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1. Introduction. Let M be an n-dimensional connected complete Rieman-
nian manifold of class C?, admitting a parallel field of one-dimensional
tangent vector subspaces. M is also regarded as a Riemannian manifold
whose homogeneous holonomy group fixes a one-dimensional tangent vector
subspace. The purpose of this note is to discuss the global geometrical
structure of M. Locally, the parallel field is generated from a parallel field
of non-zero tangent vectors which is locally defined. The structure, that is
the local decomposition of the Riemannian metric, has been well known to
many geometricians. Starting from this local structure we proceed to deter-
mine the global structure of M. THhe main results are shown in Theorems
1 — 7 Among them Theorems 1 — 6 give structures in respective cases, and
from the last Theorem 7 we can know a general structure of M.

From now on, the word “k-dimensional” is abbreviated “k-”, say, like
k-space (but “R-” etc have not such a meaning). Let us suppose that Latin
indices @, & run from 1 to » — 1 and Greek indices a, B,y from 1 to n.
Let E be a Fuclidean 1-space with the coordinate svstem {£] — co < ¢ < oo}
and d# denotes the infinitesimal distance. Let E be the part {t]0<1¢ <
oo} of E. Moreover for a constant L > 0, let [L] be the part {£|0 <¢=< L}
of E.

The following conventions in a Riemannian manifold X are also applied
to all of Riemannian manifolds: The parallelism in X means the one of
Levi-Civita. A neighborhood in X is always an open set homeomorphic to
Euclidean snace. Take anv z,v € X. Let [z, y] denote a geodesic arc joining
z to v. And further. take a unit tangent vector v at zx. Given a real number
¢, o(x, v, ¢) is defined to be the geodesic arc issuing from x, whose length is
le! and whose initial vector is v or—w according as ¢ > 0 or < 0. Let (z, v,
¢) denote its terminal point. Note that a geodesic arc is not necessarily
simple and sometimes may be closed. Let a curve a: z(t) (say, a =t = b)
be given in X. At x, = x(a) we take a unit vector v, tangent to X. Cor-
responding to each #, let ©(z) be the unit vector at z(z) parallel to v,
along a@. Moreover if a geodesic arc ¢(xy, vy, ¢) is given, each geodesic arc
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o(x(t), v(t), ¢) is said to be parallel to ¢(z,, vy, c) along a. And as usual, to
displace the latter arc parallelly along @ is to obtain the former arcs. A
covering manifold C(X) of X is defined to be a connected covering manifold
of X with the Riemannian metric naturally induced from X by the covering
map p. C(X) is of the same differentiability class as X. However, we sometimes
allow local coordinate systems whose differentiability classes are minus 1 from
that of X. Especially, if p~%(z) (x € X) consists of just two points, C(X) is
called a double covering manifeld of X. Let us take the product X X E.
Into it, we introduce a Riemannian metric by ds® = ds’x + dt® where dsx
denotes the Riemannian metric in X. We get thus a Riemannian manifold
X x E, which is usually called the metric product of X and E. Similarly,
the metric products X X E, X x [L] are considered and they are Rieman-
nian spaces. And a point of X X E etc. is denoted by (x,t) where z € X,
as usual The notation “Xx” always means the operation of a metric product.
Over X, a field of wectors (vector spaces) implies that to each point of
X a vector (a vector space) is assigned. Let S be a field of vector 1-spaces
and let V be a field of vectors. Then, the expression that S is generated
from V means that at each point of X the vector 1-space of S is generated
from the vector of V. Moreover, the expression “X admits (or is admit-
ting) a field” implies always to admit the field throughout X.

2. Preliminaries Let M be a connected complete Riemannian z-mani-
fold (n > 1) of class C? admitting a parallel field of tangent vector 1-sub-
. spaces. (M is such one throughout the whole discussion.) The parallel field
is called the S-field over M. Let us take the field of tangent vector (n — 1)-
subspaces, which is orthogonal to the S-field at each point of M. It is
obvious that the field forms a parallel field over M, too. We call it the R-
field. Such a manifold M will be called an RS-manifold of dimension 7.

Take any x, € M. Let U be an adwmissible coordinate neighborhood of
zy. Let () be its coordinate system. Let (¢,p) denote the fundamental tensor in
U. U being simply-connected, we can find a parallel field {v(x)|x € Ul
in U of unit tangent vectors, from which the S-field restricted to U is
generated. We denote its vector v = v(z) by (v*). Put v, = ¢,sv°. Then we
have

g:.i - J,Bafy}v“ =0

where {Igy} are Christoffel’s symbols constructed from g¢,5. Hence

Ovg _ Ovy

o' ox*
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This shows that the system of differential equations

of _
(2.1) e Ve
has a solution of class C®. We denote it by f(z, ...... z"). Moreover we
consider the differential equation
(2.2) - =,
ox®
Among the solutions there exist #—1 independent functions f“(z, --:---, £") of

class C?. These functions f*= f*(z}, ...... ,x") can be supposed to be defined
in a neighborhood ( < U) of z,. We see easily

oS, s ) 0
Azl ...... ,xh -
at x,. Put
x,w —f“(xl’ ...... ’xn)

Using these, let us transform the coordinate system (z%). We get thus a
coordinate neighborhood U'( © U) of z,, which is covered by the new co-
ordinate system (z'*). Let (g.s) be the fundamental tensor in U'. When g*,
g“Pare defined by 9*'g,s = 8%, ¢ *"gys = 8%, we have
an §£. ;afn B
9 oz 2z 7
Since f* satisfy (2.1) or (2.2), we get ¢°" =0, i.e. gan = 0. We see that in
U’ the vector v is represented by (8%). So, from the parallelism we have
o0 a } v _
oz’® +{'8'7 & =0

where { /gy }' are Christoffel’s symbols constructed from ¢,g. Hence

a |-
{B'y} =0.
From this and ¢y = 0, it follows that g.. = const. and ¢, are independent
of £”". And further, gn, = 1, the vector v being a unit vector.

The results above are stated as follows: Atz any zy € M there exists a
coordinate neighborhood W such that the Riemannian metric in W is ex-
pressed by

ds® = ¢,dzdx® + (d=")
where (x*) denotes the coordinate system in W and ¢., are the functions
of =¥, ...... ,x" ! only. Moreover, in W we can see following facts: If co-
ordinates x* are varied leaving x" only fixed, we obtain an integral manifold
of the R-field. If a coordinate x" is varied leaving all of x* fixed, we
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obtain an integral manifold of the S-field, that is a geodesic in which z"
plays the role of the arc-length. Such a coordinate neighborhoods of ),
whose coordinate system (z*) consists of all of (z*)’s such that @ < z*< b”
(where a®, b* are constants), is called a reduced coordinate neighborhood of
.

Let W, W’ be two reduced coordinate neighborhoods of x,. Let (z%),
() be their coordinate systems respectively. Let W' be the connected
component of W N W' containing z,. In W' the coordinate systems (z%)
and (x'™) are combined by the relations decomposed as follows :

%= F ...... "), 2" = &x" + const. (6§ =+ 1 or — 1)

where f'* are the functions of class C? independent of x".

Moreover we can see that through x, € M there passes a pair of the
maximal, connected integral manifolds of the R-and S-fields. Let R(x,) and
S(x,) denote the ones respectively. We give them the Riemannian metrics
which are naturally induced from M, and call them R-and S-submanifolds
of M respectively. They form Riemannian manifolds of class C* and the
following fact is easily verified : All of the R-and S-submanifolds are totally
geodesic. and complete as Riemannian manifolds. Indeed, each of the S-
submanifolds is a geodesic. Accordingly it is also called an S-geodesic. Let
I(x,) denote a subset R(z,) N S(x,).

Let X be a connected complete Riemannian (n — 1)-manifold of class
C'. That M is of one of the following types T—VI means that for suitable
X etc. there is an isometric homeomorphism of class C?, of M onto the corres-
ponding Riemann‘an manifold, which maps each R-submanifold onto #=const.

Type I: The Riemannian manifold X X E.

