I/A - 1/r + σ - 1 ^ 0
I/A' = 1, Me#

' : α » ι + i ) - λ r k , r } 1 / r ^ ,

This is due to H. R. Pitt [3]. Lemm 4 reduces to the Hausdorff-Young
theorem if σ = λ = 0 and r = A', and to the Hardy-Littlewood theorem if
r = k and σ = 0.

5. PROOF OF THEOREM 2. Since

3n(0) = - — Γψ(t) sin nt dt (5. 0.1)
7Γ J o

we get

~ it n

= - ^ ^ Γ / +(') Σ ££}υ i sin iί Λ

= - — ίV(0 5,(<) Λ (5.0.2)
7Γ J o

where
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l)j sin jt

Im{Pn(l9β9t)}. (5.0.3)1

Integrating (5. 2) by parts q times, we have

[

( ~ 1 ) g + 1 f *ΨQ(t) Sj?\t) dt. (5. 0. 4)
7Γ J o

We have now to distinguish five cases.

Case I. q = a > 0, 1 < ^ ^ 2,

Case II. 1 ̂  # < <*, 1 < p ^ 2,

Case III. q> OL 1 < p ^ 2,

Case IV. tf > 0, £ ^ 1, 1 < ^ ^ 2,

Case V. /> = 1.

In the first three of them we take q to be the greatest integer such that
q < β. Since

On V7Γ/ wox 1 I Γ I ί ^ w \-L>A-'>7Γyί

= O(«m+1-" + n-2),

it follows from (5. 0. 4) and Lemma 1 that in these three cases we have

+ (Xnq-β) Γ \ψ(t)\dt. (5.0.5)

In Case IV we take q = 1. Since 5(77-) = 0 we have

e |P.(2, A 01 Λ (5. 0. 6)
7ΓJC/M */Q

5.1. CASE I. q = Λ ^ 0, 1 < /> ̂  2.

1°. We first consider the case k ^ p. Using (5. 5) we get
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\Ψit)\dt*

jβ j + ~jΓ j

l r*/2"
-ψ I Ψ Λ ( ί )Im|(- ί
r Jπ

*/P

Pvfc/P

; (-β)P^

= /, + /s + /s

say. Since /9 > Λ it is obvious that

(5.1.1)

n=o
β-a)7ΰc

By Lemma 2 we have

Pla + 1, /S, t) =

uniformly in 0 < t ^ τr/w. Hence

(5.1. 2)

(5.1. 3)

n=0
Σ

l

|ψ.(ί)U- A ) f

ft=0 • ( ! "

n-o Jo
(jΓ A) (P'=P/(P-D)

co _Λ/2^ fc/p

n=o J=n N Λ/2'-*-1 7

oo , τt/2^ v kip j

Σ f Λ \ .

II 1 "VI/ ^/^ I pt~aP sJ+ l >^ c\nk\p

(Γ \Φ.{t)\>t- >dt)1*

(as k^ρ)

< A
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(5.1. 4)

We can suppose β < a + 1, since for any γ > β we have

r
kip

which is an analogue of the inequality between the two summabilities
IC, β\k and IC, y \ k (Flett [1]), and whose proof is omitted here. Under
this condition, we have from Lemma 2

0

( - i)«Pn(a + 1, β, t) = -5

( 2 s i n ί T + (5.1. 5)

uniformly in ir/n ^ t ^£ 7r. We get therefore
2 » H - l _ l -,

! sin A

HIP

cynklp
sm

(s i n ί T
SΪΓ I Σ (̂  jβ-«. J

= iί +1','

say. As easily seen we have

(5.1. 6)

f τ ,
Jτr/2*

,sin

( s i n lT
Applying the Hardy-Littlewood theorem (Lemma 4) to the inner sum, we
get

kip

1 Z ^ - 1

 Λ */ 2 i
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oo τ£/2 * Ί~'-

^ AΣ,\ ί \v«(t)\p

j = 0 ^ J*/2'+l

fc/p

^ A Σ

a. 7)

We take 8 so that tf + 1/ρ < 8 <a -h 1/ρ + sup (1/ρ, l/k), then by the
Holder inequality we get

Tc

Γί' ̂  A Σ ^ 2 " f c M 2 W Λ / P ( Γ IΨβ(0 I rβ-τ dt)

1 / /»

n = o J=Ό *Ίe/2 '-»-1

fc/p'

{a - β - l)p' + 1 < \a + -1 + supf̂ -, -i) ~ £ - 1 + Λ[/>'
[ p \ρ k / p'

since

(a- a - I W + l <r ί/ϊ + . , f^ . . ,
P \ρ kI p

= α + sup (~, Λ ) - /β < 0.

