MEROMORPHIC FUNCTIONS WITH MAXIMUM DEFECT SUM

S.M.SHAH¹⁾ AND S.K.SINGH²⁾

(Received June 29, 1959)

1. Introduction. Pfluger [6] proved that if f(z) be an entire function of finite order ρ with maximum defect sum 2, then ρ must be an integer. In this note we extend this theorem to meromorphic functions. We prove

THEOREM. Let f(z) be a meromorphic function of finite order ρ such that $\delta(a_1) = 1$, $\sum_{i=1}^{\infty} \delta(a_i) = 1$ where a_1 , a_2 ,... are any constants (finite or infinite) different from each other. Then ρ must be a positive integer and f(z) must be of regular growth order ρ .

We show also by means of an example that f(z) need not be of very regular growth order ρ or even proximate order $\rho(r)$.

2. Lemma. Let F(z) be a meromorphic function of non-integer order $\rho > 0$ and

$$\lim_{r\to\infty} \sup \frac{N(r,a)+N(r,b)}{T(r)} = \chi(\rho)$$

where a and b are any two distinct numbers finite or infinite; then if $p = [\rho] > 0$,

$$\chi(\rho) \ge (\rho - p)(p + 1 - \rho)/\{3e(2 + \log p)(1 + p)^2\},\tag{1}$$

and if p = 0,

$$\chi(\rho) \ge 1 - \rho \tag{2}$$

Two proofs of this lemma, with different constants,³⁾ on the right hand sides of (1) and (2), are known [4; pp. 51-54; 10, theorem 2 (a)]. We sketch a different proof depending on the proximate order $\rho(r)$.

Since $T\left(r, \frac{\alpha F + \beta}{\gamma F + \delta}\right) = T(r, F) + O(1)$, we may suppose a = 0, $b = \infty$. Then

$$F(z) = z^k e^{q(z)} \prod_{i=1}^{\infty} E\left(\frac{z}{a_i}, p_i\right) / \prod_{i=1}^{\infty} E\left(\frac{z}{b_i}, p_i\right) = z^k e^{q(z)} P_i / P_i$$
 (say)

Presented to the American Math. Soc. Dec. 5, 1958.

¹⁾ Sponsored by the United States Army under contract No. DA-11-022-ORD-2059.

²⁾ Sponsored by the National Science Foundation (U.S.A.) grant NSF-G4917.

³⁾ The constants on the right hand sides of (1) and (2) are not "best possible."

where q(z) is a polynomial of degree $q \leq [\rho]$. Write max $(p_1, p_2) = p$. Then it is easily seen that $p = [\rho]$ and

$$T(r, F) \leq O(\log r) + O(r^q) + \log M(r, P_1) + \log M(r, P_2).$$

Write

$$n(x, 0) + n(x, \infty) = n(x), N(x, 0) + N(x, \infty) = N(x)$$

and let

$$0<\delta<\min(|a_1|,|b_1|)$$
. If $p=0$ and $r>r_0(\varepsilon)$

$$T(r,F) \leq O(\log r) + \int_{\delta}^{\infty} \frac{rn(t)dt}{t(t+r)} < (1+\varepsilon)r \int_{r}^{\infty} \frac{N(t)dt}{t^{2}}.$$
 (3)

If p > 0 and $A = 3e(2 + \log p)(1 + p)$ then [5; pp. 225-6]

$$T(r,F) \leq O(r^p) + A \int_{\delta}^{\infty} \frac{n(x)}{x^{1+p}} \frac{r^{1+p}}{(x+r)} dx. \tag{4}$$

Let $\rho(r)$ be the proximate order for N(r). Then [8; 9, p. 321]

- 1) $\rho(r)$ is differentiable for $r > r_0$ except at isolated points at which $\rho'(r-0)$ and $\rho'(r+0)$ exist.
- 2) $\lim_{r\to\infty} \rho(r) = \rho$.
- 3) $\lim r\rho'(r)\log r = 0$.
- 4) $N(r) \leq r^{\rho(r)}$ = $r^{\rho(r)}$

for all $r > r_0$ for a sequence of values of $r \uparrow \infty$.

