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1. Introduction. Let M be an ^-dimensional connected complete Rieman-
nian manifold of class C2, admitting a parallel field of one-dimensional
tangent vector subspaces. M is also regarded as a Riemannian manifold
whose homogeneous holonomy group fixes a one-dimensional tangent vector
subspace. The purpose of this note is to discuss the global geometrical
structure of M. Locally, the parallel field is generated from a parallel field
of non-zero tangent vectors which is locally defined. The structure, that is
the local decomposition of the Riemannian metric, has been well known to
many geometricians. Starting from this local structure we proceed to deter-
mine the global structure of M. The main results are shown in Theorems
1—7 Among them Theorem's 1 — 6 give structures in respective cases, and
from the last Theorem 7 we can know a general structure of M.

From now on, the word "^-dimensional" is abbreviated '*£-", say, like
^-space (but "7?-" etc have not such a meaning). Let us suppose that Latin
indices a, b run from 1 to n — 1 and Greek indices ct, β, y from 1 to n.
Let E be a Euclidean 1-space with the coordinate svstem \t\ — °° < t < °o|
and (J.t denotes the infinitesimal distance. Let E be the part \t}0 ^ t <
ool of E. Moreover for a constant L > 0, let [L] be the part \t\0 ^ t rg L]
of E.

The following conventions in a Riemannian manifold X are also applied
to all of Riemannian manifolds : The parallelism in X means the one of
Levi-Civita. A neighborhood in X is always an open set homeomorphic to
Euclidean sυace. Take anv x, y € X. Let \x, y] denote a geodesic arc joining
x to v. And further, take a unit tangent vector v at x. Given a real number
c, fj(x, v, c) is defined to be the geodesic arc issuing from x, whose length is
fr! and whose initial vector is v or — v according as c > 0 or < 0. Let (x, v,
c) denote its terminal point. Note that a geodesic arc is not necessarily
simple and sometimes may be closed. Let a curve cί: x(i) (say, a ^ t ^ b)
be given in X. At xn = x(a) we take a unit vector v0 tangent to X. Cor-
responding to each I, let v(t) be the unit vector at x(t) parallel to v0

along a. Moreover if a geodesic arc g(x0, vθ9 c) is given, each geodesic arc
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g(x(t\ v(t\ c) is said to be parallel to g(x0, v09 c) along a. And as usual, to
displace the latter arc parallelly along cί is to obtain the former arcs. A
covering manifold C{X) of X is defined to be a connected covering manifold
of X with the Riemannian metric naturally induced from X by the covering
map p. C(X) is of the same differentiability class as X. However, we sometimes
allow local coordinate systems whose differentiability classes are minus 1 from
that of X. Especially, if p~Ύ{x) (x € X) consists of just two points, C{X) is
called a double covering manifold of X. Let us take the product X X E.
Into it, we introduce a Riemannian metric by ds2 = dsx + dt2 where dsx

denotes the Riemannian metric in X. We get thus a Riemannian manifold
X x E, which is usually called the metric product of X and E. Similarly,
the metric products X x E, X x [L] are considered and they are Rieman-
nian spaces. And a point of X X E etc. is denoted by (x, t) where x € X,
as usual The notation <e x " always means the operation of a metric product.
Over X, a field of vectors {vector spaces) implies that to each point of
X a vector (a vector space) is assigned. Let S be a field of vector 1-spaces
and let V be a field of vectors. Then, the expression that S is generated
from V means that at each point of X the vector 1-space of S is generated
from the vector of V. Moreover, the expression "X admits (or is admit-
ting) a field" implies always to admit the field throughout X.

2. Preliminaries Let M be a connected complete Riemannian w-mani-
fold {n > 1) of class Cs, admitting a parallel field of tangent vector 1-sub-
spaces. {M is such one throughout the whole discussion.) The parallel field
is called the S-field over M. Let us take the field of tangent vector {n — 1)-
subspaces, which is orthogonal to the S-field at each point of M. It is
obvious that the field forms a parallel field over M, too. We call it the R-
field. Such a manifold M will be called an RS-manifold of dimension n.

Take any xn € M. Let U be an admissible coordinate neighborhood of
X(). Let {xx) be its coordinate system. Let {gaβ) denote the fundamental tensor in
U. U being simply-connected, we can find a parallel field \v{x)\x € U\
in U of unit tangent vectors, from which the iS-field restricted to U is
generated. We denote its vector v = v{x) by {v*). Put vΛ = gaβv

3. Then we
have

dvβ __ f a

where \oΛ are ChristoffeΓs symbols constructed from gΛβ. Hence

dv& dvy
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This shows that the system of differential equations

(2.1) . * . _ „ .

has a solution of class C3. We denote it by f\xΎ, xn). Moreover we

consider the differential equation

(2. 2) v« ^ = 0.
dx"

Among the solutions there exist n — 1 independent functions fa(x1

9 ••••••, xn) of

class C2. These functions fa= fa(x1

9 , xn) can be supposed to be defined

in a neighborhood ( CZ U) of x0. We see easily

at x0. Put

Using these, let us transform the coordinate system Or"). We get thus a

coordinate neighborhood U'( CZ U) of r̂o> which is covered by the new co-

ordinate system (x'Λ). Let (g'aβ) be the fundamental tensor in £/', When <7*β,

g'Λβare denned by #ΛYgrv/3 = δ?, ^ ' α γ ^ β = δj, we have

y dx" 3xβ y '

Since / * satisfy (2. 1) or (2. 2), we get gan = 0, i. e. gan = 0. We see that in

U' the vector v is represented by (δ*). So, from the parallelism we have

where j & V are ChristoffeΓs symbols constructed from g'αβ. Hence

j α \ >

From this and g'αn = 0, it follows that g'nn = const, and g'aj> are independent

of x'n. And further, gnn = 1, the vector v being a unit vector.

The results above are stated as follows : At any x0 €E M there exists a

coordinate neighborhood W such that the Riemannian metric in W is ex-

pressed by

ds2 = gabdxadxb + (dxn)2

where (x*) denotes the coordinate system in W and gab are the functions

of xΊ, ,χn~Ί only. Moreover, in W we can see following facts: If co-

ordinates χa are varied leaving xn only fixed, we obtain an integral manifold

of the R-field. If a coordinate xn is varied leaving all of χa fixed, we
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obtain an integral manifold of the S-field, that is a geodesic in which x11

plays the role of the arc-length. Such a coordinate neighborhoods of x0,

whose coordinate system (xa) consists of all of Crα)'s such that a* < xΛ< b*

(where aΛ, ba are constants), is called a reduced coordinate neighborhood of

XQ.