Hence

! Σ ( f IΨ-WI pr δ^Λ)

From (5.1.1), (5.1. 2), (5.1. 4), (5. 1. 6), (5.1. 7) and (5.1. 8) we get the requir-
ed result for k <| p in Case I.

2°. Now we suppose k > p. We get from (5. 0. 5), applying the Holder
inequality

CO

Σ
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^ Σ
2«-t-l_l

Σ 4
.7

I m K -

J .

α 2Ή-I-1

(5.1.9)

say. Since /9 > a we have

- Λ )

(5. 1.10)

By (5. 1. 3) and the Holder inequality we get

J ^ i Σ y Σ ~\JΓ I *.(*)!*-• dt)
n=o Δ j=2n ^ *Ό 7

« 1 , τt\2n kjp . Λ\2n v fc/j/

^ A Σ ^ 2 « Γ |Ψα(ί)|
prαM (/ dt)

If we take a constant δ, 0 < δ < 1, then
co co τr/2J

w=0 S β « J-xftt-*-1

fc/p\
fc/p-1

co * / 2 J

Σ f
fc/p
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*/2> kip

)
prδdt

J=0

In order to estimate J2, we use the estimation (5.1. 5), we have

sin

t/2" 2 sinm2Ί

(5.1.11)

dt

= J 2 + j ; (5. 1.12)

say. Suppose first that p ^> k. Applying the Holder inequality to the inner

sum of J 2 . we get

"Ίt/ϋ 12 sm— j

Hence by the Hausdorff-Young theorem we have

J^mJf \Ψ.(t)\>r»dt\* (5.1.13)

X i=0 J*I2>-*-1

where η is a positive constant such that

η<p(β-a-

Then,

f ' < Λ V _ ( y OΛ*'*-11) j I y 1 ί Γ

< 4̂. Σ Σ ( I £i?-0p I 'ΨΛ^) I p i

fc/P

The last series is convergent by the condition of η and has the sum
^ w e g e t e a s i l y

( / ^ I Ψ β ( t ) I
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Now, suppose that p < k. As 1 < &' < 2 we can apply the Hausdorff-Young
theorem, and we have

.7=2" J-flon 2 sin
2

n-o

Employing the same argument as in the preceding case, we get

Ψ*Wl dt)

since ^' < />. (5.1.15)

We estimate JΓ. Let δ be the constant appeared in the estimation of ϊ2

and let r be a positive constant such that

δ - a - 1/p > τ/p.

We have, by the Holder inequality,

Tcjp

)

^ ^=0 «'*/2J-«-l

-*(ί--1*-τ">^ A Σ ( f I Ψ.

ffiCr (5.x. 16)

From (5. 1. 9), (5.1.10), (5.1.11), (5.1.12), (5.1.14), (5.1.15) and (5.1.16),

we complete the proof of Case I for k > p.

5. 2. CASE Π. 1 <; q < a, Kp<k2. Since

m {(-{)" Pn(t)\ dt

= - — Γlm {(-i)QPM\ dt f (ί-«)«-Ψβ_,(«)
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- u r " I m κ ~ i *

aM)l^\(-i)QKn(cC~q,q+hβ,u)} du9

integrating by parts and observing Ψα(0) = Kn(τr) = 0 we get

fψt(t) Im \(~i)qPn(t)} dt=- Γψa(u) Im ( ( - i)QK'n{u)\ du
Jo Jo

where Kn(u) is defined in Lemma 3.
Therefore we can write, by (5. 0. 5),

& = _ 1 _ Γψa(u) Im \{-i)Q K'n(u)\ du + OCn*-*) Γ \ψ(t)\ dt. (5. 2.1)