Choose r_0 so large that $p < \rho(r) < p+1$ for all $r \ge r_0$. Then for all $r > R_0(\varepsilon) > r_0$, we have from (4) when p > 0

$$T(r,F) < (A+arepsilon) \left\{ r^p \int_{r_0}^r rac{N(x)dx}{x^{1+p}} + r^{p+1} \int_r^\infty rac{N(x)dx}{x^{2+p}}
ight\} (p+1)$$
 $< (A+arepsilon) (p+1) r^{
ho(r)} \left\{ rac{1}{
ho(r)-p} + rac{1}{p+1-
ho(r)}
ight\}$

and (1) follows. If p = 0 we have from (3)

$$T(r,F) < (1+\varepsilon)r \int_r^\infty x^{\rho(x)-2} dx = (1+\varepsilon) \frac{r^{\rho(r)}}{1-\rho(r)}$$

and (2) follows.

3. Proof of Theorem. (a) Suppose first $a_1 = \infty$ so that $\delta(\infty) = 1$, $\sum_{i=0}^{\infty} \delta(a_i) = 1.$

Given $\varepsilon > 0$, choose a_2, \ldots, a_{q+1} $(q \ge 3)$ such that $\sum_{i=q+2}^{\infty} \delta(a_i) < \varepsilon$.

Since f(z) has maximum defect sum, f(z) can not reduce to a rational function and so $\log r = o(T(r, f))$. Now [11, p. 18]

$$N\left(r, \frac{1}{f'}\right) + \sum_{i=1}^{q+1} m(r, a_i) + S(r) \leq T(r, f')$$
....(5)

and hence

$$1-oldsymbol{arepsilon} < \sum\limits_{i=2}^{q+1} \delta(a_i) < \liminf_{r o \infty} |T(r,f')/T(r,f).$$

Further [4; p. 104]

$$\limsup_{r \to \infty} \frac{T(r, f')}{T(r, f)} \leq 2 - \delta(\infty) - \mu(\infty) = 1$$

and so

$$T(r, f') \sim T(r, f)$$
 as $r \to \infty$. (6)

Hence from (5) we have

$$\lim_{r\to\infty}\sup\frac{N(r,\ 1/f')}{T(r,\ f')}+\sum_{j=0}^{q+1}\delta(a_i)\leq 1$$

and so

$$\limsup_{r \to \infty} \frac{N(r, 1/f')}{T(r, f')} = 0.$$
(7)

Further $N(r, f') \leq 2N(r, f)$, and $\delta(\infty) = 1$, and so from (6)

$$\lim_{r \to \infty} \sup \frac{N(r, f')}{T(r, f')} = 0.$$
(8)

Write

$$g(r, f') = \frac{N(r, 1/f') + N(r, f')}{T(r, f')}.$$

Then from (7) and (8), $\lim_{r\to\infty} g(r, f') = 0$.

Now f'(z) is meromorphic function of the same order ρ ; if $\rho > 0$ be non-integer then we should have from Lemma

$$\lim\sup_{r\to\infty} g(r, f') = \chi(\rho) > 0,$$

and if $\rho = 0$ then we have [7]

$$\lim_{r\to\infty} \sup g(r, f') \ge 1.$$

Hence ρ must be an integer. To prove that f'(z) is of regular growth we use the following theorem of Edrei and Fuchs⁴.

THEOREM. Let F(z) be a meromorphic function of finite order ρ and

lower order
$$\mu$$
. Let p be the integer defined by $p - \frac{1}{2} \le \mu . If$

⁴⁾ A. Edrei and W. H. J. Fuchs "Deficient values and asymptotic values of a meromorphic function" in publication; see also, Notices Amer. Math. Soc. 6 (1958) pp. 496-7 abstract 548-71, 548-72 p. 606 abstract 549-26.

$$\limsup_{r\to\infty}\frac{N(r,\,F)\,+\,N(r,\,1/F)}{T(r,\,F)}<\frac{\beta}{5e(1\,+\,p)},\,\,0<\beta\leqq\frac{1}{2}\,,$$

then $p \ge 1$ and $p - \beta \le \mu \le \rho \le p + \frac{\beta}{10}$.