Let W, W be two reduced coordinate neighborhoods of x0. Let Or*),

(x'a) be their coordinate systems respectively. Let W" be the connected

component of W Π W containing x0. In W" the coordinate systems (xΛ)

and (xa) are combined by the relations decomposed as follows :

x'a =f\x\ xn'τ), xn = 8xn + const. ( 6 = + 1 or - 1)

where fa are the functions of class C2 independent of xn.

Moreover we can see that through x0 € M there passes a pair of the
maximal, connected integral manifolds of the i?-and 5-fields. Let R(x0) and
S(x0) denote the ones respectively. We give them the Riemannian metrics
which are naturally induced from M, and call them R-and S-submanifolds

of M respectively. They form Riemannian manifolds of class C1 and the
following fact is easily verified : All of the R-and S-submanifolds are totally

geodesic, and complete as Riemannian manifolds. Indeed, each of the 5-
submanifolds is a geodesic. Accordingly it is also called an S-geodesic. Let
T(x0) denote a subset R(x()) ΓΊ S(xn).

Let X be a connected complete Riemannian (n — l)-manifold of class

C1. That M is of one of the following types I —VI means that for suitable

X etc. there is an isometric homeomorphism of class C2, of M onto the corres-

ponding Riemamran manifold, which maps each R- sub manifold onto £ = const.

Type I: The Riemannian manifold X X E.

Type IT: The Riemannian manifold constructed from X X [L] by

identifying (x, L) with (x, 0) for all x € X.

Provided that there exists a non-trivial isometric homeomorphism φ of

class C2, of X onto itself, we define

Type III: The Riemannian manifold constructed from X X [L] by

identifying (x, L) with (φ(x\ 0) for all x € X.
Next suppose that there exists an isometric involutive homeomorphism

ψ of class C2, having no fixed points, of X onto itself. (By the word

"involutive" it is meant that ψψ(x) = x for each x €: X.)
Type IV: The Riemannian manifold constructed from X X E by

identifying (x, 0) with (ψ(x\ 0) for all x € X.
Type V: The Riemannian manifold constructed from X X [L] by

identifying (x, 0) with (ψ(x\ 0), and (x, L) with (ψ(x), L) for all x € X.

Furthermore, provided that there exists another homeomorphism ψ of
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X onto itself, with the same property as ψ, we define

Type VI: The Riemannian manifold constructed from X X [L] by
identifying Or, 0) with CΨΌz), 0), and {x9 L) with (ψ'(x)9 L) for all x € X

In M suppose that there exists a connected open submanifold M° which
satisfies the following conditions 1) and 2), or 1) and 3) :

1) M° is a union set of S-geodesies and the closure of M° is M.
2) M° is the maximal subset in which each point x is a limit point of

I(x) relative to each of submanifolds R(x) and S(x).
3) M° is a maximal subspace which becomes a fibre bundle where each

fibre is an iS-geodesic. (By the word "maximal" it is meant that there are
no subspaces, ZD M°, =f= M°, which have the same property.)

When M° satisfies 1) and 2), M is said to be of almost clustered type
with kernel M°. In this case, if M = M°, M is simply said to he of clustered
type.

When M° satisfies 1) and 3), M is said to be of almost fibred type
with kernel M°. In this case if M = M°, M is simply said to be of fibred
type.

If M is not of almost fibred type but of type III (VI), M is said to
be of non-fibred type III (VI). If M is not of one of types I—VI, M is said
to be of non-simple type.

3. Fundamental lemmas. Take any x0 € M. An R-neighborhood of x0

is a neighborhood in R(x0). A normal vector at x0 is a unit tangent vector
at x0 orthogonal to R(x0). Let n(x0) always denote one of the normal
vectors at x0. Take an i?-submanifold RQ of M. At each point x of Ro we
plant a normal vector n(x). If n(x) becomes continuous over Ro, the set
\n(x)\x € Ro\ is said to be a normal vector field over .Ro Then Ro admits
just two normal vector fields and the normal vectors n(x) are parallel to
one another along any curves of class D1 in Ro. Similarly over an ^-neigh-
borhood too, the notion of normal vector field is defined. In this case,
there exist always just two normal vector fields, because it is simply-
connected. For any two points x,y of an jR-submanifold, let dτ£x,y) denote
the length of a minimizing geodesic in the Λ-submanifold joining x to y.

Again we take any x0 € M. Let n0 be a normal vector at x0. For a
constant c, put 3>0 = (x0, n0, c). Then we have

LEMMA 3. 1. There exists an R-neighborhood WR at x0 such that, if
\n(x)\ x € WE\ is the normal vector field over WR where n(x0) = n0, R(y0)
contains (x9 n(x\ c) for all x € WR and the map

f: WR -» R(y0) defined by f(x) = (χ9 n(x), c)

is an isometric into-homeomorphism.
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PROOF. I) The case where the geodesic arc g(x0, nθ9 c) is contained in a
reduced coordinate neighborhood U. Let WR be the connected component
of U Π -R(̂ o) containing x0. In U, let (xo) denote x0. Then, y0 is denoted
by (x%, Xo + €c) where £ = + 1 or — 1. Moreover, if each x € WR is
denoted by Or"), then xn = x% and (x, n(x\ c) is denoted by (xa, x% + 6c).
Therefore by §2 we can see that WR satisfies the condition in our lemma.

2) The other case. Take a finite system of reduced coordinate neigh-
borhoods [/λ(λ = 1,2, , h) such that each Uk contains a geodesic arc
[xκ-i9 Xκ\ where the product curve [XQ9X^\ [XI9X%\ DEA-I, # J becomes
g(,x0, n0, c). To each UK and [xκ-ι, xK29 apply the result of 1). Thus we can
easily find an i?-neighborhood WR at xQ in our lemma.

Moreover let x(t) (α ^ t ^ b\ x(a) = x09 be a curve of class & in i?(xo)
Corresponding to each t, let n(t) be the normal vector at x(f) parallel to n0

along the curve. Put y(t) = (x(t), n(t\ c) Let n\t) be the normal vector at y(t)
parallel to n(t) along g(x(t\ n{t\ c) (t: fixed). Then we have

LEMMA 3.2. 1) y(t) (a^t^b) is a curve of class Z> in R(y0) and
S n\t) I a ^ t <̂  έ) consists of normal vectors parallel to one another along the
curve y(t). 2) For any yλ € R(y0) there exist a point xτ € R(x0) and a
normal vector nx at xx such that yτ = (xl9 nu c).

