ON ALMOST-ANALYTIC VECTORS IN CERTAIN ALMOST-HERMITIAN MANIFOLDS ${ }^{1 \text { }}$

Shun-ichi Tachibana

(Received February 20 1959)
0. Introduction. On an n-dimensional differentiable manifold M with local coordinate systems $\left\{x^{i}\right\}^{2)}$, a tensor field $\boldsymbol{\varphi}_{j}{ }^{i}$ of type $(1,1)$ such that

$$
\begin{equation*}
\boldsymbol{\varphi}_{r}{ }^{i} \boldsymbol{\varphi}_{j}{ }^{r}=-\delta_{j}{ }^{i} \tag{0.1}
\end{equation*}
$$

is called an almost-complex structure. It is a well known fact ${ }^{3)}$ that a manifold M with an almost-complex structure $\boldsymbol{\varphi}_{j}{ }^{i}$ always admits a positive definite Riemannian metric tensor $g_{j i}$ such that
$g_{r s} \boldsymbol{\varphi}_{j}{ }^{r} \boldsymbol{\varphi}_{i}{ }^{s}=g_{j i}$.
The pair ($\boldsymbol{\varphi}_{j}{ }^{i}, g_{j i}$) satisfying (0.1) and (0.2) is called an almost-Hermitian structure and the manifold M with the structure ($\boldsymbol{\varphi}_{j}{ }^{i}, g_{j i}$) is called an almostHermitian manifold.

Let M be an almost-Hermitian manifold, then a differential form $\boldsymbol{\varphi}=$ $\boldsymbol{\varphi}_{j i} d x^{j} d x^{i}$, where $\boldsymbol{\varphi}_{j i}=\boldsymbol{\varphi}_{j}{ }^{r} g_{r i}$, is associated to the structure. If the form $\boldsymbol{\varphi}$ is closed, the structure is called an almost-Kählerian structure. In this case, the tensor $\boldsymbol{\varphi}_{j t}$ is harmonic of order two.

On the other hand, A. Frölicher ${ }^{4}$ proved that there exists an almostcomplex structure on the six dimensional sphere S^{6}. And T. Fukami and S . Ishihara ${ }^{5}$) proved that the structure on S^{6} is an almost-Hermitian one satisfying the following relation

$$
\begin{equation*}
\nabla_{k} \boldsymbol{\varphi}_{j i}+\nabla_{j} \boldsymbol{\varphi}_{k i}=0, \tag{0.3}
\end{equation*}
$$

where and throughout this paper ∇_{k} denotes the operator of covariant derivative with respect to the Riemannian connection.

The last equation expresses the fact that the tensor $\boldsymbol{\varphi}_{j i}$ is a Killing tensor of order two. ${ }^{6)}$

In my previous paper, ${ }^{7)}$ I treated almost-analytic vectors in almost-

[^0]Kählerian manifolds. By an analogous method we shall discuss about almostanalytic vectors in almost-Hermitian manifolds in which the equation (0.3). is valid. After preliminaries in $\S 1$, we shall introduce in $\S 2$ almost-analytic vectors in our manifold. In $\S 3$ it will be obtained a necessary condition in order that a vector v is a contravariant almost-analytic vector. Similarly $\S 4$ is devoted to covariant almost-analytic vectors. In $\S 5$ and $\S 6$, integral formulas will be obtained in the case where our manifold is compact.

1. Preliminaries. In this paper, by M we shall always mean an n dimensional differentiable manifold with a fixed almost-Hermitian structure($\varphi_{j}^{r i}, g_{j i}$) such that

$$
\begin{equation*}
\nabla_{k} \boldsymbol{\varphi}_{j i}+\nabla_{j} \boldsymbol{\varphi}_{k i}=0, \tag{1.1}
\end{equation*}
$$

where $\boldsymbol{\varphi}_{j t}=\boldsymbol{\varphi}_{j}{ }^{r} g_{r i}$. We shall call such a manifold K-space, for convenience.

By (0.1) and (0.2), $\boldsymbol{\varphi}_{j i}$ is skew symmetric with respect to j and i. By, (1. 1), $\nabla_{k} \varphi_{j i}$ is also skew symmetric with respect to all indices.

Transvecting (1.1) with $g^{j i}$, it follows that

$$
\begin{equation*}
\nabla^{r} \boldsymbol{\varphi}_{r i}=0 \tag{1.2}
\end{equation*}
$$

In this section we shall use (1.2) but shall not use (1.1), so the results: which will be obtained in this section are true in almost-Hermitian manifolds. with the relation (1.2).

Let $R_{k j t}{ }^{h}$ be the Riemannian curvature tensor i. e.

$$
R_{k j i}^{h}=\partial_{k}\left\{\begin{array}{l}
h j
\end{array}\right\}-\partial_{j}\left\{\begin{array}{l}
h \\
k i
\end{array}\right\}+\left\{\begin{array}{l}
h \\
k r
\end{array}\right\}\left\{\begin{array}{l}
r \\
\{j i
\end{array}\right\}-\left\{\begin{array}{l}
h \\
j r
\end{array}\right\}\left\{\begin{array}{l}
r \\
k i
\end{array}\right\},
$$

where $\partial_{i}=\partial / \partial x^{i}$, and put

$$
R_{j i}=R_{r j i}{ }^{r}, \quad R_{k j i h}=R_{k j i}{ }^{r} g_{r h}
$$

and

$$
\begin{equation*}
R_{k j}^{*}=\frac{1}{2} \boldsymbol{\phi}^{p q} R_{p q i j} \boldsymbol{\varphi}_{k}{ }^{i}, \tag{1.3}
\end{equation*}
$$

where $\boldsymbol{\phi}^{p q}=\boldsymbol{\varphi}_{r}{ }^{q} g^{r p}$.
Applying the Ricci's identity to $\boldsymbol{\varphi}_{\mathbf{t}}{ }^{h}$, we obtain the identity

$$
\nabla_{k} \nabla_{j} \varphi_{i}{ }^{h}-\nabla_{j} \nabla_{k} \varphi_{i}{ }^{h}=R_{k j r}{ }^{h} \boldsymbol{\varphi}_{i}{ }^{r}-R_{k j i}{ }^{r} \boldsymbol{\varphi}_{r}{ }^{h} .
$$