Since $\lim_{r \to \infty} g(r, f') = 0$ and f' is of finite order ρ , we can choose β arbitrary small and so we have

$$\rho = \lim_{r \to \infty} \frac{\log T(r, f')}{\log r} = \mu.$$

Further $T(r, f') \sim T(r, f)$ and so f(z) is of regular growth integer order $\rho \geq 1$.

- (b) Suppose now $a_1 \neq \infty$. We have $\delta(f, a_1) = 1$, $\sum_{i=1}^{\infty} \delta(f, a_i) = 1$. Let $F(z) = 1/\{f(z) - a_1\}$. Then T(r, F) = T(r, f) + O(1) (9) and so F(z) is of the same order ρ . Further $\delta(f, a_1) = \delta(F, \infty) = 1$, $\sum_{i=1}^{\infty} \delta(f, a_i) = \sum_{i=1}^{\infty} \delta(F, \alpha_i) = 1 \text{ where } \alpha_i = 1/(a_i - a_1), i = 2, 3, \dots \text{ are finite}$ constants different from each other. Hence by case (a) F(z) is of regular growth integer order $\rho \ge 1$ and by (9) the theorem is proved
- 4. Remarks. (i) We note that it is not possible to prove the theorem without some condition of the type $\delta(a_1) = 1$. In fact there are meromorphic functions of finite non-integer order ((2k+1)/2 where k integer ≥ 1) with maximum defect sum 2 (see [2], [3]).
- (ii) We can prove (6) under less restrictive hypothesis: f(z) is of finite order

and
$$\theta(\infty) = 1, \sum_{\substack{a \text{ finite} \\ r \to \infty}} \theta(a) = 1 \dots \qquad (H_1)$$
 where $\theta(a) = 1 - \limsup_{\substack{r \to \infty \\ r \to \infty}} \frac{N(r, a)}{T(r)}$.

However the conclusion that f(z) is of integer order will not follow with (H_1) . Consider for instance

$$f(z) = \exp(2\sqrt{z}) + \exp(-2\sqrt{z})$$

which is an entire function of order 1/2, and

$$\theta(\infty) = 1, \ \theta(2) + \theta(-2) = 1.$$

(iii) If f(z) is meromorphic for $|z| < R < \infty$ and satisfies

(a)
$$\lim_{r \to R} \frac{-\log (R-r)}{T(r, f)} = 0,$$

(b) f(z) is of finite order ρ ,

(c)
$$\delta(\infty) = 1$$
, $\sum_{a \neq \infty} \delta(a) = 1$,

then (6), (7), (8) where $r \to \infty$ is to be replaced by $r \to R$, follow by the same argument.

(iv) We construct an entire function f(z) of integer order $\rho > 1$ for which $\delta(0) = 1 = \delta(\infty)$ and

$$\limsup_{r \to \infty} \frac{T(r)}{r^{\rho}} = \infty, \ \liminf_{r \to \infty} \frac{T(r)}{r^{\rho}} = a, \qquad 0 < a < \infty.$$

Let $\prod_{i=1}^{\infty} E\left(\frac{z}{z_n}, p\right)$ be a canonical product where $p = \rho$, $n(r) = o(r^{\rho})$, z_n^{ρ} real, $\sum 1/|z_n|^{\rho+\epsilon}$ convergent, $\sum 1/z_n^{\rho}$ oscillating such that if $S(r) = \sum_{|z_n| \le r} 1/z_n^{\rho}$ then $\limsup_{r \to \infty} S(r) = \infty$, $\liminf_{r \to \infty} S(r) = b$ where $0 < b < \infty$.

For instance we can take $z_n = \{n \log(n+1)\}^{1/\rho}$ for a sequence of values of n and $e^{i\pi/\rho}\{n \log (n+1)\}^{1/\rho}$ for the remaining values of n in such a way that if $\varepsilon_n = \pm 1$,

$$\sum_{|z_n| \le r} \frac{1}{z_n^{\rho}} = \sum_{|z_n| \le r} \frac{\varepsilon_n}{\log (n+1)} = S(r)$$

then

$$\lim_{r\to\infty} \sup S(r) = \infty$$
, $\lim_{r\to\infty} \inf S(r) = b$.