PROOF. T O prove 1), cover the curve x(t) by a finite system of R-
neighborhoods which have the same property as WR in Lemma 3.1. Then
1) is easily verified. To prove 2), take a curve z{t) (0 2S t IS 1), ^(0) = 3/0>
^(1) = ^u °f class Z)1 in R(y0). Let ό̂ be a normal vector at 3>0 such that
(yo> n'o> c) = α:0. Let wi be the normal vector at yx parallel to n0 along the
curve z(t). Now put xx = (yl9 nl, c). Then xτ € R(x0), and 3̂ i = (^i, £n(xτ), c)
for £ = + 1 or — 1. So 2) is proved.

Next, at x0 € M we shall express *SΌr0) by x(s)( — oo < 5 < 00) where
α:(0) = x0 and 5 denotes the arc-length. If ^(^0) is closed, it represents S(xQ)
many times. Let u0 be a unit vector at xQ tangent to JR(^ 0) and let c be a
positive constant. Now, displace u0 parallelly along the curve x(s). Then cor-
responding to each s, we get a vector u(s) at ^(5) and it is tangent to
R(x(s)). Hence, g(x(s), u(s\ c) d R(x(s)). Put z0 = (xθ9 u0, c) and we have

LEMMA 3. 3. There exists a non-closed geodesic arc x(s) ( — T <̂  s ^ T
T > 0) swcλ ίAαί (^(5), M(5), ί?) € S(s0) / o r α// 5 (— T ̂  5 ̂  r) d:wJ ίA^ wflί

/ ; Λ<5) ( - T ̂  5 g T) ^ 5(«0) Λϋwrf fry /(x(5)) = (^(5), «(*), c)

is an isometric into-homeomorphism.

PROOF. I) The case where the geodesic arc g(x0, u0, c) is contained in a
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reduced coordinate neighborhood U. Then there exists r > 0 such that x(s)

(— r <Ξ s ^ T) is contained in [7. In U let GrJ), (s^)? and (u%) denote :r0, z0,

and u0 respectively Then, x" = z™ and uS = 0. And corresponding to each

s( — T <Ξ s <Ξ T) χ(s) is denoted by (x't, xn

λ + 65) where £ = + 1 or — 1, and

u{s) by (wα, 0). Hence, (x(s), u(s), c) is denoted by (Vo, 2:,? + Ss). Therefore we

can see that x(s)(— τ <; s 5S r) satisfies the condition in our lemma.

2) The other case. Take a finite system of reduced coordinate neigh-

borhoods [7 λ(λ = 1, 2, , A) such that each Uλ contains a geodesic arc

[xκ-\9 X\l where the product curve [αr0, #1] [x19 x*\ \_Xh-\Xh\ becomes g(x0,

uo,c). To each U\ and [xκ-ι,Xκ\ apply the result of 1). Thus we can easily

find a geodesic arc in our lemma.

Under the same notations; put z(s) = (x(s)9 u(s), c), then the following

lemma is obvious:

LEMMA 3. 4. 1) A curve z(s)(— oo < s < oo) represents S(zo)(many times

if it is closed) and the parameter s plays the role of the arc-length in S(zn).

2) If c = diι(x0, Zo), diix(s\ z(s)) <ί c for any s.

In M let xo,yQ be any two points. Then we have

LEMMA 3. 5. A set R(x0) Π S(y0) is non-empty and at most countable.

PROOF. 1) Let us prove R(x0) Π S(y0) =f= 0. Take a geodesic arc [3^0,̂ 0]

= g(y0, v0, c) where c > 0. If v0 is tangent to R(y0), R(yo) contains x0 and

obviously R(x0) Π S(y0) =f= 0. Accordingly, let us consider the case where vn

is not tangent to R(x0). Then at each y € [3^0,̂ 0] too, the tangent vector
of Qy0, xo~] is not tangent to R(y). We can find a finite system of reduced
coordinate neighborhoods Uκ(λ> = 1,2, , h) such that each U\ contains a

geodesic arc (yθ9 vo,s)(cχ-i 5j 5 fj cλ) where 0 = c0 < 1̂ < < ch = c Put

^λ = (yo> vOicκ). In C7λ suppose that points j>λ_i and yk are denoted by (jtf-i.λ)

and (3/Jιλ) respectively. Here, put dλ = |yj-i.x — 3>λ,λl ϊ n ^0 let (tβ) denote

v0. Then ϋ? =f= 0, and let Λ0 be a vector (£δ") (in £/0) at Λ:0 where θ = + 1

or — 1 according as v$ > 0 or < 0. Hence, (y0, n0, dτ) € -R(^i). By Lemma

3. 2 we can further verify (yθ9nθ9d1 + d2) € R(y2), , and finally (yo,no,dι

+ d2 + + dh) € R(yh). This implies R(x0) Π S(y0) =+= 0

2) Let us prove that R(x0) Π S(y0) is at most countable. As a point set,

S(yo) can be regarded as the union set of |ΛA |λ = 1,2, 1 where ak is a

subarc of S(y0) contained in a reduced coordinate neighborhood Uλ. (The

index λ runs at most to 00.) Here, R(x0) Π cίκ c Λ(^o) Π ί7λ. JR(X0) satisfies

the second countability axiom. So, R(x0) Π ί7λ consists of an at most

countable system of non-intersecting ^-neighborhoods in R(x0). Hence, R(x0)

Π θίλ is at most countable. Therefore R(x0) Π S(y0) is at most countable.
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4. Topology of R-submanifolds and structures. In M suppose that
each of the .R-submanifolds admits normal vector field. Then we have

LEMMA 4. 1. The S-field is generated from a parallel field of unit
tangent vectors.

PROOF. Take an i?-submanifold Ro. At x0 € Ro let us suppose that
there exists c > 0 such that (x0, n(xo)9 c) € Ro for a suitable n(x0). Let \n(x)
I x € RQ \ be the normal vector field containing n(x0). Let nc be the vector at
occ = (^o, n{x^\ c) parallel to n(x0) along g(x0, n(xo\ c). Then, nc — n(xc). If
nc =f= n(xc\ we have n(xc) = — nc and x0 =f= xc- Put ^ό = (x0, n(xo\ c/2). We
displace g(x0, n(xo\ c/2) parallelly along a curve in R(x0) joining x0 to xc.
Then the displacement shows that n(x'o) is parallel to — n(x'o) along the
curve in R{XQ). This implies that R{X'Q) does not admit normal vector field.
It is contrary to the assumption. So, nc = n(xc) From this fact and Lem-
mas 3.1, 3. 5, our lemma is proved.