Transvecting the last equation with $g^{j i}$ and using (1.2), we find

$$
\nabla^{r} \nabla_{j} \boldsymbol{\varphi}_{r}{ }^{h}=R_{k j r}{ }^{h} \boldsymbol{\varphi}^{k r}+R_{j}^{r} \boldsymbol{\varphi}_{r}{ }^{h} .
$$

As $\phi^{k r}$ is skew symmetric with respect to k and r, we get

$$
\nabla^{r} \nabla_{j} \boldsymbol{\varphi}_{r}{ }^{n}=\frac{1}{2} \boldsymbol{\varphi}^{p q} R_{p q j}{ }^{n}+R_{j}^{r} \boldsymbol{\varphi}_{r}^{n},
$$

from which we obtain

$$
\begin{equation*}
\nabla^{r} \nabla_{j} \boldsymbol{\varphi}_{r h}=\frac{1}{2} \boldsymbol{\varphi}^{p q} R_{p a j h}+R_{j}^{r} \boldsymbol{\varphi}_{r h} . \tag{1.4}
\end{equation*}
$$

A vector field v is called a contravariant almost-analytic vector or simply an analytic vector if its contravariant components satisfy the equations

$$
\begin{equation*}
\underset{v}{£} \boldsymbol{\varphi}_{j}{ }^{i} \equiv v^{r} \nabla_{r} \varphi_{j}{ }^{i}-\varphi_{j}^{r} \nabla_{r} v^{i}+\varphi_{r}{ }^{i} \nabla_{j} v^{r}=0, \tag{1.5}
\end{equation*}
$$

where $\underset{v}{£}$ is the operator of Lie derivative.
A vector field u is called a covariant almost-analytic vector or simply a covariant analytic vector if its covariant components satisfy the equations

$$
\begin{equation*}
\nabla_{j}\left(\boldsymbol{\varphi}_{i}^{r} u_{r}\right)=u_{r} \nabla_{i} \boldsymbol{\varphi}_{j}^{r}+\boldsymbol{\varphi}_{j}{ }^{r} \nabla_{r} u_{i} \tag{1.6}
\end{equation*}
$$

LEMMA 1. 1. ${ }^{8)}$ In a compact almost-Hermitian manifold M in which the equation (1.2) is valid, if scalar functions f and g satisfy the equation

$$
\nabla_{i} f=\varphi_{i}^{r} \nabla_{r} g
$$

then the functions are both constant over M.
Let v be an analytic vector, u a covariant analytic vector and put

$$
g=u_{l} v^{l} \text { and } f=\varphi_{r}{ }^{l} u_{l} v^{r}
$$

then by virtue of Lemma 1. 1 and definitions, we get easily the following
THEOREM 1. 2. In a compact almost-Hermitian manifold M in which the equation (1.2) is valid, the inner product of an analytic vector and a covariant analytic vector is constant over the whole M.

From (1. 6) we have

$$
\begin{equation*}
\left(\nabla_{j} \varphi_{i}^{r}-\nabla_{i} \varphi_{j}^{r}\right) u_{r}=\varphi_{j}^{r} \nabla_{r} u_{i}-\boldsymbol{\varphi}_{i}^{r} \nabla_{j} u_{r} \tag{1.7}
\end{equation*}
$$

for a covariant analytic vector u. And again from (1.6) we have

$$
\begin{equation*}
\nabla_{j}\left(\boldsymbol{\varphi}_{i}^{r} u_{r}\right)=\nabla_{i}\left(\boldsymbol{\varphi}_{j}{ }^{r} u_{r}\right)-\boldsymbol{\varphi}_{j}^{r} \nabla_{i} u_{r}+\boldsymbol{\varphi}_{j}{ }^{r} \nabla_{r} u_{i} . \tag{1.8}
\end{equation*}
$$

Now we shall define a vector field \bar{u} by the equation

$$
\bar{u}_{i}=\phi_{i}{ }^{t} u_{t}
$$

for any vector field u, then it is equivalent to define

$$
\tilde{u}^{i}=-\boldsymbol{\varphi}_{t}{ }^{i} u^{t}
$$

Thus (1. 8) becomes the following form :

$$
\begin{equation*}
\nabla_{j} \bar{u}_{i}-\nabla_{i} \bar{u}_{j}=\varphi_{j}^{r}\left(\nabla_{r} u_{i}-\nabla_{i} u_{r}\right)^{9)} \tag{1.9}
\end{equation*}
$$

The equations (1.6), (1.7) and (1.9) are equivalent to each other.

[^1]By transvection (1.6) with $g^{j i}$ we get easily

$$
\begin{equation*}
\nabla^{r} \bar{u}_{r}=0 \tag{1.10}
\end{equation*}
$$

By virtue of (1.9) and (1.10) we have
Theorem 1. 3. In an almost-Hermitian manifold M in which the equation (1.2) is valid, if a covariant analytic vector u is closed i.e. $\nabla_{j} u_{i}=\nabla_{i} u_{j}$, then \bar{u} is harmonic.
2. Identities. In the following we suppose that the manifold M is always a K-space, that is, (1. 1) holds good.

From (1. 1) and (1. 4), we get directly

$$
\begin{equation*}
\nabla^{r} \nabla_{r} \boldsymbol{\varphi}_{j i}=-\frac{1}{2} \boldsymbol{\varphi}^{p a} R_{p q j i}-R_{j}^{r} \boldsymbol{\varphi}_{r i} . \tag{2.1}
\end{equation*}
$$

If we notice the skew symmetry with respect to j and i in (2. 1), we see that

$$
R_{j}^{r} \boldsymbol{\varphi}_{r i}+R_{i}^{r} \boldsymbol{\varphi}_{r j}=0
$$

from which we get

$$
\begin{equation*}
R_{r s} \boldsymbol{\varphi}_{j}^{r} \boldsymbol{\varphi}_{i}^{s}=R_{j i} . \tag{2.2}
\end{equation*}
$$