Type IT: The Riemannian manifold constructed from X x [L] by
identifying (z, L) with (z, 0) for all x € X.

Provided that there exists a non-trivial isometric homeomorphism ¢ of
class C?, of X onto itself, we define

Type IIT: The Riemannian manifold constructed from X x [L] by
identifying (z, L) with (¢(z),0) for all x € X.

Next suppose that there exists an isometric involutive homeomorphism
Y of class C? having no fxed points, of X onto itself. (By the word
“involutive” it is meant that YY(z) = » for each = € X.)

Type IV: The Riemannian manifold constructed from X X E by
identifying (x, 0) with (Y(z),0) for all » € X.

Type V: The Riemannian manifold constructed from X x [L] by
identifying (z,0) with (Y(z),0), and (z, L) with (Y(z), L) for all x € X.

Furthermore, provided that there exists another homeomorphism V¥ of
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X onto itself, with the same property as ¥, we define

Type VI: The Riemannian manifold constructed from X X [L] by
identifying (x,0) with (Y(x),0), and (z, L) with (¥ (z), L) for all z € X.

In M suppose that there exists a counnected open submanifold M" which
satisfies the following conditions 1) and 2), or 1) and 3):

1) M° is a union set of S-geodesics and the closure of M° is M.

2) M° is the maximal subset in which each point x is a limit point of
I(x) relative to each of submanifolds R(x) and S(x).

3) M° is a maximal subspace which becomes a fibre bundle where each
fibre is an S-geodesic. (By the word ‘“‘maximal” it is meant that there are
no subspaces, D M°, == M°, which have the same property.)

When M° satisfies 1) and 2), M is said to be of almost clustered type
with kernel M°. In this case, if M = M° M is simply said to be of clustered
type.

When M° satisfies 1) and 3), M is said to be of almost fibred type
with kernel M°. In this case if M = M° M is simply said to be of fibred
type.

If M is not of almost fibred type but of type III (VI), M is said to
be of non-fibred type III (VI). If M is not of one of types I—VI, M is said
to be of non-simple type.

3. Fundamental lemmas. Take any x, € M. An R-neighborhood of x,
is a neighborhood in R(x,). A normal vector at x, is a unit tangent vector
at x, orthogonal to R(x,). Let n(x,) always denote one of the normal
vectors at x,. Take an R-submanifold R, of M. At each point x of R, we
plant a normal vector 7n(x). If n(x) becomes continuous over R, the set
{n(x)|x € R,} is said to be a normal wvector field over R,. Then R, admits
just two normal vector fields and the normal vectors z(x) are parallel to
one another along any curves of class D' in R,. Similarly over an R-neigh-
borhood too, the notion of normal vector field is defined. In this case,
there exist always just two normal vector fields, because it is simply-
connected. For any two points z,y of an R-submanifold, let d«x,y) denote
the length of a minimizing geodesic in the R-submanifold joining x to y.

Again we take any z, € M. Let n, be a normal vector at x, For a
constant ¢, put y, = (xo, 72, ¢). Then we have

LEMMA 3. 1. There exists an R-neighborhood Wy at x, such that, if
{n(x)| x € Wzl is the normal vector field over Wy where n(x,) = n, R(y,)
contains (x, n(x), c) for all x € Wxr and the map

f: We— R(y,) defined by Ax) = (x, n(x), ¢)

is an isometric into-homeomorphism.
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PROOF. 1) The case where the geodesic arc ¢(x,, 7, ¢) is contained in a
reduced coordinate neighborhood U. Let Wx be the connected component
of U N R(x,) containing x,. In U, let (x§) denote x,. Then, y, is denoted
by (zf,z} + &) where €= + 1 or — 1. Moreover, if each x € Wy is
denoted by (x*), then z" = x§ and (x, #n(x), ¢) is denoted by (z% xy + &c).
Therefore by §2 we can see that Wy satisfies the condition in our lemma.

2) The other case. Take a finite system of reduced coordinate neigh-
borhoods U,(A =1,2, ...... ,h) such that each U, contains a geodesic arc
[xs_1, z»] where the product curve [z, x,]* [z, Zo]® ------ [zn-1, x,] becomes
9(xg, 1, ¢). To each U, and [z,-1, x,], apply the result of 1). Thus we can
easily find an R-neighborhood W5 at z, in our lemma.

Moreover let x(¢)(a < t < b), z(a) = x,, be a curve of class D' in R(x,).
Corresponding to each ¢, let n(t) be the normal vector at x(¢) parallel to 7,
along the curve. Put y(¢) = (a(¢), n(¢),c) Let 7'(¢) be the normal vector at y(z)
parallel to 7(¢) along g(x(¢), n(¢), c) (¢ : fixed). Then we have

LEMMA 3.2. 1) y@®)(@=t=<b)is a curve of class D' in R(y,) and
{n'(t)|a < t < b} consists of normal vectors parallel to one another along the
curve y(t). 2) For any y, € R(y,) there exist a point x, € R(x,) and a
normal vector n, at x, such that y, = (x;,n,, c).

PROOF. To prove 1), cover the curve x(¢) by a finite system of R-
neighborhoods which have the same property as Wx in Lemma 3.1. Then
1) is easily verified. To prove 2), take a curve 2(z) (0 =<z =<1), 2(0) = y,,
2(1) = y,, of class D' in R(y,). Let n, be a normal vector at y, such that
(Yo, 0y ¢) = . Let n; be the normal vector at y, parallel to n, along the
curve 2(t). Now put x, = (y,, z;,c). Then z, € R(x,), and y,=(zx,, &n(z,), )
for €= +1 or — 1. So 2) is proved.

Next, at £, € M we shall express S(z,) by z(s)( — o0 < s < o) where
x(0) = z, and s denotes the arc-length. If S(x,)is closed, it represents S(x,)
many times. Let %, be a unit vector at x, tangent to R(x,) and let ¢ be a
positive constant. Now, displace %, parallelly along the curve x(s). Then cor-
responding to each s, we get a vector u(s) at x(s) and it is tangent to
R(x(s)). Hence, g(x(s), u(s), c) < R(x(s)). Put z, = (x,, %, c¢) and we have

LEMMA 3.3. There exists a non-closed geodesic arc xz(s) (— T <s<7;
T > 0) such that (x(s), u(s), c) € S(zy) for all s (— 7= s<7) and the map

fra(s)(—7=<s=<7)—> Sz) defined by f(a(s)) = (a(s), u(s), c)
is an isometric into-homeomorphism.

PROOF. 1) The case where the geodesic arc g(x,, %, c) is contained in a
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reduced coordinate neighborhood U. Then there exists 7 > 0 such that x(s)
(—7=<s5=7)is contained in U. In U let (z%), (), and («}) denote x,, 2y,
and u, respectively Then, a2} = 2 and #) = 0. And corresponding to each
s( —7=<s=r17) a(s) is denoted by (z, 27 + &s) where € = + 1 or — 1, and
u(s) by («",0). Hence, (x(s), u(s), ¢) is denoted by (2, zi + &s). Therefore we
can see that x(s)(— 7 =< s = 7) satisfies the condition in our lemma.

2) The other case. Take a finite system of reduced coordinate neigh-
borhoods U,(A =1,2, ...... , k) such that each U, contains a geodesic arc
[xa-1, 2] where the product curve [xo, x,]* [Z1 Lol ---... « [xn-12,] becomes ¢(x,
#y, ¢). To each U, and [z\_;, x.] apply the result of 1). Thus we can easily
find a geodesic arc in our lemma.

Under the same notations; put 2(s) = (x(s), u(s),c), then the following
lemma is obvious:

LEMMA 3.4. 1) A curve 2(s)(— oo < s < o) represents S(z,) (many times
if it is closed) and the parameter s plays the role of the arc-length in S(2y).
2) If ¢ = dlxo, 29), dla(s), As)) = ¢ for any s.

In M let x,,7, be any two points. Then we have

LEMMA 3.5. A set R(x,) N S(y,) is non-empty and at most countable.