Conversely suppose that in M the *S-field is generated from a parallel
field \v(x) I x € M\ of unit tangent vectors. Over each i?-submanifold R, a
subset \v(x) I x €L R\ becomes a normal vector field. That is, the converse
of Lemma 4.1 holds good. Let Ro, i?j be any two of the i?-submanifolds.
Take any x0 € Ro. By Lemma 3. 5 there exists c such that xx Ξ= (χ0p v(xo\
c) € Rτ Then we have

LEMMA 4. 2. The map

f: Ro-^R! defined by f{x) = (x, v(x), c)

where x € JR0> is an isometric homeomorphism.

Such a map / is called the R-map with respect to a geodesic arc g(xθ9

v(x0), c).

PROOF. Take yτ € Rτ. By Lemma 3. 2, y0 ^(yl9 - ziy1)9 c) € Ro. So,
^ i = (yo> v(y0), c). Hence, / is an on to-map . N e x t for x'o, y'o € Ro, if (x'o, v(xΌ)9

c) = (y'o> v(yll)> c)(^ xΊ), t h e n (χ'l9 — t<j:ί), c) = xΌ a n d = ^ό So, x'o = y>

This implies that / is one-to-one. By Lemma 3.1 our lemma is proved.

In M, take an i?-submanifold RQ. At x0 € Ro let N(x0) denote the set
of all positive numbers s such that at least one of two points (xθ9 ± n(x0), s)
belongs to Ro. If N(x0) is non-empty, we denote the greatest lower bound
of N(x0) by ρ(x0). If N(x0) is empty, we put ρ(x0) = oo. So, 0 <j ρ(x0) ^ oo.
By Lemma 3. 2 we have ρ(x) = p(xo) for any x € i?0 Accordingly, we denote
/o( To) by K^o) We call p(R0) the distance of i?0. Let i?2 be another R-
submanifold. At x0 € Ro let Nixo^R^ be the set of all positive numbers s
such that at least one of two points (xQ9 ± n(x0), s) belongs to Rl9 By Lemma
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3.5, NCxoyRi) is non-empty. We denote the greatest lower bound of N(x0,

Rx) by ρ(χ09R1). So, 0 <Ξ p(xQ, Ri) < °° By Lemma 3. 2 we have K*o> Ri) =

p(x,Rx) for any x € Ro. Accordingly, we denote pfao, Ri) by ρ(R0, i^). We

call p(R0, Ri) the distance between Ro, Rλ. Then we have

LEMMA 4. 3. 1) If 0 < pCR0) < °o, αί least one of two points (x0, =fc

n(xo\ ρ(R0)) belongs to Ro. 2) If ρ(R0) > 0, p(R) > 0 for any R-submanifold

R. 3) If /o(^o,^i)>0, tfί fetfsί ewe of two points (x0, zt n(x0), ρ(R0,1?,))

belongs to Rλ.

PROOF. The case where 0 < p(R0) < °°. Suppose that two points (x(),

± 7z(̂ 0)> p(Ro)) do not belong to Ro. Then for a suitable normal vector n0

at .x0, we can find a sequence (sλ | sλ > Sχ+i', λ = 1, 2, } such that lim

sκ = p(R0) and xκ = (Λ:0, 720? ̂ A) ^ -Ko for all 5λ. Here, there exists an index

m which satisfies sm — sm+1 < p(R0). Let Λ be a curve of class D1 in Ro

joining xm+1 to Λ:0. Take the arc [x0, X'QJ parallel to a geodesic arc (x0, n0, s)

(sm+i ^ s ^ ^m) along Λ. Indeed, it is one of two arcs g(x0, ± nQi sm — sm+1).

By Lemma 3. 2, x'o € i?0 Accordingly, K-^o) ^ sm — sm+1. This is obviously
a contradiction. So, 1) holds good.

The case where p(R0) > 0. Suppose that p(R) = 0 for an i?-submanifold
R'. By Lemma 3. 5 there exists a non-closed subarc [xΌ, xo~\ of S(xQ) where

x'o € R. For a suitable normal vector wi at x'o, we can find a sequence {sλ|

5λ > 5λ+i; λ = 1, 2, I such that lim sλ = 0 and .rl ^ (̂ o? nΌ, sk) 6 .R' for

all 5λ. Corresponding to each λ, let ccλ denote a curve of class D1 in R joining

x'o to Λ:χ. Take the arc [x'κ, xλ~] parallel to the arc [x[, xo~] along <xκ. The arc

is a subarc of S(x0). By Lemma 3.2, ^:λ € JR0 Moreover there exists a
subarc [xμ,:rj of 5(^0) (where xμ, xv ^ |^λ}? Xμ. =ί=^) whose length is smaller

than p(R0) This is obviously a contradiction. So, 2) holds good.

The case where p(R0, i?i) > 0. Suppose that two points (x0, ± n(x0),

p(R0,Rιy) do not belong to Rlu Then, p(Rt) = 0 holds good. We can get

thus a contradiction that the distance between Ro, Ri is smaller than p(R0,

. So, 3) holds good.

In M, let Ro be an R- sub manifold. The condition p(R0) > 0 z's equivalent

to the condition that the topology of Ro coincides with the relative one

induced from M. Lemma 4. 3 shows that, if the topology of Ro coincides

with the relative one, this holds also good for other R-submanifold.

THEOREM I. In M suppose that the topology of an R-submanifold

coincides with the relative one induced from M. Then M is of one of

types I—VI.

PROOF. For any i?-submanifold R, we have ρ(R) > 0 The following
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four cases are considered :

1) The case where each jR-submanifold admits normal vector field. By
Lemma 4 1, the 5-field is generated from a parallel field of unit tangent
vectors. We can see p(R0) — p(R{) for any i^-submanifolds Ro, R{. By
Lemma 4. 2 the following conclusion is now obvious : For any JR-submanifold
R, if ρ(R) = oo, M is of type I, and if p(R) < oo, M is of type II or I II .