In the next place, from (1.1) we have

$$
\nabla_{k} \boldsymbol{\varphi}_{j i}=\nabla_{i} \boldsymbol{\varphi}_{k j}
$$

Transvecting the last equation with $\boldsymbol{\varphi}^{k j}$ and taking account of (0.1) and (0.2), we find

$$
\left(\nabla_{k} \varphi_{j i}\right) \varphi^{k j}=0
$$

If we operate ∇_{r} to the last equation, then we have easily

$$
\left(\nabla_{i} \varphi_{k j}\right) \nabla_{r} \varphi^{k j}=-\left(\nabla_{r} \nabla_{k} \varphi_{j i}\right) \varphi^{k j}
$$

By the Ricci's identity and skew symmetry of $\varphi^{k j}$, after some calculation, we get

$$
\begin{equation*}
\left(\nabla_{i} \boldsymbol{\varphi}_{k j}\right) \nabla_{r} \varphi^{k j}=R_{r i}^{*}-2 R_{i r}^{*}+R_{r i}, \tag{2.3}
\end{equation*}
$$

where $R_{k_{j}}^{*}$ is defined by (1.3). As the left hand side is symmetric with respect to i and r, we see that

$$
\begin{equation*}
R_{i r}^{*}=R_{r i}^{*} \tag{2.4}
\end{equation*}
$$

holds good. Consequently (2.3) becomes
(2. 5)

$$
\left(\nabla_{i} \boldsymbol{\varphi}_{k j}\right) \nabla_{r} \varphi^{k j}=R_{i r}-R_{i r}^{*}
$$

Hence we have
THEOREM 2. 1. In a K-space M, the inequality

$$
R_{j i} v^{j} v^{i} \geqq R_{j i}^{*} v^{j} v^{i}
$$

is valid for any vector field v.
As an application of the last theorem, we shall give the following
THEOREM 2. 2. ${ }^{10}$ If $n \geqq 4$ and a K-space M is conformally flat, then. the Ricci's quadratic form $R_{j i} v^{j} v^{i}$ can not be negative definite.

PRoof. From the assumption, the curvature tensor of M has the following form ${ }^{11)}$

$$
\begin{aligned}
R_{k j i h} & =\frac{1}{n-2}\left(g_{k h} R_{j i}-g_{j h} R_{k i}+R_{k h} g_{j i}-R_{j h} g_{k i}\right) \\
& -\frac{R}{(n-1)(n-2)}\left(g_{k h} g_{j i}-g_{j h} g_{k i}\right) .
\end{aligned}
$$

Hence we have

$$
R_{j i}^{*}=\frac{1}{n-2}\left(2 R_{j i}-\frac{R}{n-1} g_{j i}\right)
$$

from which it follows that

$$
\begin{equation*}
R_{j i}-R_{j i}^{*}=\frac{1}{n-2}\left\{(n-4) R_{j i}+\frac{R}{n-1} g_{j i}\right\} . \tag{2.6}
\end{equation*}
$$

If the Ricci's quadratic form $R_{j i} v^{j} v^{i}$ is negative definite, then $R<0$. Hence(2. 6) contradicts to the Theorem 2. 1.

CORollary. If $n \geqq 4$, there does not exist a K-space of constant curvature with $R<0$.

The Nijenhuis' tensor of an almost-complex structure is defined by

$$
N_{j i}{ }^{h}=\varphi_{j}{ }^{l}\left(\nabla_{l} \varphi_{i}{ }^{h}-\nabla_{i} \varphi_{l}{ }^{h}\right)-\varphi_{i}{ }^{l}\left(\nabla_{l} \varphi_{j}{ }^{h}-\nabla_{j} \varphi_{l}{ }^{h}\right){ }^{11)}
$$

By virtue of (1.1), in K-space M, the last equation turns to

$$
N_{j i}{ }^{h}=-4 \varphi_{r}{ }^{h} \nabla_{j} \varphi_{i}{ }^{r} .
$$

If we put

$$
\begin{equation*}
N_{j i h}=N_{j i}{ }^{r} g_{r h} \tag{2.7}
\end{equation*}
$$

then it follows that

$$
N_{j i h}=-4\left(\nabla_{j} \varphi_{i}{ }^{r}\right) \boldsymbol{\varphi}_{r h} .
$$

It is easily seen that $N_{j i l}$ is skew symmetric with respect to all indices.
Let v be a vector field and define $N(v)_{h}$ by the equation

$$
\begin{equation*}
N(v)_{h}=\frac{1}{4}\left(\Delta^{j} v^{i}\right) N_{j i h} \tag{2.8}
\end{equation*}
$$

10) If the manifold M is compact, the theorem is a direct consequence of Theorem 4.2 in : p. 80 of K. Yano, and S. Bochner [6].
11) K. Yano [7].
where $\nabla^{j} v^{i}=g^{j r} \nabla r^{2} v^{i}$. Then, by virtue of (0.1), (0.2), (1.1) and (2.7), we have

$$
\begin{equation*}
N(\boldsymbol{v})_{h}=\left(\nabla^{j} v^{i}\right)\left(\nabla_{r} \boldsymbol{\varphi}_{j i}\right) \boldsymbol{\varphi}_{h}{ }^{r} \tag{2.9}
\end{equation*}
$$

In the next place we shall prepare a lemma which is useful in § 6.
From $\tilde{v}_{i}=\varphi_{i}{ }^{t} v_{t}$, we have

$$
\nabla^{r} \nabla_{r} \bar{v}_{i}=\left(\nabla^{r} \nabla_{r} \varphi_{i t}\right) v^{t}+2\left(\nabla^{\tau} \boldsymbol{\varphi}_{i}^{t}\right) \nabla_{r} v_{t}+\varphi_{i}^{t} \nabla^{r} \nabla_{r} v_{t} .
$$

Transvecting $\widetilde{v}^{i}=-\boldsymbol{\varphi}_{t}{ }^{i} v^{t}$ with the last equation and taking account of (1.1), (2.1), (2.2) and (2.9), we find

$$
\tilde{v}^{i} \nabla^{r} \nabla_{r} \tilde{v}_{i}=v^{i}\left\{\nabla^{r} \nabla_{r} v_{i}+R_{r i}^{*} v^{r}-R_{r i} v^{r}+2 N(v)_{i}\right\} .
$$