Further $n(r) = o(r^{\circ})$, $p = \rho$, and $\sum 1/|z_n|^{\rho + \epsilon_j}$ is convergent. Consider the entire function $f(z) = z^k \exp(c_{\rho}z^{\circ} + c_{\rho-1}z^{\circ-1} + \ldots) \prod_{i=1}^{\infty} E\left(\frac{z}{z_n}, p\right)$, $\Re(c_{\rho}) \ge 0$. It is an entire function of order and genus equal to ρ . If we write

$$c_{\rho} + \frac{1}{\rho} S(r) = A(r)e^{i\alpha(r)}$$

then $\liminf_{r o \infty} \ A(r) = \left| c_{\rho} + \frac{b}{\rho} \right|; \ \limsup_{r o \infty} \ A(r) = \infty.$

Further {cf. [1; pp. 27-29], [6; pp. 97-101]}

$$\log|f(re^{i\phi})| = \Re\{r^{\circ}A(r)e^{i(\alpha(r)+\rho\phi)}\} + o(r^{\rho})$$

and so if $a\pi = |C_{\rho} + b/\rho|$ we have

log
$$M(r) = (A(r) + o(1))r^{\circ}$$
 (10)
 $T(r) = (A(r)/\pi + o(1))r^{\rho},$

$$\lim_{r\to\infty}\sup\ T(r)/r^\rho=\infty,\ \lim\inf_{r\to\infty}\ T(r)/r^\rho=a,\ \delta(0)=\delta(\infty)=1.$$

If we compare $\log M(r)$ with a proximate order $r^{\rho(r)}$ [6; p. 96; 8, pp. 326-7 (case A)], then from (10) we have

$$\lim_{r\to\infty}\sup\ \log\ M(r)/r^{\rho(r)}=1,\ \lim_{r\to\infty}\sup\ T(r)/r^{\rho(r)}=\frac{1}{\pi}$$

$$\liminf_{r \to \infty} \frac{T(r)}{r^{\rho(r)}} = \liminf_{r \to \infty} \frac{\log M(r)}{r^{\rho(r)}} = 0.$$

Further we note that by an appropriate choice of z_n and C_ρ we can construct an entire function f(z) of mean type (with respect to comparison function r^ρ), with defect sum 2, for which

$$0<\liminf_{r o\infty}rac{T(r)}{r^
ho}<\limsup_{r o\infty}rac{T(r)}{r^
ho}<\infty.$$

REFERENCES

- [1] R. P. BOAS, Entire Functions, New York (1954).
- [2] E. HILLE, Zero point problems for linear differential equations of the second order, Matematisk Tidsskrift, B, (1927), 25-44.
- [3] F. NEVANLINNA, Über eine Klasse meromorpher Funktionen, 7 Congr. Math. Scand, Oslo (1930), 81-83.
- [4] R. NEVANLINNA, Le Théorème de Picard-Borel et la théorie des fonctions meromorphes, Paris (1929).
- [5] R. NEVANLINNA, Eindeutige Analytische Funktionen, Berlin (1953).
- [6] A. PFLUGER, Zur Defectrelation ganzer Funktionen endlicher Ordnung. Comment. Math. Helv. 19 (1946), 91-104.
- [7] S. M. SHAH, A note on meromorphic functions, Math. Student 12 (1944), 67-70.
- [8] S.M.SHAH, On proximate orders of integral functions, Bulletin Amer. Math. Soc. 52 (1942), 326-328.
- [9] S. M. SHAH Exceptional values of entire and meromorphic functions II, Journal Indian Math. Soc. 20 (1956), 315-327.
- [10] S. M. SHAH, Mermorphic functions of finite order, to appear in Proc. Amer. Math. Soc.
- [11] H. WITTICH, Neuere Untersuchngen uber eindeutige analytische Funktionen, Berlin, 1955.
- [12] H. WITTICH, Defekte Werte eindeutiger analytischer Funktionen, Archiv der Math. 9 (1958), 65-74.

MATHEMATICS RESEARCH CENTER, WISCONSIN UNIVERSITY, MADISON AND MUSLIM UNIVERSITY, ALIGARH, INDIA.

UNIVERSITY OF KANSAS, LAWRENCE, KANSAS AND D.S. COLLEGE, ALIGARH, INDIA.