PROOF. 1) Let us prove R(x,) N S(y,)==0. Take a geodesic arc [y, x,]
= ¢(yo, vy, c) Where ¢ > 0. If v, is tangent to R(y,), R(y,) contains x, and
obviously R(x,) N S(y,)==0. Accordingly, let us consider the case where v,
is not tangent to R(x,). Then at each y & [y,, x,] too, the tangent vector
of [y,,x,] is not tangent to R(y). We can find a finite system of reduced
coordinate neighborhoods U,(A =1, 2, ...... , h)such that each U, contains a
geodesic arc (y,, vy, 5)(cx-1 = s = ¢,) where 0 =¢) < ¢, < ...... < ¢, =c Put
yx = (¥o, Vg, ¢,). In U, suppose that points y,_; and y, are denoted by (yy_1,,)
and (y%,) respectively. Here, put dy = |yi.i, — yial. In U, let (v%) denote
vo. Then v} =0, and let n, be a vector (£8%)(in U,) at x, where & = + 1
or — 1 according as vy > 0 or < 0. Hence, (y,, 7y, d.) € R(y,). By Lemma
3.2 we can further verify (y,, 7y, dy + d,) € R(y,), ... ,and finally (yo, 7, d1

+dy F o + d,) € R(y,). This implies R(xy) N S(y,) ==0
2) Let us prove that R(x,) N S(y,) is at most countable. As a point set,
S(y,) can be regarded as the union set of {a,|A=1,2,...... | where a, is a

subarc of S(y,) contained in a reduced coordinate neighborhood U,. (The
index M runs at most to cc.) Here, R(x,) N a, < R(x,) N U,.. R(x,)satisfies
the second countability axiom. So, R(x,) N U, consists of an at most
countable system of non-intersecting R-neighborhoods in R(x,). Hence, R(x,)
N a, is at most countable. Therefore R(x,) N S(y,) is at most countable.
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4. Topology of R-submanifolds and structures. In M suppose that
each of the R-submanifolds admits normal vector field. Then we have

LEMMA 4.1. The S-field is generated from a parallel field of unit
tangent vectors.

PROOF. Take an R-submanifold R,. At x, € R, let us suppose that
there exists ¢ > 0 such that (z,, #(x,), ¢) € R, for a suitable 7n(x,). Let {n(x)
| z € R,} be the normal vector field containing 7(x,). Let n, be the vector at
x, = (x,, n(xy), ¢) parallel to n(x,) along 9(x,, n(x,),c). Then, n, = n(x,). If
n, %= n(z,), we have n(z,) = — n, and z, F=z,. Put zy = (o, n(x,), c/2). We
displace ¢(xo, 7n(x,), c/2) parallelly along a curve in R(z,) joining z, to z..
Then the displacement shows that z(x,) is parallel to — z(x;) along the
curve in R(x;). This implies that R(x;) does not admit normal vector field.
It is contrary to the assumption. So, 7, = n(x.) From this fact and Lem-
mas 3.1, 3.5, our lemma is proved.

Conversely suppose that in M the S-field is generated from a parallel
field {v(x) | x € M} of unit tangent vectors. Over each R-submanifold R, a
subset {v(x) | £ € R} becomes a normal vector field. That is, the converse
of Lemma 4.1 holds good. Let R,, R, be any two of the R-submanifolds.
Take any z, € R,. By Lemma 3.5 there exists ¢ such that x, = (x,, v(x,),
¢) € R,. Then we have

LEMMA 4. 2. The map
f: Ry—> R, defined by fx)= (x,v(x),c)
where x € Ry, is an isometric homeomorphism.

Such a map f is called the R-map with respect to a geodesic arc ¢(x,,
v(Zo); €).

PROOF. Take y, € R,. By Lemma 3.2, y, = (y,, — v(y1),¢) € R,. So,
y1 = (y0, v(3,), ¢). Hence, f is an onto-map. Next for zq, yo € Ry, if (a0, v(x),
¢) = (o, v(y))y ¢) (= z1), then (a1, — v(x1), ¢) = x, and = y,. So, ) = y..
This implies that f is one-to-one. By Lemma 3.1 our lemma is proved.

In M, take an R-submanifold R,. At x, € R, let N(x,) denote the set
of all positive numbers s such that at least one of two points (x,, == 7n(xy), 5)
belongs to R,. If N(x,) is non-empty, we denote the greatest lower bound
of N(x,) by plz,). If N(x,) is empty, we put plz,) = 0. So, 0 = p(x,) < oo.
By Lemma 3.2 we have p(x) = p(x,) for any £ € R,. Accordingly, we denote
p(zy) by p(R,). We call p(R,) the distance of R,. Let R, be another R-
submanifold. At z, € R, let N(x,, R,) be the set of all positive numbers s
such that at least one of two points (x,, = n(x,), s) belongs to R,. By Lemma
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3.5, N(zy, R,) is non-empty. We denote the greatest lower bound of N(z,,
R)) by p(zxy, R;). So, 0 = p(xy, R,) < co. By Lemma 3.2 we have p(x,, R,) =
plx, R,) for any x € R,. Accordingly, we denote p(x,, R,) by p(R,, R,). We
call p(R,, R,) the distance between R;, R,. Then we have

LEMMA 4.3. 1) If 0 < p(R,) < oo, at least one of two points (x,, =
n(xy), P(Ry)) belongs to R,. 2) If p(R,) > 0, p(R) > 0 for any R-submanifold
R. 3) If p(Ry,R)) > 0, at least one of two points (xy, = n(x,y), PRy, R)))
belongs to R,.

PROOF. The case where 0 < p(R,) < oo. Suppose that two points (x,,
=+ n(x,), P(R,)) do not belong to R,. Then for a suitable normal vector 7,
at x,, we can find a sequence {5, | s\ > s A=1,2,...... } such that lim
sy = p(R,) and zx = (xy, 70, 5,) € R,y for all s,. Here, there exists an index
m which satisfies s, — Sp+1 < P(R,). Let a be a curve of class D' in R,
joining Zn.;to x,. Take the arc [x,, z;] parallel to a geodesic arc (xy, 7y, )
(Sme1 =< s < s5,) along a. Indeed, it is one of two arcs ¢(x,, == 79, Sm — Sms1)
By Lemma 3.2, xo € R,. Accordingly, p(R)) =< s, — Sm+1. This is obviously
a contradiction. So, 1) holds good.

The case where p(R,) > 0. Suppose that p(R) = 0 for an R-submanifold
R’. By Lemma 3.5 there exists a non-closed subarc [, x,] of S(x,) where
xy € R'. For a suitable normal vector n, at x; we can find a sequence {s,]|
S>> SenA=1,2,...... } such that lim s, =0 and z\ = (z), n0, 5,) € R for
all s,. Corresponding to each A, let a, denote a curve of class D' in R’ joining
xo to xx. Take the arc [z, xa] parallel to the arc [z, z,] along «,. The arc
is a subarc of S(x;). By Lemma 3.2, x, € R,. Moreover there exists a
subarc [z,,z,] of S(x,)(where z,,z, € {x.}, z, == z,) whose length is smaller
than p(R,). This is obviously a contradiction. So, 2) holds good.

The case where p(R,, R,) > 0. Suppose that two points (x,, = 7n(x,),
p(R,, R,)) do not belong to R,. Then, p(R,) =0 holds good. We can get
thus a contradiction that the distance between R,, R, is smaller than p(R,,
R)). So, 3) holds good.

In M, let R, be an R-submanifold. The condition p(R,) > 0 is equivalent
to the condition that the topology of R, coincides wilh the relative one
induced from M. Lemma 4.3 shows that, if the topology of R, coincides
with the relative one, this holds also good for other R-submanifold.

THEOREM 1. In M suppose that the topology of an R-submanifold
coincides with the relative one induced from M. Then M is of one of
types 1—V I.

PROOF. For any R-submanifold R, we have p(R) > 0 The following
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four cases are considered :

1) The case where each R-submanifold admits normal vector field. By
Lemma 4 1, the S-field is generated from a parallel field of unit tangent
vectors. We can see p(R,) = p(R,) for any R-submanifolds R,, R,. By
Lemma 4.2 the following conclusion is now obvious: For any R-submanifold
R, if p(R) = oo, M is of type I, and if p(R) < oo, M is of type II or IIIL.