Hence we get the following equation

$$
\begin{align*}
\left(\nabla^{\tau} \nabla_{r} \widetilde{v}_{i}-R_{r i} \tilde{v}^{r}\right) \widetilde{v}^{i} & =\left(\nabla^{\tau} \nabla_{r} v_{i}-R_{r i} v^{r}\right) v^{i} \tag{2.10}\\
& +\left\{2 N(v)_{i}-\left(R_{r i}-R_{r i}^{*}\right) v^{r}\right\} v^{i} .
\end{align*}
$$

On the other hand, the following theorem is well known. ${ }^{12)}$
In a compact orientable Riemannian manifold V_{n}, the integral formula

$$
\int_{\nabla_{n}}\left[\left(\nabla^{r} \nabla_{r} u_{i}-R_{r i} u^{r}\right) u^{i}+S(u)\right] d \sigma=0
$$

is valid for any vector field u, where $S(u)$ is given by

$$
S(u)=\frac{1}{2}\left(\nabla^{r} u^{s}-\nabla^{s} u^{r}\right)\left(\nabla_{r} u_{s}-\nabla_{s} u_{r}\right)+\left(\nabla^{r} u_{r}\right)^{2}
$$

As an almost-Hermitian manifold is an orientable Riemannian one, the theorem is applicable to our K-space M. If we put $\bar{v}_{i}=u_{i}$, then, by virtue of (2. 10), we get the following

LEMMA 2. 3. In a compact K-space M, the integral formula

$$
\begin{equation*}
\int_{M}\left[\left\{\nabla^{r} \nabla_{r} v_{i}-R_{r i} v^{r}+2 N(v)_{i}-\left(R_{r i}-R_{r i}^{*}\right) v^{r}\right\} v^{i}+S(\bar{v})\right] d \sigma=0 \tag{2.11}
\end{equation*}
$$

is valid for any vector field v.
3. Contravariant almost-analytic vectors. Consider an analytic vector v, then it holds that

$$
\begin{equation*}
\underset{v}{£} \varphi_{j}^{i} \equiv \boldsymbol{v}^{r} \nabla_{r} \varphi_{j}^{i}-\boldsymbol{\varphi}_{j}^{r} \nabla_{r} v^{i}+\varphi_{r}^{i} \nabla_{j} v^{r}=0, \tag{3.1}
\end{equation*}
$$

which is equivalent to the following equation

$$
\begin{equation*}
\boldsymbol{v}^{r} \nabla_{r} \varphi_{j t}-\varphi_{j}^{r} \nabla_{r} v_{i}-\varphi_{i}^{r} \nabla_{j} v_{r}=0 \tag{3.2}
\end{equation*}
$$

Operating $\nabla^{j}=g^{j p} \nabla_{p}$ to (3. 2), we have

[^2]$$
\left(\nabla^{j} v^{r}\right) \nabla_{r} \varphi_{j i}+v^{r} \nabla^{j} \nabla_{r} \varphi_{j i}-\varphi_{j}^{r} \nabla^{j} \nabla_{r} v_{i}-\left(\nabla^{j} \varphi_{i}^{r}\right) \nabla_{j} v_{r}-\varphi_{i}^{r} \nabla^{j} \nabla_{j} v_{r}=0 .
$$

On taking account of (1.1), (1.4) and

$$
\varphi^{j r} \nabla_{j} \nabla_{r} v_{i}=-\frac{1}{2} \varphi^{p q} R_{p q i}^{r} v_{r},
$$

we find that the equation

$$
\begin{equation*}
\nabla^{r} \nabla_{r} v_{i}+R_{r i} v^{r}=0 \tag{3.3}
\end{equation*}
$$

holds good for an analytic vector v. Hence we have
THEOREM 3. 1. In a compact K-space, if an analytic vector v satisfies $\nabla^{r} v_{r}=0$, then it is a Killing vector.

In an n-dimensional Riemannian manfold V_{n}, if a vector field v satisfies

$$
\begin{equation*}
\underset{v}{£} g_{j i} \equiv \nabla_{j} v_{i}+\nabla_{i} v_{j}=2 \phi g_{j i}, \tag{3.4}
\end{equation*}
$$

where ϕ is a scalar function, then it is called a conformal Killing vector. A conformal Killing vector v satisfies

$$
\begin{equation*}
\nabla^{r} \nabla_{r} v_{i}+R_{r i} v^{r}+\frac{n-2}{n} \nabla_{i} \nabla_{r} v^{r}=0,{ }^{13)} \tag{3.5}
\end{equation*}
$$

by virtue of the Ricci's identity and (3.4).
Now we suppose that $n>2$ and M is compact. If a conformal Killing vector v is at the same time analytic, then we have from (3.3) and (3. 5)

$$
\nabla_{i} \nabla_{r} v^{r}=0,
$$

from which it follows that $\nabla_{r} v^{r}=$ const.. As M is compact, $\nabla_{r} v^{r}=0$ by virtue of the Green's theorem. Hence, we have the following

THEOREM 3. 2. If an n-dimensional K-space $(n>2)$ is compact, a conformal Killing vector which is at the same time analytic is a Killing vector.

In V_{n}, a vector field v which satisfies the equation

$$
\underset{v}{£}\left\{\begin{array}{l}
h i \tag{3.6}
\end{array}\right\} \equiv \nabla_{j} \nabla_{i} v^{h}+R_{r j i}{ }^{h} v^{r}=\delta_{j}{ }^{h} \psi_{i}+\delta_{i}{ }^{h} \psi_{j},
$$

where ψ_{i} is a certain vector, is called a projective Killing vector. For a projective Killing vector v, we have

$$
\nabla^{r} \nabla_{r} v_{i}+R_{r i} v^{r}=\frac{2}{n+1} \nabla_{i} \nabla_{r} v^{r},
$$

from which we can obtain the following
ThEOREM 3. 3. In a compact K-space, if a projective Killing vector
13) Cf. K. Yano [7].
is at the same time analytic, then it is a Killing vector.
By an analogous method ${ }^{14)}$ as in almost-Kählerian manifold, we have easily the following

ThEOREM. 3. 4. In a compact K-space, the integral

$$
\int_{M}\left(R_{r i} v^{r} v^{i}\right) d \sigma
$$

is positive or zero for any analytic vector v.
Corollary. If a compact K-space is an Einstein space with $R<0$, then there does not exist a non-trivial analytic vector.