2) The case where an jR-submanifold Ro only does not admit normal
vector field. Put L = p(R0). Of course 0 < L <Ξ oo. For each c(fi < c < L\
let Rc be the jR-submanifold passing through a point (x0, n(x0), c) where x0

€ Ro. In our case, nix) (x € Ro) is parallel to — n{x) along a suitable
curve in Ro. This and Lemma 3. 2 show that Rc consists of (x, ± n(x), c)for
all x € Ro. Here suppose (xl9 n(xχ\ c) = (x19 — n{xλ),c) for xλ € Ro. We
can see that Rc does not admit normal vector field. This contradicts with
our case. So, we have (x, n{x\ c) =j= (•£> — n(x), c) for all x € RQ. Next for
xl9 x2 € Ro (xι =f= x2), suppose (x19 n(x^), c) = (x2, n(x2), c) ( = y:). g(x19 n(xτ), c)
is parallel to g(x2, n{x2), c) along a suitable curve in Ro. Hence by Lemma
3. 2 we can see that n(y^) is parallel to — n(yχ) along the closed curve in
Rc. Accordingly Rc does not admit normal vector field. This contradicts
with our case, so we have (xl} n(xτ)9 c) 4= Ô a, n(x2\ c) for xl9 x2 € Ro (xi =4=
x2). These results and Lemma 3.1 show that Rc is a double covering
manifold of Ro. The covering map p satisfies p(xe) = x where x € Ro and
xe = (x, £n(x), c) for β = -f 1 or — 1. It is now clear that Rc is isometrically
homeomorphic to Rc'(0 < c < L). Suppose L <C °°. By Lemmas 3. 2 and
4. 3, we have x'o = (̂ :Oj ^(ar0), -ί/) € i^0 where ^0 ^ ^o So, there exists a normal
vector n(x'o) such that (x[9 n(x'o)9 L) = xo Since ?zθr') is parallel to ?zOr0)along
a suitable curve in Ro> the i?-submanifold passing through a point (.r0, n(xo)9

L/2) does not admit normal vector field by Lemma 3.2. This is contrary
to our case. Therefore, L = oo must hold good. These results show that
M is of type IV.

3) The case where two i?-submanifolds Rθ9 Ri only do not admit normal
vector field. We get ρ(R0>R1) > 0. Because, if ρ(Rθ9 R^ = 0, we have p(R0)
= p(Rχ) = 0 which contradicts with the assumption. Put L = p(Rΰ9 i?i) and
take x0 € Ro. By Lemmas 3. 2 and 4. 3, two points (xθ9 ± n(xo\ L) belong
to R,. We get p(R0) = 2L. For each c(0 <c < L\ let i?c be the i?-sub-
manifold passing through a point (xθ9 n(xo)9 c). In the same way as in 2),
Rc is a double covering manifold of Ro and further of Rlm We get thus the
conclusion that M is of type V or VI.

4) The case where three (or more) i^-submanifolds do not admit normal
vector field. Let Ro> Rl9 and R2 be such ones. As shown in 3) we have
p(R09 Rt) > 0, and p(R0) = 2p(R0> RJ. Similarly, p(R0) = 2p(Rθ9 Rt). Therefore,
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ρ(R0, Ri) = ρ(Rθ9 R2). By Lemmas 3. 2 and 4. 3, we get Rί = R2. This is a

contradiction. So, such a case does not occur. This completes the proof of

our theorem.

REMARK I. 1) The converse of Theorem 1 holds also true.

2) There exist RS-manifolds from type I to VI.

3) In M9 if an R-submanifold R is compact^ ρ(R) is positive. Then

the R-submanifolds are all compact (by Theorem 1).

5. Fundamental groups and structures. In M, suppose that the S-

field is generated from a parallel field \v(x)\x €ί M\ of unit tangent vectors.

Let R be an i^-submanifold of M. Then we have

LEMMA 5.1. The map

p: R X 22 -> M defined by p(y, t) = (y, v(y), t)

where y €ί R becomes a covering map. And R X E is regarded as a cover-

ing manifold of M.

Such a covering manifold is called the natural covering manifold of

M.

PROOF. Put N(M) = R X E. First we prove that the map p is an onto-

map. Take any xQ € M. Let y0 be a point of R Π S(x0) ( + 0 by Lemma

3. 5). There exists t0 such that x0 = (3/0, v(yo\ t0). Let χ0 denote a point

(yo, to) of N(M). Then p(x0) = x0- So our assertion is true.

Next, we prove that p is locally an isometric homeomorphism. Take

any x0 = (3/0, t0) € N(M) and put xQ = p(x0). Let U(x0) be a reduced coordi-
nate neighborhood of x0. It is represented by the product U^XQ) X g(tl912)

where UR(x0) is an ^-neighborhood of x0 and g(tl912) is a geodesic arc (yθ9

v(yo\ t) (tx < t < t2) not containing its end-points. Of course, tγ < t0 < /2

Let ί7β(^0) denote the ^-neighborhood of 3/0, isometrically homeomorphic to

UR(X0) under the Λ-map with respect to g(x0, ~ v(x0), t0). And further, let

I(tl912) denote the subspace {t\t1 < t < t2] of E. Accordingly a product

UR(y0) X I(tl9t2) is regarded as a neighborhood of x0 in N(M). We denote

such a neighborhood in N(M) by J7(S0). It is now obvious that U(x0) is

isometrically homeomorphic to U(x0) under the map p. So, p is locally an

isometric homeomorphism.

Again take any x0 € M. We put p'\x0) = | 5 λ I λ € J} where J is a
set of indices and at most countable by Lemma 3. 5. Let U(x0) be a reduced
coordinate neighborhood of x0. As we have seen above, at each xk there

exists a neighborhood U(xλ) isometrically homeomorphic to U(xo) under p.
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Then, U(xμ) Π U(xv) = 0 for xμ,xv € p'\x0) ( ϊ μ =+= **)• To prove this, sup-

pose that it does not hold good. There exists a curve ci contained in U(xμ)

U U(xv)9 joining χμ to χu. Then, the curve p(ά) becomes a closed curve with

endpoint x0, and we can easily find a contradiction. So, our assertion holds

good. This completes the proof of our lemma.

Given any χ0 € M, take a point xγ € I(x0) and put ^j = (x0> n$9 c) where
n0 is a normal vector and c is a real number. Let ax be a curve in R(x0)
joining χ0 to xι% Let α:2 denote a geodesic arc #0ro> #o> c). The product curve

tf i tf Γ1 is called an RS-curve with endpoint «ro> and according as c + 0 or

— 0, is called proper or improper.