2) The case where an R-submanifold R, only does not admit normal
vector field. Put L = p(R,). Of course 0 < L =< oo. For each c¢(0 < ¢ < L),
let R, be the R-submanifold passing through a point (x,, #(x,), ¢) where x,
€ R,. In our case, n(x) (x € R,) is parallel to — n(xz) along a suitable
curve in R,. This and Lemma 3.2 show that R, consists of (x, = 7n(x), ¢) for
all x € R,. Here suppose (z,, #(x,), c) = (x;, — nlx,), ¢) for z, € R,. We
can see that R, does not admit normal vector field. This contradicts with
our case. So, we have (z, n(x), ¢) == (z, — n(x),¢) for all £ € R,. Next for
Z1, Xy € Ry (x, == ), suppose (z;, n(x,), ¢) = (&3, n(xy), ¢) ( = ). oz, n(zxy), ¢)
is parallel to g(x,, n(x,), c) along a suitable curve in R,. Hence by Lemma
3.2 we can see that 7(y,) is parallel to — n(y,) along the closed curve in
R,. Accordingly R, does not admit normal vector field. This contradicts
with our case, so we have (z,, 7n(x,), ¢) == (s, n(xy), ¢) for z,, x, € Ry (x, ==
x;). These results and Lemma 3.1 show that R, is a double covering
manifold of R,. The covering map p satisfies p(x.) = x where x € R, and
z. = (x,&n(x),c) for €= + 1 or — 1. It is now clear that R, is isometrically
homeomorphic to R.(0 < ¢ < L). Suppose L < co. By Lemmas 3.2 and
4.3, we have =z, = (x,, n(xy), L) € R, where x, € R,. So, there exists a normal
vector n(xy) such that (a, n(x;), L) = x,. Since n(x) is parallel to n(x,)along
a suitable curve in R,, the R-submanifold passing through a point (x,, 7(x,),
L/2) does not admit normal vector field by Lemma 3.2. This is contrary
to our case. Therefore, L = co must hold good. These results show that
M is of type IV.

3) The case where two R-submanifolds Ry, R, only do not admit normal
vector field. We get p(R,, R,) > 0. Because, if p(Ry, R,) = 0, we have p(R,)
= p(R,) = 0 which contradicts with the assumption. Put L = p(R,, R,) and
take xz, € R,. By Lemmas 3.2 and 4.3, two points (x,, = n(x,), L) belong
to R,. We get p(R,) = 2L. For each ¢(0 < ¢ < L), let R, be the R-sub-
manifold passing through a point (x,, 72(x), c). In the same way as in 2),
R, is a double covering manifold of R, and further of R,. We get thus the
conclusion that M is of type V or VI.

4) The case where three (or more) R-submanifolds do not admit normal
vector field. Let Ry, R;, and R, be such ones. As shown in 3) we have
p(Ry, R,) > 0, and p(R,) = 2p(R,, R,). Similarly, p(R,) = 2p(R,, R;). Therefore,
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P(Ry, R,) = p(Ry, Ry). By Lemmas 3.2 and 4.3, we get R, = R,. This is a
contradiction. So, such a case does not occur. This completes the proof of
our theorem.

REMARK 1. 1) The converse of Theorem 1 holds also true.

2) There exist RS-manifolds from type I to VI.

3) In M, if an R-submanifold R is compact, p(R) is positive. Then
the R-submanifolds are all compact (by Theorem 1).

~

5. Fundamental groups and structures. In M, suppose that the S-
field is generated from a parallel field {v(x)|x € M} of unit tangent vectors.
Let R be an R-submanifold of M. Then we have

LEMMA 5.1. The map
p: RXE—>M defined by p(y,t)=(y,v(y)1)

where y € R becomes a covering map. And R X E is regarded as a cover-
ing manifold of M.

Such a covering manifold is called the natural covering manifold of

M.

PROOF. Put N(M) = R X E. First we prove that the map p is an onto-
map. Take any x, € M. Let y, be a point of R S(x,)(==0 by Lemma
3.5). There exists £, such that x, = (y,, v(yy), t,). Let Z, denote a point
(o, 2y) of N(M). Then p{xy) = z,. So our assertion is true.

Next, we prove that p is locally an isometric homeomorphism. Take
any Z, = (yo, £,) € N(M) and put x, = p(Z,). Let U(x,) be a reduced coordi-
nate neighborhood of x,. It is represented by the product Uxz,) X 9(¢, t5)
where Ux(x,) is an R-neighborhood of x, and ¢(¢,,¢,) is a geodesic arc (y,,
v(y,), ) (¢, < ¢t < t,) not containing its end-points. Of course, #, < ¢, < £,
Let Ux(y,) denote the R-neighborhood of y,, isometrically homeomorphic to
Uxz,) under the R-map with respect to ¢(x,, — v(x,), 2,). And further, let
I(t,, t,) denote the subspace {¢|#;, <t < #} of E. Accordingly a product
Ux(yy) X I(t,, t,) is regarded as a neighborhood of Z, in N(M). We denote
such a neighborhood in N(M) by U(Z,). It is now obvious that U(Z,) is
isometrically homeomorphic to U(x,) under the map p. So, p is locally an
isometric homeomorphism.

Again take any x, € M. We put p"xy) = {Zr | M € J} where J is a
set of indices and at most countable by Lemma 3.5. Let U(x,) be a reduced
coordinate neighborhood of x,. As we have seen above, at each 7, there

exists a neighborhood U(Z,) isometrically homeomorphic to U(x,) under p.
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Then, U(z,) N U(Z,) = 0 for Z,, z, € p”(xy) (Z, =+ Z.). To prove this, sup-
pose that it does not hold good. There exists a curve a contained in U(z,)
U U(z,), joining z, to Z,. Then, the curve p(a@) becomes a closed curve with
endpoint x,, and we can easily find a contradiction. So, our assertion holds
good. This completes the proof of our lemma.

Given any z, € M, take a point z, € Ixz,)and put x, = (x, 7, ¢) Where
7, is a normal vector and ¢ is a real number. Let a, be a curve in R(x,)
joining z, to x,. Let a, denote a geodesic arc ¢(xy, 720, ¢). The product curve
a, »a;' is called an RS-curve with endpoint z,, and according as c¢==0 or
=0, is called proper or improper.

In M suppose that the S-field is generated from a parallel field of unit
tangent vectors. Let R be an R-submanifold of M. Then we have

LEMMA 5.2. 1) A closed curve a with endpoint z, € M is homotopic
to an RS-curve leaving x, fixed. Moreover, a proper RS-curve is not
homotopic to an improper RS-curve. 2) If p(R) < oo, the fundamental group
m (M) has an infinite cyclic subgroup. If p(R) = 0 especially, m (M) is not
infinite cyclic.

PROOF. First put Ry, = R(x,). By Lemma 5. 1, we regard Ry, X E as the
natural covering manifold of M. Let p be the covering map. Here we sup-
pose that p(x,0) = 2 for all points (x,0) of the submanifold of R, X E
defined by # = 0. This is possible. Let ay be the curve in R, X E with
initial point (x,, 0) such that p(ay) = a. For convenience, let us represent
ay by a parametrized curve (z(7), #(7)) (0 =< 7 < 1). Of course, (2(0), #0)) =
(x4,0). We denote a curve (z(7),0) (0 <7=<1) by aiy and a curve (z(1),
#(1)) (0 =<7 =1) by asy Then, @y is homotopic to the product curve air* @y
leaving the endpoints fixed. Hence, @ is homotopic to the curve plaiy* @:v)
leaving x, fixed. The curve p(aiy* @:x) being an RS-curve with endpoint zy,
the former part of 1) has been proved.

Suppose that the above curve a is a proper RS-curve. The curve ay
coincides with the product curve aiy+ a.y where #(1) ==0. On the other hand,
let @ be an improper RS-curve with endpoint z,. Let ay be the curve in
R, x E with initial point (z,,0) such that play) =a’. As & C R,, ay is
represented by (a’,0). Then the terminal points of ay, @y are not the same
point. This implies that & is not homotopic to @. From this and Lemma
4.2, the latter part of 1) is easily proved.