In a compact almost-Kählerian manifold, the equation (3.3) is a sufficient condition in order that v is an analytic vector. But in a K-space, the equation (3.3) is not sufficient. In the next place we shall obtain another equation which must be satisfied by an analytic vector.

If we operate $\phi^{k j} \nabla_{k}$ to (3.2) then we get

$$
\varphi^{k j} \nabla_{k}\left(v^{r} \nabla_{r} \varphi_{j i}-\varphi_{j}^{r} \nabla_{r} v_{i}-\varphi_{i}^{r} \nabla_{j} v_{r}\right)=0 .
$$

The left hand side is the sum of the following six terms $a_{1}, \ldots \ldots, a_{6}$.

$$
\begin{aligned}
& a_{1}=\phi^{k j}\left(\nabla_{k} v^{r}\right) \nabla_{r} \varphi_{j i}=-\left(\nabla^{k} v^{r}\right)\left(\nabla_{j} \boldsymbol{\varphi}_{k r}\right) \boldsymbol{\varphi}_{i}{ }^{j}=-N(v)_{i}, \\
& a_{2}=\phi^{k j} v^{r} \nabla_{k} \nabla_{r} \varphi_{j i}=0 .
\end{aligned}
$$

The validity of the last equality owes to (1.1), the Ricci's identity and (2. 4).

$$
\begin{aligned}
& a_{3}=-\phi^{k j}\left(\nabla_{k} \varphi_{j}^{r}\right) \nabla_{r} v_{i}=0, \\
& a_{4}=-\phi^{k j} \boldsymbol{\varphi}_{j}^{r} \nabla_{k} \nabla_{r} v_{i}=\nabla^{r} \nabla_{r} v_{i}, \\
& a_{5}=-\phi^{k j}\left(\nabla_{k} \varphi_{i}^{r}\right) \nabla_{j} v_{r}=-N(v)_{i}, \\
& a_{6}=-\phi^{k j} \boldsymbol{\varphi}_{i}^{r} \nabla_{k} \nabla_{j} v_{r}=R_{r i}^{*} v^{r} .
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
\nabla^{r} \nabla_{r} v_{i}+R_{r i}^{*} v^{r}-2 N(v)_{i}=0 \tag{3.7}
\end{equation*}
$$

for an analytic vector v. From (3.3) and (3.7), we get the following equation

$$
\begin{equation*}
\left(R_{r i}-R_{r i}^{*}\right) v^{r}=-2 N(v)_{i} . \tag{3.8}
\end{equation*}
$$

We shall see in $\S 5$ that, in a compact K-space, (3.3) and (3.8) constitute a set of sufficient conditions in order that v is an analytic vector.
4. Covariant almost-analytic vectors. In § 1 , a covariant analytic vector field was defined. In the present section we shall obtain equations which must be satisfied by such vectors.

[^3]For covariant analytic vector v, we have

$$
\left(\nabla_{j} \varphi_{i}^{r}-\nabla_{i} \varphi_{j}^{r}\right) v_{r}=\varphi_{j}{ }^{r} \nabla_{r} v_{i}-\varphi_{i}^{r} \nabla_{j} v_{r} .
$$

On account of (1.1), the last equation is equivalent to

$$
\begin{equation*}
2 v^{r} \nabla_{r} \boldsymbol{\varphi}_{j i}-\boldsymbol{\varphi}_{j}{ }^{r} \nabla_{r} v_{i}+\boldsymbol{\varphi}_{i}{ }^{r} \nabla_{j} v_{r}=0 . \tag{4.1}
\end{equation*}
$$

As an analytic vector v is defined by (3.2)i. e.

$$
v^{r} \nabla_{r} \varphi_{j i}-\varphi_{j}^{r} \nabla_{r} v_{i}-\varphi_{i}^{r} \nabla_{j} v_{r}=0,
$$

if we notice the similarity of (4.1) and the last equation, then we shall be able to avoid some complication in the following calculation.

If we operate ∇^{j} to (4.1), it follows that

$$
2\left(\nabla^{j} v^{r}\right) \nabla_{r} \varphi_{j i}+2 v^{r} \nabla^{j} \nabla_{r} \varphi_{j \imath}-\varphi_{j}^{r} \nabla^{j} \nabla_{r} v_{i}+\left(\nabla^{j} \phi_{i}^{r}\right) \nabla_{j} v_{r}+\varphi_{i}^{r} \nabla^{j} \nabla_{j} v_{r}=0 .
$$

Hence, ky virtue of (1. 1) and (1. 4), we obtain

$$
\begin{equation*}
\nabla^{r} \nabla_{r} v_{i}+R_{r i}^{*} v^{r}-2 R_{r i} v^{r}+3 N(v)_{i}=0 . \tag{4.2}
\end{equation*}
$$

Next we operate $\boldsymbol{\varphi}^{k j} \nabla_{k}$ to (4.1) and obtain the equation

$$
\boldsymbol{\varphi}^{k j} \nabla_{k}\left(2 v^{r} \nabla_{r} \varphi_{j i}-\varphi_{j}^{r} \nabla_{r} v_{i}+{\varphi_{i}}^{r} \nabla_{j} v_{r}\right)=0 .
$$

The left hand member is the sum of the following six terms $a_{1}, \ldots \ldots, a_{0}$. Making use of the notation in §3, we have

$$
\begin{array}{lll}
a_{1}^{\prime}=2 a_{1}, & a_{2}^{\prime}=2 a_{2}, & a_{3}^{\prime}=a_{3}, \\
a_{4}^{\prime}=a_{4}, & a_{5}^{\prime}=-a_{5}, & a_{6}^{\prime}=-a_{6} .
\end{array}
$$

Therefore we get

$$
\begin{equation*}
\nabla^{r} \nabla_{r} v_{i}-R_{r i}^{*} v^{r}-N(v)_{i}=0 . \tag{4.3}
\end{equation*}
$$

From (4. 2) and (4. 3), it follows that the equation

$$
\begin{equation*}
\left(R_{r i}-R_{r i}^{*}\right) v^{r}=2 N(v)_{i} \tag{4.4}
\end{equation*}
$$

holds good. Substituting (4.4) in (4. 2), we obtain

$$
\begin{equation*}
\nabla^{r} \nabla_{r} v_{i}-R_{r i} v^{r}+N(v)_{i}=0 \tag{4.2}
\end{equation*}
$$

for a covariant analytic vector v.
5. The integral formula. In this section we shall o^{\prime} tain a integral formula concerning a vector field in a compact K-space and prove a theorem which gives a necessary and sufficient condition for an analytic vector.