In M suppose that the 5-field is generated from a parallel field of unit

tangent vectors. Let R be an Λ-submanifold of M. Then we have

LEMMA 5. 2. 1) A closed curve a with endpoint x0 € M is homotopic
to an RS-curve leaving x0 fixed. Moreover, a proper RS-curve is not
homotopic to an improper RS-curve. 2) If p(R) < °°9the fundamental group
ir^M) has an infinite cyclic subgroup. If p(R) ~ 0 especially9 π^M) is not

infinite cyclic.

PROOF. First put Ro = R(xQ). By Lemma 5. 1, we regard Ro X E as the

natural covering manifold of M. Let p be the covering map. Here we sup-

pose that p(x, 0) = x for all points (χ9 0) of the submanifold of Ro X E

defined by t — 0. This is possible. Let ccN be the curve in Ro X E with

initial point (x0, 0) such that p(ctN) = a. For convenience, let us represent

0CN by a parametrized curve (x(τ\ ί(τ)) (0 ^ T <Ξ 1). Of course, Gr(0), ί(0)) =

(xo, 0). We denote a curve (x(τ)9 0) (0 ^ T ̂  1) by ΛIΛΓ and a curve (Λ:(1),

ί(τ)) (0 ί£ T ̂  1) by αw. Then, α^ is homotopic to the product curve oίιN a1N

leaving the endpoints fixed. Hence, oί is homotopic to the curve pictiN <X-IN)

leaving x0 fixed. The curve p(oίιN OL2N) being an i^-curve with endpoint x^9

the former part of 1) has been proved.

Suppose that the above curve α is a proper jR^-curve. The curve aN

coincides with the product curve cίιN a2N where t(l) =H 0. On the other hand,

let oί be an improper IW-curve with endpoint x0. Let cίN be the curve in

Ro X E with initial point (xθ9 0) such that p{άN) = OL. As ά C Rθ9 άN is

represented by (ά fi). Then the terminal points of OLN, cίN are not the same

point. This implies that a is not homotopic to cί. From this and Lemma

4. 2, the latter part of 1) is easily proved.

Next we prove 2). In Ro = R(xo\ let us suppose that p(R0) < °° and

use the previous notations. Then there existsa proper i^iS-curve β of class D1

with endpoint χ0. β is represented by the product curve βrβl1 where β]
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CZ i?o and β2 d S(x0). β is not homotopic to zero. This is easily seen if we
construct an inverse image of β by the map p. (Of course this is valid for
any proper RS-cuτve.) We displace β2 parallelly along & and then denote
the locus of terminal point of β2 by β\. Let g(xQ, n(xo\ c) (c > 0) denote
β2. The terminal point of βi is expressed by (xθ9 n(xl), 2c). Denote the
geodesic arc g(x^n(x\2c) by βi Then, a closed curve β2( = β β) becomes
homotopic to a proper .RS-curve β^βΊ β^1 leaving their endpoints Xo fixed.
In fact, let βNi β'N be the curves in Ro X E with the same initial point
(xo, 0) such that p (βN) = β2 and ρ(βN) = β^βΊ β'f^. We can see that, the
terminal points are the same point and they are homotopic leaving the
endpoints fixed. From this our assertion is clear. I. e, β2 is homotopic to
a proper iW-curve with endpoint xo. This is also valid for all of βχ (λ = 1,
2, ), and they are not homotopic to zero as already mentioned. From
this, the former part of 2) is proved. It is now easy to prove the latter
part of 2).

In M we have

LEMMA 5.3. There exists at least one R-sub manifold which admits
normal vector field.

PROOF. Suppose that all the i?-su^manifolds do not admit normal vector
field. Take anv two i?n, Ry of them. At xn € R we can find c =4= 0 such that
Crr, n(χn\ c) € RJm Now let R denote the R-submanifold passing through
x = (x^ n(χn\ r/2\ Bv the assumption, a normal vector n(x) is parallel to
— n(χ) along a suitable curve in R . Hence bv Lemma 3. 2 we can see
that the two noints \r> and r(x^n(x^, c) are contained in the same R-
submanifold. That is, RQ coincides with 7?,. This implies that M consists
of an /?-submanifold onlv, because Ro, Ri are anvones. It contradicts with
Lemma 3. 5. So our lemma is true.

In M, suΌpose that the iS-field is not generated from a parallel field of
unit tangent vectors, i. e., there is not such a parallel field which generates
the 5-field. Let T(M) be the tangent bundle of M, so that each point of
T(M) is represented by a pair (x, v) of a point x € M and a tangent vector
v at x. Let 7r: T(M) -> M be the projection. We take the subspace H(M)
of T(M) which consists of points Cr, ± n(x)) for all x € M. H(M) is an n
submanifold, and by the assumption connected. Put h = ir \ H(M). Then
H(M) is regarded as a double covering manifold of M under the Riemannian
metric naturally induced from M by h. The map h is the covering
map. We call this covering manifold H(M) the holonomy covering mani-
fold of M. This has the following properties: H(M) admits a parallel
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field of unit tangent vectors which is induced from the S-field of M by h.
Accordingly, H(Ad) is of course an RS manifold of dimension n. Take an
i£-submanifold i?0 of M admitting normal vector field (Lemma 5. 3). Let x0

be any point of i?0. Then, in H(M) the R-submanifold passing through (xv,
n(x0)) is distinct from the one passing through (xc, ~~ n(xo)). Each of them
is isometricaΐly homeomorphic to Rn under h. Next, take an i?-submanifold
i?! of M not admitting normal vector field (Lemma 4.1). Let xλ be any
point of Rλ. Then the R~submanifold R\Ή of H(M) passing through (x]9

n(xt)) passes through (xί9 — n(xx)) and is a double covering manifold of Rλ

where h\RΊπ is the covering map.

THEOREM 2. In M if the fundamental group TΓ/M) is finite, M is of
type I or TV.

PROOF. 1) The case where the Afield is generated from a parallel field
of unit tangent vectors. By Lemma 5.2, ρ(R) = °o where R is any R-
submanifold of M. Accordingly by Theorem 1, M is of type I.