Next we prove 2). In R, = R(x,), let us suppose that p(R,) < oo and
use the previous notations. Then there existsa proper RS-curve B of class D'
with endpoint z,. A is represented by the product curve B,8:;' where B,
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C R, and B, < S(z,). B is not homotopic to zero. This is easily seen if we
construct an inverse image of B by the map p. (Of course this is valid for
any proper RS-curve.) We displace B, parallelly along B, and then denote
the locus of terminal point of B, by Bi. Let 9(zy, n(xy), ¢) (¢ > 0) denote
B.. The terminal point of B; is expressed by (z, n(z), 2¢). Denote the
geodesic arc ¢(z,, n(x), 2¢) by B:. Then, a closed curve B*(= B +B) becomes
homotopic to a proper RS-curve B,*8:*B:~ leaving their endpoints z, fixed.
In fact, let By, By be the curves in Ry X E with the same initial point
(20, 0) such that p (By) = B and p(BY) = B,*BiB,". We can see that, the
terminal points are the same point and they are homotopic leaving the
endpoints fixed. From this our assertion is clear. I.e, B* is homotopic to
a proper RS-curve with endpoint z,. This is also valid for all of B*(A =1,
2, ... ), and they are not homotopic to zero as already mentioned. From
this, the former part of 2) is proved. It is now easy to prove the latter
part of 2).

In M we have

LEMMA 5.3. There exists at least one R-submanifold which admits
normal wvector field.

PROOF. Suppose that all the R-submanifolds do not admit normal vector
field. Take anv two R,, R, of them. At x, € R. we can find ¢ == 0 such that
(zo, n(zs), ¢) € R,. Now let R denote the R-submanifold passing through
x = (zo, n(zy), ¢/2). Bv the assumption, a normal vector n(z") is parallel to
— n(z) along a suitable curve in R. Hence by Lemma 3.2 we can see
that the two noints x. and (2., 'n(z.), ¢) are contained in the same R-
submanifold. That is, R, coincides with R.. This implies that M consists
of an R-submanifold onlv, because R,, R, are anvones. It contradicts with
Lemma 3.5. So our lemma is true.

In M, suppose that the S-field is not generated from a parallel field of
unit tangent vectors, i.e., there is not such a parallel field which generates
the S-field. Let T(M) be the tangent bundle of M, so that each point of
T(M) is represented by a pair (z, v) of a point x € M and a tangent vector
v at x. Let m: T(M)— M be the projection. We take the subspace H(M)
of T(M) which consists of points (z, = n(z)) for all x € M. H(M) is an -
submanifold, and by the assumption connected. Put A4 == | H(M). Then
H(M) is regarded as a double covering manifold of M under the Riemannian
metric narurally induced from M by h. The map h is the covering
map. We call this covering manifold H(M) the holonomy covering mani-
Sold of M. This has the following properties: H(M) admits a parallel
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Sield of unit tangent vectors which is induced from the S-field of M by h.
Accordingly, H(M) is of course an RS-manifold of dimension n#. Take an
R-submanifold R, of M admitting normal vector field (Lemma 5.3). Let x,
be any point of R). Then, in H(M) the R-submanifold passing through (x.,
w(xy)) is distinct from the one passing through (zo, — n(x)). Each of them
is isometrically homeomorphic to R, under h. Next, take an R-submanifold
R, of M not admitting normal vector field (Lemma 4.1). Let xz, be any
point of R,. Then the R-submanifold Ri,n of H(M) passing through (x,,
n(z,)) passes through (z,, — n(x,)) and is a double covering manifold of R,
where h|Rin is the covering map.

THEOREM 2. In M if the fundamental group = (M) is finite, M is of
type I or IV.

PROOF. 1) The case where the S-field is generated from a parallel field
of unit tangent vectors. By Lemma 5.2, p(R) = co where R is any R-
submanifold of M. Accordingly by Theorem 1, M is of type I.

2) The other case. By Lemma 4.1, there exsts an R-submanifold R, not
admitting normal vector field. Let H(M) be the holonomy covering manifold
of M. Let A be the covering map. Let R.; be the R-submanifold of H(M)
such that A(R.g) = R.. In H(M), the fundamental group is also finite. And
further, H(M) is an RS-manifold which satisfies the above case 1). So,
H(M) is of type I. That is, H(M) is represented by the metric product
Ronw X E. We take any z- € R.. Let x.; be a point of Res such that p(xyr)
= z,.. Let S(zy» denote the S-submanifold of H(M) passing through .
We have h+(S(zow)) = S(z). Hence S(z,) is non-closed and S(x)) N R, consists
of the point z, only. So, p(R)) = co. By Lemma 4 -3, p(R) > 0 for any R-
submanifold R. Accordingly by Theorem 1, M must be of type IV. This
completes the proof of our theorem.

REMARK 2. 1) In Theorem 2, types I, IV are characterized by the condi-
tion that m(R), where R is an R-submanifold, is finite. If the order of
m (M) is odd, M is of type I and not of type IV.

2) There exist RS-manifolds of type I and ones of type IV, whose
Fundamental eroups are all finite.

THEOREM 3. In M if the fundamental group (M) is infinite cyclic,
M is one of types I—IV.

PROOF. 1) The case where the S-field is generated from a parallel field
of unit tangent vectors. Take an R-submanifold R of M. By Lemma 5.2,
p(R) > 0. Accordingly by Theorem 1, M is of one of types I—III.

2) The other case. By Lemma 4.1, there exists an R-submanifold R,
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not admitting normal vector field. Take z, € R,. Let H(M) be the holonomy
covering manifold of M. Let A be the covering map. Let Rys be the R-
submanifold of H(M) such that A(R,z) = R, In H(M) the fundamental
group is infinite cyclic too. Accordingly by the above 1), H(M) is of one
of types I—III.

If H(M) is of type I, M of type IV. This is verified by the same way
as in Theorem 2. Note here that =,(R,) is infinite cyclic.

If H(M) is of type II or III, Ryz must be simply-connected by Lemma
5.2. Hence m,(R,) is cyclic of order 2. Accordingly, we get the conclusion
that (M) contains a subgroup which is cyclic of order 2. This obviously
contradicts with the assumption that m,(M) is infinite cyclic. So, H(M) is
not of type II or III. This completes the proof of our theorem.

REMARK 3. 1) In Theorem 3, type I is characterized by the following
condition a) and type IV by the following condition b):

a) m(R), where R is an R-submanifold, is infinite cyclic.

b) 7 (R), where R is the R-submanifold not admitting normal wvector
field, is infinite cyclic
And, types II, III are characterized by the condition that an Rsubmanifold
is simply-connected.

2) There exist RS-manifolds from type I to IV, whose fundamental
groups all are infinite cyclic

6. Closedness of S-geodesics and structures. At z, € M, let Tx(x))
denote the Euclidean vector (n — 1)-space tangent to R(z,) at x,. We denote
the length of an S-geodesic S by |S| So,S is closed or non-closed according
as |S| < oo or = co. Again at x» € M take a subset {x|x € R(x), dilx,
x) < ¢! where ¢ is a positive constant. If the subset forms an R-neighbor-
hood of x, we denote the R-neighborhood by Uz :; ¢). Especially if Ux(x;
¢) can be covered by a normal coordinate system in R(x,) with center x,
we call it a normal R-neighborhood of z.. Then let Ni(x,; c) denote the R-
neighborhood Ux(xy; ¢). The exponential map at z, is defined to be the map

@ : Tw(zo) = R(xy)
such that @(v) = z, for the zero vector v € Ti(zy) and @(v) = (zv, v/|v],
|v|) for any non-zero vector v € Tw(x,) where |v| is the length of v. Let
e(xy) denote the greatest lower bound of {dW(z, )|z € Izy) — a2} if L)
- ) is non-empty. When I(x,) — z, is empty, put e(zr,) = + oo.