Let v be a vector field and introduce a tensor $a(v)_{j k}$ by

$$
\begin{align*}
a(v)_{j k} & =\left(\underset{v}{£} \boldsymbol{\varphi}_{j}^{l}\right) \boldsymbol{\varphi}_{l k} \tag{5,1}\\
& =v^{r}\left(\nabla_{r} \boldsymbol{\varphi}_{j}^{l}\right) \boldsymbol{\varphi}_{l k}-\boldsymbol{\varphi}_{j}^{r}\left(\nabla_{r} v^{l}\right) \boldsymbol{\varphi}_{l k}-\nabla_{j} v_{k} .
\end{align*}
$$

For simplicity, we shall denote $a_{j \mathrm{k}}$ instead of $a(v)_{j k}$ in the following. $a_{j k}=$ 0 is equivalent to the fact that the vector v is an analytic vector.

In the first place we shall compute $\nabla^{j} a_{j k}$, which is the sum of the fol-
lowing six terms $A_{1}, \ldots \ldots, \mathrm{~A}_{6}$.

$$
\begin{aligned}
& A_{1}=\left(\nabla^{j} v^{r}\right)\left(\nabla_{r} \boldsymbol{\varphi}_{j}^{l}\right) \boldsymbol{\varphi}_{l k}=N(v)_{k}, \\
& A_{2}=v^{r}\left(\nabla^{j} \nabla_{r} \boldsymbol{\varphi}_{j}^{l}\right) \boldsymbol{\varphi}_{l k}=\left(R_{r k}^{*}-R_{r k}\right) v^{r}, \\
& A_{3}=v^{r}\left(\nabla_{r} \boldsymbol{\varphi}_{j}^{l}\right) \nabla^{j} \boldsymbol{\varphi}_{l k}=\left(R_{r k}-R_{r k}^{*}\right) v^{r}, \\
& A_{4}=-\boldsymbol{\varphi}_{j}^{r}\left(\nabla^{j} \nabla_{r} v^{l}\right) \boldsymbol{\varphi}_{l k}=-R_{r k}^{*} v^{r}, \\
& A_{5}=-\boldsymbol{\varphi}_{j}^{r}\left(\nabla_{r} v^{l}\right) \nabla^{j} \boldsymbol{\varphi}_{l k}=N(v)_{k}, \\
& A_{6}=-\nabla^{j} \nabla_{j} v_{k} .
\end{aligned}
$$

Then we get

$$
\begin{equation*}
\nabla^{j} a_{j k}=-\left(\nabla^{j} \nabla_{j} v_{k}+R_{r k}^{*} v^{r}\right)+2 N(v)_{k} . \tag{5.2}
\end{equation*}
$$

In the next place we shall compute

$$
\nabla^{j}\left(a_{j k} v^{k}\right)=v^{k} \nabla^{j} a_{j k}+a_{j k} \nabla^{j} v^{k} .
$$

If we substitute (5. 1) and (5.2) in the last equation, we have after some calculation,

$$
\begin{align*}
\nabla^{j}\left(a_{j k} v^{k}\right)= & -\left(\nabla^{j} \nabla_{j} v_{k}+R_{r k}^{*} v^{r}\right)+N(v)_{k} v^{k} \tag{5.3}\\
& +\boldsymbol{\phi}^{j r} \boldsymbol{\phi}^{k l}\left(\nabla_{j} v_{k}\right) \nabla_{r} v_{l}-\left(\nabla_{j} v_{k}\right) \nabla^{j} v^{k} .
\end{align*}
$$

Now if we put $a^{2}(v)=a_{j k} a^{j k}$, then

$$
\begin{aligned}
a^{2}(v) & =\left[v^{r}\left(\nabla_{r} \boldsymbol{\varphi}_{j}{ }^{l}\right) \boldsymbol{\varphi}_{l k}-\boldsymbol{\varphi}_{j}{ }^{r}\left(\nabla_{r} v^{l}\right) \boldsymbol{\varphi}_{l k}-\nabla_{j} v_{k}\right] \\
& \times\left[v^{p}\left(\nabla_{p} \boldsymbol{\varphi}^{j s}\right) \boldsymbol{\varphi}_{s}{ }^{k}-\boldsymbol{\varphi}^{j p}\left(\nabla_{p} v^{s}\right) \boldsymbol{\varphi}_{s}{ }^{k}-\nabla^{j} v^{k}\right]
\end{aligned}
$$

is the sum of the following nine terms B_{1}, \ldots, B_{9}.