1°. As before we consider the case k <Ξ p. We have

Σ
2«-4-l_l

>Wfc/D ( Σ

2 » + l - l

p.kjp

p. kip

Jfc/p

= ^ + ̂ 2 + κ3

say. By Lemma 3 we have

K'n(a -g,g + l,j3,u) = O(n*+β+Ί) =

(5. 2. 2)

(5. 2. 3)

uniformly for 0 < u ^ TΓ/W. Hence
2"+ 1-1

Thus the estimation of Kx is quite similar to that of I19 and so is K3 to Z3.
We may omit the detail calculation.

We may suppose β < cc + 1 as before, and then we may suppose

where 8 is a fixed constant such that 0 < 8 < 1. Under these restrictions
we have Lemma 3,

^ α + l Λiί(w+β/2)M—(α!+β)7C/2}
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4- O{n*+1-(ir- uYa-€+q

uniformly in τr/n <= u < ir. we have

(5.2.4)

P i^y^y (2 sin -ψj ) \ '
ϊ + l-I

Σ
• klP

00 2*-4-l-l 7f

n=0 Δ ι j=2n x ^Λ/2"

kin

say. The estimation of ^2 and ̂ ' will be done along the similar way to
those of I'2 and Γ2\ therefore it is sufficient to estimate K'2". We take η so

small that 0 < η <— {a — q) and that 0 < 1 4 - α — β — v < I. We may

suppose 5 = 1 + Λ - ^ β - η.
Since q < a — η, we have

β + S — q - 1 = Ct - η - q > a — η - (Cί— η) = 0.

From q S /S — 1, we get

#4-l-tf-£;>(/9--l)4-l-tf- (1 + α-iS-i;)

= 209 - a) - 1 4- η ̂  7̂ > 0,

since β>ct+l/ρ^a+ 1/2, or 2(β - a) ̂  1.

Thus we get

Λ 4 - / 3 < ^ 4 - l < y S 4 - 6 .

Considering these inequalities we get

Kί" ^ A Σ 9^-e-,-υ ( f (T-«) '- α - e I Ψ.(«) I du)

^ A ( Γ( π—u)q-«~€du ["(a-^'-'IfW I dvf

^ A ( Γ I ψ(w) I Λ> Γ{ir-uf-"-€ (u-v)*-1 duj

\J0
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Combining the above estimations, we obtain the desired result.

2.° We consider next the case k > p. By (5. 2.1), we have

Σ Λ-ί- y ίΦ i Λ < y -JL y ] jψ) I *
\ 2W — . / ^ 271 „ '

^ - - Λ X x -1- ^ >

4 " f Ψ.(«) Im {( - ί)c^»(«)! du

4- (5. 2. 5)

where the last term is what obtained by the reason similar to the estimate
of J 3 .
In virtue of (5. 2. 3) the first term of (5. 2. 5) is inferior to

and the third term is inferior to

A * 1 J^"1-1 i »* si]
A 2_. —ΪΓ Z-j ~ / Ψβ(ίί) —

w=0 ^ i-2» ^ ^Λ/2» ( 2 sin —-)
d u

Therefore we obtain the required inequalities by repeating the quite similar
estimations to those of Jly X9 JV and K'2 respsctively.

5.3. CASE III. q > ct, 1 < / > ^ 2 . Integrating by parts, we have

Γψg(t)lm\(-i)QPn(t)} dt

= =4-^: Γlm K-O'ΛWI Λ Γ (i-«)q-a-^» rf«
Γ(g-α)Λ J o

= ̂  1 -v f^Mdu Γ(t-u)q-«-1 im K-ίmωi Λ
T(g-a)J0 Ju

= f *Ψ.(«) Im {( - x)Qtf»(α + 1 - g, ί + 1 , ίS,«) 1 rfa.

Hence from (5.0.5) we^get
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In — — riι-η Γ\ψ(t)\dt.
Jo

(5. 3. 1)

We distinguish as before the two cases k ^ p and k > p.

1? For the case k <Ξ />, we have

2^1 2

n 2-

1 Γ , .