In M suppose that there exists z, € M such that S(x,) is non-closed
and z, is not a limit point of Iz,) relative to R(x,). Then e(x,) > 0. Take
an R-neighborhood Ug(xy; @) where 0 < a < e(zy)/2. Let {(n(z)|z € Urlay;
a)} be a normal vector field. Then we have
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LEMMA 6.1. The map
fiUlzy; a) X E—> M defined by flz, t) = (z, nlx), t)
is an isometric into-homeomorphism.

Such a map f is called a cylinder map at x, and such an R-neighbor-
hood Ux(z,; a) is called proper.

PROOF. First, suppose (x,, n(x)), ta) = (x5, n(x,), to) for z,, x, € Urzo; a)
(2, == z,). Then we get z; &=z, and z, = (z;, n(z,), 2¢). Take a minimizing
geodesic [z,, z,] in R(x,). Let [x,, x5] be the geodesic arc parallel to [z, x.]
along an arc ¢(z,,n(z)), 2¢). We have [z, 21] C R(xy) and x;, € S(ay) by
Lemma 3.4. That is, zy € Kxy). S(x,) being however non-closed, it follows
that a, == x.. By Lemma 3.4, di(z:, x0) =< di(z, x0). Hence,
Al ze, 20) < delze, 25) + dilzey x0) < 2a < e(z.).
This is contrary to the definition of e(x,). Next, suppose (z, n(x,), ;) = (xs,
n(zx,), t,) for z,, x, € Uzy; @) (x, == z,). We have z, = (x,, n(z,), ') for ¢
= ¢, + &,(& = + 1 or — 1). By the same way, we get again the same contra-
diction. Accordingly, by Lemma 3.1 our lemma is proved.

THEOREM 4. In M suppose that all S-geodesics are non-closed. If a
point xy € M is a limit point of Kxo) relative to R(xy), each point x € M
is also a limit point of I(x) relative to R(x) and then M is of non-fibred
type III, non-fibred type VI, or clustered type. If a point xy € M is not a
limit point of I(x,) relative to R(xy), then M is of fibred type.

PROOF. We first prove that, if a point 2, € M is not a limit point of I(x)
relative to R(x,), each x € M is not a limit point of I(z) relative to R(x).

Let R’ be the maximal subset of R(z,), in which each z is not a limit
point of I(x) relative to R(z) ( = R(x)). Of course R’ > z,. By Lemma
6.1, at any z € R® there exists a proper R-neighborhood Ux Then UrC
R°. Hence, R° is open in R(x,). Next let us verify that R° is closed in
R(zy). Let R denote the closure of R’ relative to R(z,). Suppose R°==R".
At any y, € R’ — R® we take a normal R-neighborhood Ni(y;;c). A set
S(y,) N Ni(y,; ¢/2) is infinite, and countable by Lemma 3.5. We denote
the set by {y\|A=1,2,...... }. Let {n(y)ly € Nx(y;; ¢)} be a normal vector
field. For suitable ¢, each y, is represented by (y,, n(y,), £,). Take a point 2,
€ R" N Ny,; ¢/2). Let [y,, 2] denote the geodesic arc in Ni(y,; ¢/2). And,
displace it parallelly along S(y,). Then, at each y, a geodesic arc [y,, 2] is
obtained. It follows that [y, 2] C R(y,). By Lemma 3.4, 2, € S(z,) and
dly, 2)) = di(y,, 2,). Hence,

dle(yu ZA) = dzc(y,,yA) + dR(y,,Z)\) < C/2 +C/2 =c.
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So, 2\ € Ni(y,; ¢). S(z;) being however non-closed, zx(A =1,2,...... ) are
distinct from one another. Accordingly, Nx(y,; c¢) contains an infinite set {z,\|A
=1,2, ...... }. On the other hand, the closure of Nx(y,; ¢) in R(x,) is compact.
Consequent for any small § > 0 we can find 2,, 2, € {2A|]A=1,2,...... | such
that dx(2,,2,) < 6. This is contrary to the existence of a cylinder map at
2, € R°. So, R® = R°. That is, R® is closed in R(zx). Since R° is however
open in R(x,), it follows that R° = R(x,). Therefore by Lemmas 3.1 and 3.5
our assertion is proved.

1) The case where there exists x, € M, which is a limit point of I(x,)
relative to R(x;). By the above assertion each point x of M is a limit point
of I(x) relative to R(x). Hence if p(R,) > 0, M is of non-fibred, type III or
VI by Theorem 1. If p(R,) = 0, M is of clustered type by Lemma 4. 3.

2) The other case. We take an R-submanifold R, If z,y € R, belong
to the same S-geodesic, we say that they are equivalent to each other. By
this equivalence relation, we construct the quotient space of R, and denote
it by B. Then by Lemma 6.1 the space B is regarded as a connected
complete Riemannian (7 — 1)-manifold of class C' under the Riemannian
metric naturally induced from R,. Next for any y € M, let [y] denote the
point of B representing R, 1 S(y). Then the map m: M — B, defined by
7(y) = [y], is an onto-map by Lemma 3.5. Thus it is now obvious that M
is of fibred type. Here the base space is B and the projection is 7 and so on.
This completes the proof of our theorem.

REMARK 4. 1) If M is of clustered type, the S-geodesics are all non-
closed.

2) There exist RS-manifolds of the respective types enumerated in
Theorem 4, whose S-geodesics are all non-closed. In this case, an RS-
manifold of fibred type is further of type I, III, IV, or VI, or non-simple
type. (See Appendix)

In M suppose that an S-submanifold S, is closed. We take a point z
€ S,. Then e(x;) > 0, because S, is closed. Let us put L = |S,|. Now, take an
R-neighborhood Ux(xy; @) where 0 < a < e(x,)/2. And if {n(x)]|x € Uwlay; a)}

is a normal vector field, by the similar way as in Lemma 6.1 we can verify
LEMMA 6. 2. The map
FiUlxy; a) X [L1> M defined by flx,t) = (z, n(x), t)

is an isometric into-homeomorphism provided that Uw(xy; a) is doubly treated
in M as the images by f at t =0, L.

Such a map is also called a cylinder map at x, and such an R-neigh-
borhood Ux(xy; a) is called proper. Here we see that the map
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x— flz, L)
for all x € Uxy; a@)is an isometric homeomorphism of Ux(x,; @) onto itself.
Accordingly, this map induces a congruent transformation 7 in Tw(z,). T
is called the congruent transformation in T%(xy) induced from the cylinder
map f. If we take a suitable orthonormal frame (e,) in Tw(x,), then T,
relative to (e,), is represented by the following orthogonal matrix :

E,

—EZA 0

6.1) 0 ', .
. AL

where E,, E, denote the unit matrices of degrees 7, 7, respectively and
_ (cos 6, —sin 0,\)

sinf, cosé,
f0r0<t9)\<7r(7\.=1,2, ...... k;r1+f‘2+2k=n—-1)_

THEOREM 5. In M suppose that among the S-geodesics there exist both
closed one and non-closed one. Let M’ be the subspace of M which is the
union set of all non-closed S-geodesics. Then, M° is a connected open
submanifold of M whose closure is M, and the maximal subset of M in
which each point x is a limit point of I(x) relative to R(x). M is of non-
Sfibred type III, non-fibred type VI, or almost clustered type with kernel M°.

PROOF. We take an R-submanifold R. Put R’ = {z|x € R,|S(z)| =oo}.
Then, two sets R — R" and R° are non-empty by the assumption and Lemma
3. 5.

1) Take zy € R — R°® and y, € R°. Let g(x, uy, c) be a geodesic arc [z,
ol in R. S(x;) being closed, there exists a congruent transformation 7" in
Tw(xp) induced from a cylinder map at x,, However, S(y,) being non-closed,
it follows that the vectors

uyy Tty -..... > T ugy - ...

are distinct from one another. This implies that, if we represent 7" by a
matrix (6.1), there exists at least one 6§, such that =/f, is an irrational
number. On the other hand we take a vector u € T'x(x), for which there
exists an integer m > 0 such that 7"« = u. « may be the zero vector. Here,
such a vector u is said to be singular at x,. All of singular vectors at x, from
a vector subspace Z of Tx(x,). The existence of 4, implies that the dimension
of Z is not greater than » — 3. Let @ denote the exponential map at ..
Let Nix,; a) be a normal R-neighborhood. Then a set @(Z) N Nxlxp; @)
becomes a surface of dimension < # — 3. This shows that a set R° [ Nx(x;
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@) is connected and open in R. Moreover we see that z, bzloags to the
closure R® of R° relative to R. So, R’ = R.