$$
\begin{array}{ll}
B_{1}=v^{r}\left(\nabla_{r} \boldsymbol{\varphi}_{j}^{l}\right) \boldsymbol{\varphi}_{l k} v^{p}\left(\nabla_{p} \boldsymbol{\varphi}^{j s}\right) \boldsymbol{\varphi}_{s}^{k} & =\left(R_{r p}-R_{r p}^{*}\right) v^{r} v^{p}, \\
B_{2}=-v^{r}\left(\nabla_{r} \boldsymbol{\varphi}_{j}\right) \boldsymbol{\varphi}_{l k} \boldsymbol{\varphi}^{j p}\left(\nabla_{p} v^{s}\right) \boldsymbol{\varphi}_{s}^{k} & =N(v)_{r} v^{r}, \\
B_{3}=-v^{r}\left(\nabla_{r} \boldsymbol{\varphi}_{j}^{l}\right) \boldsymbol{\varphi}_{l k} \nabla^{j} v^{k} & =B_{2}, \\
B_{4}=-\boldsymbol{\varphi}_{j}{ }^{r}\left(\nabla_{r} v^{l}\right) \boldsymbol{\varphi}_{l l} v^{p}\left(\nabla_{p} \boldsymbol{\varphi}^{j s}\right) \boldsymbol{\varphi}_{s}^{k} & =B_{2}, \\
B_{5}=\boldsymbol{\varphi}_{j}^{r}\left(\nabla_{r} v^{v}\right) \boldsymbol{\varphi}_{l k} \boldsymbol{\varphi}^{j p}\left(\nabla_{p} \boldsymbol{v}^{s}\right) \boldsymbol{\varphi}_{s}{ }^{k} & =\left(\nabla_{p} v_{l}\right) \nabla^{p} v^{l}, \\
B_{6}=\boldsymbol{\varphi}_{j}^{r}\left(\nabla_{r} v^{l}\right) \boldsymbol{\varphi}_{l k} \nabla^{j} v^{k} & =-\boldsymbol{\varphi}^{j r} \boldsymbol{\varphi}^{k l}\left(\nabla_{j} v_{k}\right) \nabla_{r} v_{l}, \\
B_{7}=-\left(\nabla_{j} v_{k}\right) v^{p}\left(\nabla_{p} \boldsymbol{\varphi}^{j s}\right) \boldsymbol{\varphi}_{s}{ }^{k} & =B_{2}, \\
B_{8}=\nabla_{j} v_{k} \boldsymbol{\varphi}^{j p}\left(\nabla_{p} v^{s}\right) \boldsymbol{\varphi}_{s}{ }^{k}=B_{6}, & \\
B_{9}=\left(\nabla^{j} v^{k}\right) \nabla_{j} v_{k}=B_{5} . &
\end{array}
$$

Therefore we get

$$
\begin{align*}
a^{2}(v)=\left(R_{r p}\right. & \left.-R_{r p}^{*}\right) v^{r} v^{p}+4 N(v)_{r} v^{r}-2 \phi^{j r} \boldsymbol{\varphi}^{k l}\left(\nabla_{j} v_{k}\right) \nabla_{r} v_{l} \tag{5.4}\\
& +2\left(\nabla_{j} v_{k}\right) \nabla^{j} v^{k} .
\end{align*}
$$

Consequently, from (5.3) and (5.4), we have

$$
\nabla^{j}\left(a_{j k} v^{k}\right)+\frac{1}{2} a^{2}(v)=-\left(\nabla^{j} \nabla_{j} v_{k}+R_{r k} v^{r}\right) v^{k}
$$

$$
+\frac{3}{2}\left\{2 N(v)_{k}+\left(R_{r k}-R_{r k}^{*}\right) v^{r}\right\} v^{k} .
$$

If M is compact, by integration of the last equation, we have the following

THEOREM 5. 1. In a compact K-space M, the integral formula

$$
\begin{align*}
\int_{M}\left[\left(\nabla^{j} \nabla_{j} v_{k}\right.\right. & \left.\left.+R_{r k} v^{r}\right) v^{k}+\frac{1}{2} a^{2}(v)\right] d \sigma \\
& =\frac{3}{2} \int_{M}\left[2 N(v)_{k}+\left(R_{r k}-R_{r k}^{*}\right) v^{r}\right] v^{k} d \sigma \tag{5.5}
\end{align*}
$$

is valid for any vector field v, where

$$
\begin{gathered}
a^{2}(v)=a_{j k} a^{j k}, a_{j k}=\left(\underset{v}{£} \varphi_{j}^{l}\right) \boldsymbol{\varphi}_{l k}, \\
N(v)_{i}=\frac{1}{4}\left(\nabla^{p} v^{q}\right) N_{p q i}
\end{gathered}
$$

and $N_{p a i}, R_{r i}^{*}$ are given by (2.7) and (1.3) respectively.
In §3 we have seen that an analytic vector v satisfies the following equations

$$
\begin{gather*}
\nabla^{r} \nabla_{r} v_{i}+R_{r i} v^{r}=0, \tag{5.6}\\
2 N(v)_{i}+\left(R_{r i}-R_{r i}^{*}\right) v^{r}=0 .
\end{gather*}
$$

Now consider a vector field v satisfying (5.6) and (5.7). Then if M is compact, we have $a^{2}(v)=0$ i. e. $a_{j k}=0$ by virtue of (5.5), so v is analytic. Thus we have the

THEOREM 5. 2. In a compact K-space M, a necessary and sufficient condition in order that a vector v be analytic is that equations (5. 6) and (5. 7) are both satisfied.
6. Another integral formula. Consider a vector field v and put

$$
\begin{aligned}
b(v)_{j k} & =\left(2 v^{r} \nabla_{r} \varphi_{j}^{l}-\boldsymbol{\varphi}_{j}^{r} \nabla_{r} v^{l}-\boldsymbol{\varphi}_{r}^{l} \nabla_{j} v^{r}\right) \boldsymbol{\varphi}_{l k} \\
& =2 v^{r}\left(\nabla_{r} \boldsymbol{\varphi}_{j}^{l}\right) \boldsymbol{\varphi}_{l k}-\boldsymbol{\varphi}_{j}^{r}\left(\nabla_{r} v^{l}\right) \boldsymbol{\varphi}_{l k}+\nabla_{j} v_{k} .
\end{aligned}
$$

$b(v)_{j k}=0$ is equivalent to the fact that the vector v is covariant analytic. For simplicity we write $b_{j k}$ instead of $b(v)_{j k}$. Using the notation in §5, $\nabla^{3} b_{j k}$ is the sum of the following six terms $A_{1}{ }^{\prime}, \ldots \ldots, A_{6}{ }^{\prime}$.

$$
\begin{array}{lll}
A_{1}^{\prime}=2 A_{1}, & A_{2}^{\prime}=2 A_{2}, & A_{3}^{\prime}=2 A_{3} \\
A_{4}^{\prime}=A_{4}, & A_{5}^{\prime}=A_{5}, & A_{6}^{\prime}=-A_{6}
\end{array}
$$