2) The other case. By Lemma 4-. 1, there exsts an i?-submanifold Ro not
admitting normal vector field. Let H(M) be the holonomy covering manifold
of M. Let h be the covering map. Let RnΠ be the i^-submanifold of H(M)
such that h(Roπ) = R . In H(M), the fundamental group is also finite. And
further, H(M) is an iW-manifold which satisfies the above case 1). So,
H(M) is of type I. That is, ί/ΓM) is represented by the metric product
Ron X E. We take any x« € R^. Let x»π be a point of Roπ such that p(xon)
— x<\. Let S(xoτr) denote the -S'-submanifold of H(M) passing through xpir.
We have h (S(xnτr)) — S(xf). Hence S(x0) is non-closed and S(xn) Π i?0 consists
of the Όoint xn only. So, p(Rn) = oo. By Lemma 4 3, p(R) > 0 for any R-
submanifold R. Accordingly by Theorem 1, M must be of type IV. This
completes the proof of our theorem.

REMARK 2. 1) In Theorem 2, types 7, TV are characterized by the condi-
tion that 7r,(7?\ where R is an R~submanifold, is finite. If the order of
7rt(M) is odd, M is of type I and not of type IV.

2) There exist RS-manifolds of type I and ones of type IV, whose
fundamental groups are all finite.

THEOREM 3. In M if the fundamental group irλ(M) is infinite cyclic,
M is one of types I—IV.

PROOF. 1) The case where the -S-field is generated from a parallel field
of unit tangent vectors. Take an Λ-submanifold R of M. By Lemma 5. 2,
ρ(R) > 0. Accordingly by Theorem 1, M is of one of types I — I I I .

2) The other case. By Lemma 4.1, there exists an R-submanifold Ro
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not admitting normal vector field. Take x0 € i?0 Let H(M) be the holonomy
covering manifold of M. Let h be the covering map. Let Rm be the R-
submanifold of H(M) such that h(Rdπ) = Ro. In H(M) the fundamental
group is infinite cyclic too. Accordingly by the above 1), H(M) is of one
of types I — I I I .

If H(M) is of type I, M of type IV. This is verified by the same way
as in Theorem 2. Note here that ΊΓ^RQ) is infinite cyclic.

If H(M) is of type II or III , ROn must be simply-connected by Lemma
5. 2. Hence π^Ro) is cyclic of order 2. Accordingly, we get the conclusion
that 7r,(M) contains a subgroup which is cyclic of order 2. This obviously
contradicts with the assumption that TΓ^M) is infinite cyclic. So, H(M) is
not of type II or I I I . This completes the proof of our theorem.

REMARK 3. 1) In Theorem 3, type I is characterized by the following
condition a) and type IV by the following' condition b) :

a) 7ΓJOR), where R is an R- submanifold, is infinite cyclic.
b) 7r,(i?), where R is the R-submanifold not admitting normal vector

field, is infinite cyclic
And, types II, III are characterized by the condition that an Rsubmanifold
is simply-connected.

2) There exist RS-manifolds from type I to TV, whose fundamental
groups all are infinite cyclic

6. Closed ness of S-geodesics and structures. At χ{) € M, let TE(x0)
denote the Euclidean vector (n — lVspace tangent to R(x0) at x0. We denote
the length of an iS-geodesic S by | 5 | So, S is closed or non-closed according
as ]S\ < 00 or = 00. Again at χn € M take a subset \x\x € R(xι), diix ,
x) < c\ where c is a positive constant. If the subset forms an jR-neighbor-
hood of Xo, we denote the ^-neighborhood by UR(X>; C). Especially if Un(xo',
c) can be covered by a normal coordinate system in R(xo) with center x0,
we call it a normal R-neighborhood of χ0. Then let NN(xQ; c) denote the 2?-
neighborhood UR(XO; C). The exponential map at x0 is defined to be the map

φ: Tjfao)-> R(x0)

such that φ(y) = χ{) for the zero vector v € TE(xo) and φ(v) = (xP,v/\v\,
\v\) for any non-zero vector v € TRCX{)) where |v\ is the length of v. Let
e(χ{)) denote the greatest lower bound of {dnixo, x)\x € I(x0) — xo\ if Kxo)
— X) is non-empty. When I(χ{)) — x() is empty, put e(x()) = + °°.

In M suppose that there exists χκ) 6 M such that S(x0) is non-closed
and x» is not a limit point of I(x0) relative to R(x0). Then e(x0) > 0. Take
an ^-neighborhood UR(xo; a) where 0 < a < e(xo)/2. Let \n{x)\x € UR(XO;
a)} be a normal vector field. Then we have
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LEMMA 6. 1. The map

f: UR(X0; a) X E-+ M defined by f(x9t) = O, n(x)9 t)

is an isometric into-homeomorphism.

Such a map f is called a cylinder map at x0 and such an i?-neighbor-
hood UR(X0; a) is called proper.

PROOF. First, suppose (xl9 n(xx)9 t0) — (x29 n(x2\ t0) for xl9x2 € UR(XQ\ a)
(xi Φ x2). Then we get xx 4= x0 and x2 = C î, w(.ri), 2£>). Take a minimizing
geodesic [xl9 χo~\ in R(x0). Let [:r2, rό] be the geodesic arc parallel to \_xl9 x.ϊ]
along an arc g(x]9 n(xγ)9 2t0). We have [α;2, j ό] CZ 2?Cr0) and ^n € S(x0) by
Lemma 3. 4. That is, χ'o € 7(^0). S(x0) being however non-closed, it follows
that x0 4= ̂ c By Lemma 3. 4, dR(x2, x'o) ^ dn{xl9 x0). Hence,

dπixc, x'o) ̂  dR(xC9 x2) + dR(x29 x'o) < 2a < e(χ().

This is contrary to the definition of e(x0). Next, suppose (xl9 n{xι)9 tλ) = (x29

n(x2), t2) for xl9x2 € UR(XO; a) (xx + 4 We have x2 = (xl9 n{xx\ t) for ί'
= *i + <?ί2(̂  •= + 1 or — 1). By the same way, we get again the same contra-
diction. Accordingly, by Lemma 3.1 our lemma is proved.

THEOREM 4. In M suppose that all S-geodesics are non-closed. If a
point XQ € M is a limit point of I(x0) relative to R(xo), each point x € M
is also a limit point of I(x) relative to R(x) and then M is of non-fibred
type III, non-fibred type VI, or clustered type. If a point x0 € M is not a
limit point of I(x0) relative to R(xo)9 then M is of fibred type.