2) Take again any y, € R". Suppose that every R-neighborhood of y, is
not contained in R°. Then at a suitable x; € R — R°, we can find a normal
R-neighborhood N#z,;; ) such that y, € Ni(z,; 8). By 1), R° N Ni(z,; )
(> y,) is a coanected open set in R. This coatradicts with our assumption.
Accordingly, there exists an R-neighborhood of y,, contained in R°. This
shows that R° is open in R.

3) Let 2,, 23 be any points of R’. Take a curve @ in R joining 2, to
z,. By 1) and 2), if we cover @ by a finite number of suitable normal R-
neighborhoods, we can see that 2, and 2, are joined by a curve in R’. So,
R° is connected.

By Lemma 3.5, M" is also regarded as the union set of all S-geodesics,
each of which passes through a point of R’. Accordingly 1) — 3) above show
that M’ is a coanected open submanifold of M whose closure is M by
Lemmas 3.1 and 3.5.

Next, take again any xy € R — R°. Let Ni(x; @) be a normal R-neigh-
borhood. Then, a point y, € R’ N Nilx); @) is a limit point of I(y,) relative
to R. In fact, let u, € Tx(x,) bz the inverse image of y, by the exponential
map at x,. The vector u, is not singular at x, Heace, if we put Y = {yly
€ Iy,), ddxyy) = |uy|} where |u,| is ths leagth of ), Y is an infinite set.
Take a normal R-neighborhood Nx(y,; ¢). For any & (0 < & < ¢), we can find
Yus¥v € Y(y,.Ey,)such that du(y,, y.,) < 8. Here displace a minimizing geodesic
[V v.] parallelly aloag S(y,). At y, we get a geodesic arc [y, y3] © Nz(yo; ©).
By Lemmas 3.3 and 3.4, it follows that y, € Ky,), dely,y)) <8, and y, 4=
yo. Hence our assertioa is easily seen. This fact shows that each y of R° is
a limit point of I{y) relative to R. For, if wa express a gzodesic arc [z, y]
by g{z, u,d), the vector = is not singular. From this and the above fact, it
is easily verified.

By Lemmas 3.1 and 3.5, we can now see that each z € M" is a limit
point of I(x)relative to R(x). This is not valid for any x & M°, S(x,) being
closed.

Accordingly, if p(R) > 0, M is of non-fibred type III or non-fibred type
VI by Theorem 1. If p(R) =0, M is of almost clustered type with kernel
M° by Lemma 4.3. This completes the proof of our theorem.

REMARK 5. 1) In Theorem 5, almost clustered type is not clustered type.

2) There exist RS-manifolds of the respective types enumerated in The-
orem 5 each of which has both closed S-geodesic and non-closed one (see
Appendix).
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THEOREM 6. In M suppose that all the S-geodesics are closed. Then
among them there exist S-geodesics with the longest length. In all of such
ones let M" be the subspace of M which is their union set. Then M’ is a
connected open submanifold of M whose closure is M, and a maximal
subspace which becomes a fibre bundle where each fibre is an S-geodesic. In
other words, M is of almost fibred type with kernel M°.

PROOF. 1) First, take an R-submanifold R. At x, € R let Nx{xy; a) be
a proper normal R-neighborhood. Let {n{x)|x € Ni{xy; @)l be a normal
vector feld. Here, put L, = |S(xy)!. Let T ke the congruent transformation
in Tx(xy) induced from a cylinder map at x,. Since all the S-geodesics are
closed, we can find the least positive integer s, such that T™ bezomes the
identity transformation. And there exists a unit vector u, € T .x,) such that
the vectors

m—1
wy, Tty ... ST 7wy,
are distinct from one another where 7"u, = u. If y € Ni(xy; @) is an interior
point of a geodesic arc ¢(x, w, a), we have |S{(y)| = mL, because Nx(x,; a)

is proper. Here we put L = mL . Take any 2 € R. Let u be the vector at
x, taagent to a geodesic arc [x,z]. Of course, T"u = u. Hence, L is an
integral multiple of |S(z)| by Lemma 3. 4. So |S8(z)| =<L. Consequently, the
above S(y) is an S-geodesic with the longest length.

2) We put R* = {x|x € R, |S(x)| = L. At y, € R", let Nx(y,; b) be a
proper normal R-neighborhood. Let {n#(y)!y € Ni(yo; &)} be a normal vector
field. Define the cylinder map f: Ny ; &) X [L]— M by f(y,t) = (3, n(y),
t). Then for all y € Ni(y,; ), we have f(y,0) = f(y, L). Hence |S(y)| =L,
and Nx(y,; &) < R°. Accordingly, R° is open in R.

Next, provided that R — R°-=0, suppose that at g, € R — R° there
exists a normal R-neighborhood N(z,; ¢) which is coatained in R — R°.
Hence, |S(z)| < L for all 2 € Ng(zy; ¢). And by Lemmas 3.4 and 6.2, |S(z)]
< L for all x € R. This contradicts with 1). So, it follows that relative to
R the closure of R° is R.

On the other hand, M° is also regarded as the unioa set of all S-
geodesics whose lengths are all L. Accordingly, the above facts show that
M is an open submanifold of M, whose closure is M by Lemmas 3.1 and
3.5.

3) Let us prove that M° is coanected. If R = R° we have M = M°
and M° is obviously connected. So, suppose R + R’. Take any 2z, € R — R°
and a proper normal R-neighborhood N,(2y; ¢). In Nilzy; ¢) we put We=
Nilzo;¢) N R°. In Wy let W denote the union set of S(y) for all y € Wk
On the other hand, let 7', be the congruent transformation in T(z,) induced
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from a cylinder map at 2. As mentioned in 1), there exists the least positive
integer 1 such that 7 becomes the identity transformation. Then, A = 2 and
L =hS(z)!. Here, let us call a vector u € TW(z) singular at =z, if Ty u
=z for an integer p(0 < u < h). Of course, the zero vector of Ti(z) is
singular. Take a suitable frame (e,)in Tx(zy), relative to which 77 is repre-
sented by a matrix (6.1). The following three cases are considered :

a) The case where r, + 7, =n — 1, r, = 1. Then, 2 = 2. All of singular
vectors at g, form an (n — 2) vector-subspace Z. If we map Z by the expo-
nential map at z,, we get in Ny(2o; ¢) an (n — 2)-surface geodesic at 2z, So,
Wk is not connected. However, W is connected. For, if « € Tx(z) is not
singular, we have 7\« = — u. From this it is obvious.

b) The case where », +7,=n — 1, r,==2. Then, A =2 too. All of
singular vectors at 2z, form a vector subspace of dimension =7z — 3. This
implies that Wz is connected. So, W is connected.

¢) The case where r, + 7, <n — 1. Then A > 2, and for a suitable
integer /,

From its components u,, let us construct the following £ + 1 combinations :
(urlﬂ, seey ur1+rn), (ur1+r2+1, u1‘|+7'2+2), (ul‘1+7‘2+3, ur1+r2+4\,
------ s (ur1+rg+2k-—], un+r-_»+‘.’k)-
Then, there exists at least one combination, all of whose elements are zero. So,
'we can see that all of singular vectors form the union set of a finite number
of vector subspaces in TuW(xy). If r,==1, all the singular vectors form the
union set of some vector subspaces of respective dimensions = z — 3. This
implies that W5 is connected. So, W is also connected. In the case 7, =1
too, it follows that W is connected even if Wjx is not connected.