J Jo
) lm\(-i)"Kn(u)\ du

l ( 2"H

oo 1 2 7 ! ^

Σ-i (ynjclp ] 2--ι

Λ-Λ/2" fc/p

1 r Γ)

+
Kt

say. By Lemma 3, the function Kn{t) satisfies the relations:

Kn(u) = O(^+ 1«~")

uniformly in 0 < u 5Ξ TΓ/W,

^ . (a) = O(«α+1)

uniformly in 7Γ — 7Γ/M ^ U^ JΓ; and for 7r/« ^ u ^ TΓ — 7τ/n

Using (5. 3. 2) and (5. 3. 4) we get

Σ

Σ

Σ (Σ ^ / p Σ (-7JΠT- /
r»=o ^ ι j=2» \ ,7 f̂

fc/p

(5. 3. 2)

(5. 3. 3)

(5. 3. 4)

d u

\ 1
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The estimations of Lλ and the first two terms of the right of the last inequ-
ality are similar to those of Il9 T2 and ΐί respectively. We denote by L'2 the
last term of the inequality for L2.

If q < a + 1/p, then

(q - a - l)p + 1 = p\q ~ a- 1/p) < 0.

We get therefore

L'2^AΣ,2Hl-β)k{ I \Ψ«(u)\(7r-u)q-«-Ί du)

( f ( T Γ - tt)-'ft-^
/2 ^ ^ •'7ι/2»

^ A Σ 9n(β-.-iyrt ( f \Ψ.(u)\p du) (5.3.5)

which is majorated by the required quantity.
If q = a + 1/p, that is, (q — a — l)ρ = — 1, then we have

f -X-7CI2"

( f (TΓ-«)-»
^ ^τr/2"

(5.3.6)

k l P

J = 0 ^ X ^τr/2^1

j=0

Using (5.3. 3) we have

^ A Σ 9n*
Plk

5. 3. 7)

which satisfies the inequality of the required type, as we see in the estima-
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tion of I2.

2°. The case k > p. From (5. 3. 1)
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By the similar argument as before, this is majorated by the sum of Ml9 M2,
M3, and J 3 where

Z—t cyn Z-^
J Jo

Ψ.(u)Im\(-i)QKn(u)\du

< Λ Γ — f + " V ί flTl 1 Ψ (u) 12/"rt

- π ; 2W ^ , \Jj0 ' Λ ; ι

(5.3.8)

by (5. 3. 2),
2 n -»-3-l

sin

by (5. 3. 4), and

M3 << A Σ ^ r ff'"1 ( ^ f* I Ψ.(«) I

< A E 2 n ( Λ + 1 - 3 ) ( f I Ψβ(«) I du).

(5. 3. 9)

(by (5. 3. 3))

(5. 3.10)

We can continue the estimations of (5 3. 8) and the first two terms in the
right of (5. 3. 9) by the same fashion as those of Jx and J 2 respectively. From
(5. 3. 4) — (5. 3. 6) it follows as in (3. 1.13) that the last term in the right of
(5. 3. 9) and M3 both satisfy the required inequality.

5.4. CASE IV. a > 0, /?<; 1, 1 < ρ<i 2. From (5.0.6), we have as
in Case I II ,

ήβ) = - I - Γψa(u)Re \Kn(a,2,β,u)\ du.
τrEiβ) I

By Lemma 3, the kernel Kn(u) satisfies the relations :

Kn(u) = Q(nβ+ι it'*)

uniformly in 0 < u ^ π/n%
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Kn(u) = O(n*+1)

uniformly in ir — ir/n ^£ u S TΓ, and in ir/n ^ u fg 7r — 7r/w,
βf + l {nw_(α;-l)Λ/2}i \

Re |ϋΓn(«)| = Re j ^ — ^ — — — [ + O(nΛ u'β'1) + O((τr- «)—J).

In order to estimate ^ 8 ) we follow the same way as in Case III , and it is
sufficient to consider only the following two expressions JVj and N2 :

Nt = Σ " ^ Γ Σ ("i- f I Ψ.(«) I (TΓ-W)-"-1 du)

and

iv« = Σ ^ τ Σ ί-^-1 IΨ.(«)I(τ-«)-α-:

First we have

Λr. ̂  A Σ Ί ^ Ϊ Γ

1

7t-7t/2n

n=o

^ Σ w (H ) ( ί IΨ.(«)

where - (a + Λ)ρ + 1 = - £'(α: + 1/ρ) < 0. Hence

n=o

For iV2 we have

as in JVΊ.