Hence we have

$$
\nabla^{j} b_{j k}=\nabla^{j} \nabla_{j} v_{k}-R_{r k}^{*} v^{r}+3 N(v)_{k} .
$$

After some calculation we get
(6. 1)

$$
\begin{aligned}
\nabla^{j}\left(b_{j k} v^{k}\right) & =\left(\nabla^{j} \nabla_{j} v_{k}-R_{r k}^{*} v^{r}\right) v^{k}+N(v)_{k} v^{k} \\
& +\varphi^{j r} \boldsymbol{\varphi}^{k l}\left(\nabla_{j} v_{k}\right) \nabla_{r} v_{l}+\left(\nabla_{j} v_{k}\right) \nabla^{j} v^{k}
\end{aligned}
$$

If we put $b^{2}(v)=b_{j k} b^{j k}$, then it is the sum of the following nine terms B_{1}, \ldots $\ldots, B_{9}{ }^{\prime}$.

$$
\begin{array}{lll}
B_{1}^{\prime}=4 B_{1}, & B_{2}^{\prime}=2 B_{2}, & B_{3}^{\prime}=-2 B_{3}, \\
B_{4}^{\prime}=2 B_{4}, & B_{5}^{\prime}=B_{5}, & B_{6}^{\prime}=-B_{6}, \\
\mathrm{~B}_{7}^{\prime}=-2 B_{7}, & B_{8}^{\prime}=-B_{8}, & B_{9}^{\prime}=B_{9} .
\end{array}
$$

Hence we have

$$
\begin{align*}
b^{2}(v)=4\left(R_{r k}\right. & \left.-R_{r k}^{*}\right) v^{r} v^{k}+2\left(\nabla_{j} v_{k}\right) \nabla^{j} v^{k} \tag{6.2}\\
& +2 \boldsymbol{\phi}^{j r} \boldsymbol{\phi}^{k l}\left(\nabla_{j} v_{k}\right) \nabla_{r} v_{l} .
\end{align*}
$$

Therefore, from (6.1) and (6.2), we get

$$
\begin{aligned}
\nabla^{j}\left(b_{j k} v^{k}\right) & -\frac{1}{2} b^{2}(v)=\left(\nabla^{j} \nabla_{j} v_{k}-R_{r k} v^{r}\right) v^{k} \\
& +\left\{N(v)_{k}-\left(R_{r k}-R_{r k}^{*}\right) v^{r}\right\} v^{k}
\end{aligned}
$$

Thus we have the following
LEmma 6. 1 . In a compact K-space M, the integral formula

$$
\begin{equation*}
\int_{M}\left[\left\{\nabla^{j} \nabla_{j} v_{i}-R_{r i} v^{r}+N(v)_{i}-\left(R_{r i}-R_{r i}^{*}\right) v^{\cdot}\right\} v^{i}+\frac{1}{2} b^{2}(v)\right] d \sigma=0 \tag{6.3}
\end{equation*}
$$ is valid for any vector field v.

On the other hand, in compact M, we have Lemma 2.3. If we subtract (6. 3) from the twice of (2.11), it follows the following

THEOREM 6. 2. In a compact K-space M, the integral formula

$$
\begin{aligned}
\int_{M}\left[\left(\nabla^{r} \nabla_{r} v_{i}\right.\right. & \left.\left.-R_{r i} v^{r}+N(v)_{i}\right)+\left\{2 N(v)_{i}-\left(R_{r i}-R_{r i}^{*}\right) v^{r}\right\}\right] v^{i} d \sigma \\
& =\int_{M}\left[\begin{array}{l}
1 \\
2
\end{array} b^{2}(v)-2 S(\widetilde{v})\right] d \sigma
\end{aligned}
$$

is valid for any vector field v.
In §4 we have seen that a covariant analytic vector v satisfies the following equations

$$
\begin{equation*}
\nabla^{r} \nabla_{r} v_{i}-R_{r i} v^{r}+N(v)_{i}=0 \tag{6.4}
\end{equation*}
$$

$2 N(v)_{i}-\left(R_{r i}-R_{r i}^{*}\right) v^{r}=0$.
Now, let v be a covariant analytic vector, then (6.4), (6.5) and $b^{2}(v)=0$ hold good. Hence, in compact $M, S(\widetilde{v})=0$, y virtue of Theorem 6. 2. Thus, from the definition of $S(\widetilde{v})$, the vector \widetilde{v} is harmonic. As \bar{v} is also a cova-
riant analytic vector, v is also harmonic by the same argument. Conversely, let v and \bar{v} be both harmonic, then their components satisfy (1.9) trivially, so v is a covariant analytic vector. Thus we have

THEOREM 6. 3. In a compact K-space M, a necessary and sufficient condition in order that a vector v be covariant analytic is that v and \bar{v} are both harmonic.

BIBLIOGRAPHY

[1] A. Frölicher, Zur Differentialgeometrie der Komplexen Strukturen, Math. Ann. 129 (1955) 50-95.
[2] T. Fukami and S. IShithara, Almost-Hermitian structure on S^{6}, Tôhoku Math. Jour. 7 (1955) 151-156.
[3] A. Lichnerowicz, Sur les groupes d'automorphismes de certaines variétés kähleriennes, C. R. Acad. Sci., Paris, 239 (1954) 1344-1346.
[4] S.SAsAki and K. Yano. Pseudo-analytic vectors on pseudo-Kählerian manifolds, Pacific Journal of Math., 5 (1955) 989-993.
[5] S. TAChibana, On almost-analytic vectors in almost-Kählerian manifolds, Tôhoku Math. Jour. 11(1959) 247-265.
[6] K. YANJ, and S. BJCHNER, Curvature and Batti numbers, Annals of Math. Studies, 32 (1953).
[7] K. YANO, The theory of Lie derivatives and its applications, Amsterdam.

Ochanomizu University, TOKyo.

[^0]: 1) This paper was prepared in a term when the present author was ordered to study at
[^1]: 8) S. Tachibana [5].
 9) In (1.9), ∇ may be replaced by ∂.
[^2]: 12) For example, K. Yano [7].
[^3]: 14) S. Tachibana [5].