Consequently, it has been proved that W is connected. From this we
can see that M° is connected. For, take any y,,y, € R° and a curve in
R joining v, to y,. Cover the curve by a finite number of proper normal
R-neighborhoods Ny(M =1, 2, ......). Let W, denote the union set of S(y) for
all y € Ny N R°. Then, W, are all connected. By 2), the union set of all
W, is also connected. This implies that y,, y, are joined by a curve in M.
Therefore by Lemma 3.5, M° is connected.

4) From the above results, we see that M is of almost fibred type with
kernel M°. In fact, at any y, € R° let Nx(yo; &) be proper. By 2), we have
Nx(yo; b) © R°. If we apply the cylinder map to Nx(yo; b) X [L], the image
is wholly contained in M°. We can thus verify that M° is a fibre bundle
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where each fibre is an S-geodesic (cf. Proof of Theorem 4). It is easy to see
that, there is no subspace, D M’ == M’ which becomes such a fibre bundle.
So our assertion is true. This completes the proof of our theorem.

REMARK 6. 1) If M is of almost fibred type which is not fibred type,
the S-geodesics are all closed (by Theorems 4, 5).

2) There exist RS-manifolds of almost fibred type which is not fibred
type. Such an RS-manifold is further of type III or VI, or non-simple
type. There exist RS-manifolds of fibred type whose S-geodesics are all
closed. Such an RS-manifold is further of type II,III,V,or VI, or non-
simple type. (See Appendix.)

Finally, if we sum up Theorems 4—6, the following theorem is obtained :

THEOREM 7. M is of almost fibred type, almost clustered type, non-
fibred type III, or non-fibred type V1.

The auther wishes to express here his sincere gratitude to Prof. S.
Sasaki for his kind guidance during the preparation of the manuscript.

APPENDIX
In Remarks 1—6, we treated of the existence of RS-manifolds which
satisfy some conditions. For the RS-manifolds there enumerated, we can all
construct their models. Here let us show some of them, whose constructions
seem comparatively to be difficult.

1. We take the torus D in Euclidean 4-space E‘, defined by
X, = €080, Ty, = SIN0, Ty = COST, X, = SINT
(— o <o, < )

where (A = 1, 2, 3, 4) denote usual orthogonal coordinates in E*. Let us
regard D as a Euclidean 2-space form with the metric naturally induced
from E*'. Construct the metric product D X [L]. Let IX0), IXL) be the 2-
submanifolds of D x [L] defined by ¢ = 0, L respectively. Define

$y: D(0) > IX0) by ¢(0,7,0) = (¢ + m, — 7,0).
Next, take a constant 7,(0 < 7y < ar) and again define

¢L: lXL) g HL) by ¢L(o's T: L) = (0‘ + ™, — T + 27—0’ L)
Indeed, the maps ¢, ¢, are isometric involutive homeomorphisms and have
not fixed point. Accordingly in D X [L] if we identify = with ¢(x) for all
x € IX0) and y with ¢,(y) for all y € D(L), we get a Euclidean space form
M?. M?® is also an RS-manifold of type VI. Especially, if =/7, is an ir-
rational number, M? becomes an RS-manifold of non-fibred type VI whose
S-geodesics are all non-closed (Remark 4). If m/7y is a rational number, M?*
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becomes an RS-manifold of fibred type and further type VI, whose S-
geodesics are all closed (Remark 6).

2. Instead of the torus D above, we take a cylinder in Euclidean 3-
space E°, defined by

x, = Cc0s0, X, =sinc, z,=7( — co < 7,7 < 0),
where z:(A = 1, 2, 3) denote usual orthogonal coordinates in E’. In the same

way, we can also get an RS-manifold M3?. M?® is an RS-manifold of fibred
type and further type VI, whose S-geodesics are all non-closed (Remark 4).

3. In Euclidean 3-space E?, let D be the subspace {(x;, 2s,2)| |2,| < 1,0
=< t=1} where z,,x,¢t denote usual orthogonal coordinates of E°. Let
IX0), D(1) be the subspaces of D defired by # =0, 1 respectively. For a

constant ¢(=0) we define
¢: DX1) = IX0) by #(z,, 25, 1) = (,, 25 + ¢, 0).
The map ¢ is an isometric homeomorphism. By this, identify IX1) with
IX0). The space thus constructed from D we denote by D’. In D’ let D'(1),
D’( — 1) denote the 2-submanifolds defined by x, = 1, — 1 respectively. Take
an irrational number % (0 < £ < 1) and again define
¥: D'(1)—> D(— 1) by ¥(1, x5, 8) = (— 1, [z.], [t + %)

where [x,] =2, or 3 + ¢ and [t +t]=1¢t+ ¢t or t + £, — 1 according as
t+12 <1 or=1. The map ¥ is an isometric homeomorphism. By this,
identify D'(1) with D'(— 1). The space thus constructed from D’ we denote
by M3, M3 is a Euclidean 3-space form. M?® is also an RS-manifold of fibred

type and further non-simple type, whose S-geodesics are all nonclosed
(Remark 4).

4. Let 7,6,z be cylindrical coordinates in Euclidean 3-space E*. We take
the closed domain D defined by 0 < z < 2. In D, identify points (7, §, 0) with
points (7, 6,2) for all ,6. We obtain thus a Euclidean 3-space form D. In
D x [L] let D(0), D(L) denote the 3-submanifolds defined by #=0, L
respectively. Take a constant 6,(0 < 6, < 7) and define

$): D(0)—~> D(0) by ¢(r,6,20) = (r, — 6,[z + 1],0).

¢.: D(L)—> D(L) by ¢(r,6,z,L)= (r, — 6 + 26,[2 + 1], L),
where [z + 1] =2 + 1 or 2 — 1 according as 2 < 1 or = 1. The maps ¢, ¢,
are isometric involutive homeomorphisms and have not fixed point. Ac-
cordingly in D' X [L], if we identify 2 with ¢, (z) for all x € D(0) and
further y with ¢.(y) for all y € D(L), we get a Euclidean 4-space form M-
M* is also an RS-manifold of type VI. If 7/6, is an irrational number, M*
becomes an RS-manifold of non-fibred type VI, among whose S-geodesics
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there exist both closed one and non-closed one (Remark 5). If w/6, is a
rational number, M* becomes an RS-manifold of almost fibred type (not
fibred type) and further type VI(Remark 6).

5. Let (e,) (2 =1,2,3,4) be an orthonormal frame with origin O in
Euclidean 4-space E'. Take a constant @,(0 < &y, < 7). We consider the
moving frames (e, ey(2), e;(t), e,) (0 =< ¢t = 1) with origin O, where
costa, —sin ¢t ao)

(ex(t), ex(t)= (e, €) ( .

sinta, cost ay

In the following, let us represent points vectorially. Let D be the subspace
of E', which consists of all points x, e, + x,¢, + z;€; + ¢t e, such that |z,|
<1, 0=<¢t=1. Let D), D(1) denote the subspaces of D defined by ¢t = 0,1
respectively, Define
¢: D(1) — IDX0)
by lxie; + xoes(1) + xiel) + e)) = zie, + Toey + Tses.
The map ¢ is an isometric homeomorphism. By this, identify D{1) with
D(0). The space thus constructed from D we denote by D. In D'let D(1),
D'(— 1) denote the 3-submanifolds defined by e,-component = 1, — 1 respec-
tively. Take an irrational number £, (0 < ¢, < 1) and again define
¥v: D(1)—>D(—-1)
by "zb'(el + xzez(t) + x; es(t) + te4)
=—e + 2 ez([t + ) + xset + lo]) + [t + L] ey
where [t + ] =1t + ¢t or t + £, — 1 according as ¢t + £ <1 or= 1. The
map ¥ is an isometric homeomorphism. By this, identify D'(1) with D'(— 1).
The space thus coastructed from D" we denote by M'. M! is a Euclidean
4-space form and also an RS-manifold. If 7/a, is an irrational number, M*
becomes an RS-manifold of almost clustered type, among whose S-geodesics
there exist both closed one and non-closed one (Remark 5). If w/a, is a
rational number, M* becomes an RS-manifold of almost fibred type (not fibred
type) and further non-simple type (Remark 6).
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