We can now adopt the same argument as in ί2 and J2.

5. 5. CASE V. ̂  = 1. Let g be the greatest integer such that q <^ a +
1. In this case the function ^(oc + 1 — q9 q + 1, β9 u) = iCn(w) satisfies the
relations :

Klu) = O ( ^ + 1 w"α) and ^ n ( M ) = O(n"+1)

uniformly in 0 < u ̂  7r/w and 7r — τr/n ζS= u tS- TΓ respectively, and in ΊΓ/Π ^
U ^ 7Γ — 7τ//7,
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Kn{u) = O(n"+ι u'β) + O(nQ(τr - uTa~Ύ\

Employing these relations, we have, as in Case III 2°,

Σ ( — y^
w=0 v * J-2

Σ ^ Γ Σ /(f |ψ.(«)i«-

έ=i f
. 2Ή-1-1 ^ τt

Σ-^-Σ - ^ ί f
n=o Δ i=2» y X /Λ/2

Σ -A-Σ "' (-ar f"

= JV, + JVί + Nϊ + N3 + AJS

say. We estimate iV's as follows:

Nt ^ A Σ 2"* ( J I Ψ.(«) I «- )

i
where we take 0 < δ < 1.

oo - n—1 7t/2>

<• Λ V^ 1 / V ^ Γ 77T7~'3 I Ψ " Γ

where 7̂ is so chosen that 0 <η < β - a — 1. Then,
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</ai * n kit*

)

j = 0 Δ XΛr/2'H-l /

00 1 7£-τt/2 n

. . A 1 ( f |Ψ.(a)| , \*

and

Thus the estimations of N'ί and JV3 are exactly the same as of Nl9 and we

complete the proof in this case.

We proved Theorem 2 completely.

6. PROOF OF THEOREM 4. We have

1

I Φα(«) Re I /£,(«, 1,1, «)) du. (6.1)=5 ( w + 1 ) ? r I
By Lemma 3 we get

Kn(u) = O(n2 u~«) (6. 2)

uniformly in 0 < u ^π/n, and

n(u) = - n e_ _ t u + O(n« it'2) + OC^'XTΓ - u)-«-€) (6. 3)

uniformly in ΊΓ/Π ̂  u lS nr where 8 is any fixed number such as 0 < 8 ^ 1.

We distinguish two cases k ^ p and k > p.

1°. Case k^p. Proceeding as in Case II, 1° in the proof of Theorem

2, we get by (6. 2) and (6. 3),
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*/Z»

»«,(«) I i Γ * du J

Ttrιι2n

φ«{u' cos \(j + l/2)u-a/2\

w=0 ^ l J=2» ^ ^τr/2« .

P.klP

— i?! + R2 + R3 + R4

say. Considering the condition a < \/p\ we can estimate the terms Rl9 Rs

and R3 in the same fashion as in Il9 72 and Iί respectively, and we get the
required inequalities. Concerning the term Ri9 choose £ so that a + β <
l/p\ then

R < AT—— ( f \*

Λ/P -re tip'

] Φβ(«) I p du) ( I (TΓ-w)- ( α + e ) ί ? / rf«)

' ) '

In this case the proof is finished.

2°. Case & > p. By (6.1) - (6. 3) and the Holder inequality, we have

d u

2 sm—

ΦJ
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1/ r*

= £, + & + Ss + S4

say. We can estimate *SΊ and S2 quite similarly to ^ and Jί. To estimate
5 2 we have to distinguish two cases k ^ p and k > /> and use the Haus-
dorff-Young inequality after the suitable use of the Holder inequality, and
we get, as in J'2 the desired result. For the estimation of 54, we choose S
and S such that 8/p < 8 < 1/// — a and 0 < δ < 1, and proceed as in the
estimation of Ix to get the required inequality. Thut the proof of Theorem
4 is completed.
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