PROOF. We first prove that, if a point x0 € M is not a limit point of I(x0)
relative to R(x0), each x € M is not a limit point of I(χ) relative to R(x).

Let R° be the maximal subset of R(x^\ in which each x is not a limit
point of I(χ) relative to R(x) ( = R(xo)\ Of course JR° ̂  x0. By Lemma
6.1, at any x 6 R° there exists a proper R-neighborhood UR. Then URCZ

R°. Hence, R° is open in R(x0). Next let us verify that R° is closed in
R(x0). Let R" denote the closure of R° relative to R(x0). Suppose R*4=R\
At any yι € R° — R° we take a normal ^-neighborhood NR(yί c). A set
S(y!) Π iVVzĈi c/2) is infinite, and countable by Lemma 3.5. We denote
the set by jj/λ|λ = 1,2, }. Let \n(y)\y € N^yr, c)} be a normal vector
field. For suitable t)9 each yκ is represented by (yi9 n{yx)91\). Take a point z{

e R° Π Niάyr, c/2). Let [y^zj denote the geodesic arc in Nj£yr, c/2). And,
displace it parallelly along Siy^. Then, at each yλ a geodesic arc [yλ9Zχ] is
obtained. It follows that [j/;, zκ~] CZ R(yx). By Lemma 3.4, zκ € S(zx) and

>, zλ) ^ dR(yl9 z^. Hence,

dR(yl9zλ) ^ dR(yl9yκ) + dR(y,9zκ) < c/2 Λ-c/2 = c.
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So, zκ € NR(yi c). S(z{) being however non-closed, zχ(X = 1, 2, ) are
distinct from one another. Accordingly, Nniy^, c) contains an infinite set | z λ | λ
= 1, 2, ). On the other hand, the closure of Nniy^, c) in R(x0) is compact.
Consequent for any small δ > 0 we can find zh., zv € \zκ\\ = 1,2, } such
that dn(zμ, zv) < δ. This is contrary to the existence of a cylinder map at
zγ € R°. So, R° = R°. That is, R° is closed in R(x). Since R° is however
open in R(x0), it follows that R° = R(xQ). Therefore by Lemmas 3. 1 and 3. 5
our assertion is proved.

1) The case where there exists x0 € M, which is a limit point of I(x0)
relative to R(xo) By the above assertion each point x of M is a limit point
of I(x) relative to R(x). Hence if p(Ro) > 0, M is of non-fibred, type III or
VI by Theorem 1. If ρ[R0) — 0, M is of clustered type by Lemma 4. 3.

2) The other case. We take an i?-submanifold Ro. If x,y € Ro belong
to the same -S-geodesic, we say that they are equivalent to each other. By
this equivalence relation, we construct the quotient space of Ro and denote
it by B. Then by Lemma 6.1 the space B is regarded as a connected
complete Riemannian (n — l)-manifold of class C1 under the Riemannian
metric naturally induced from Ro. Next for any y € M, let [3/] denote the
point of B representing Ro f] S(y). Then the map iτ: M -+ B, defined by
ir(y) — [yl, is an onto-map by Lemma 3. 5. Thus it is now obvious that M
is of fibred type. Here the base space is B and the projection is ΊΓ and so on.
This completes the proof of our theorem.

REMARK 4. 1) If M is of clustered type, the S-geodesies are all non-
closed.

2) There exist RS manifolds of the respective types enumerated in
Theorem 4, whose S-geodesics are all non-closed. In this case, an RS-
manifold of fibred type is further of type /, ///, IV9 or VI, or non-simple
type. (See Appendix)

In M suppose that an -S-submanifold So is closed. We take a point x0

€ So. Then e(x0) > 0, because So is closed. Let us put L = | 5 0 | . Now, take an
i^-neighborhood UR(x0; a) where 0 < a < e(xo)/2. And if [n{x)\x € UH(X0; a)}
is a normal vector field, by the similar way as in Lemma 6. 1 we can verify

LEMMA 6. 2. The map

f: UR(x0; a) X [L] -* M defined by f(x, t) = (x, n{x\ t)

is an isometric into-homeomorphism provided that UR(XQ; a) is doubly treated
in M as the images by f at t = 0, L.

Such a map is also called a cylinder map at x0 and such an jR-neigh-
borhood Un(x0; a) is called proper. Here we see that the map
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for all x € UR(XO', #)is an isometric homeomorphism of UR(X0; a) onto itself.
Accordingly, this map induces a congruent transformation T in TR(XO). T
is called the congruent transformation in TR(x0) induced from the cylinder
map / . If we take a suitable orthonormal frame (ea) in TR(x0), then T,
relative to (eo), is represented by the following orthogonal matrix :

0

(β. 1)

where Ely E2 denote the unit matrices of degrees rl9 r2 respectively and

/cos θκ —sin ΘΛ

\sin θ\ cos θχl

for 0 <θλ<τr (λ = 1,2, k\rx + r2 + 2k = n - 1 ) .

THEOREM 5. In M suppose that among the S-geodesics thέre exist both

closed one and non-closed one. Let M° be the subspace of M which is the

union set of all non-closed S-geodesics. Then, M° is a connected open

submanifold of M whose closure is M, and the maximal subset of M in

which each point x is a limit point of I(x) relative to R(x). M is of non-

fibred type III, non-fibred type VI, or almost clustered type with kernel M°.

PROOF. We take an R-submanifold R. Put R° = \x\x € R9\S(x)\ =°o}.
Then, two sets R — R° and R° are non-empty by the assumption and Lemma
3.5.

1) Take x0 € R — R° and y0 € R°. Let g(x0, u0, c) be a geodesic arc [xθ9

yo'] in R. S(x0) being closed, there exists a congruent transformation T in

TR(X0) induced from a cylinder map at x0. However, S(y0) being non-closed,

it follows that the vectors

uθ9

are distinct from one another. This implies that, if we represent T by a

matrix (6.1), there exists at least one θκ such that τr/θχ is an irrational

number. On the other hand we take a vector u € TR(XO)9 for which there
exists an integer m > 0 such that Tmu = u. u may be the zero vector. Here,
such a vector u is said to be singular at x0. All of singular vectors at x0 from
a vector subspace Z of TR(X0). The existence of θλ implies that the dimension

of Z is not greater than n — 3. Let ψ denote the exponential map at x0.

Let NR(X0; α) be a normal i?-neighborhood. Then a set φ{Z) Π NR(x0; d)

becomes a surface of dimension <= n — 3. This shows that a set R° Π NR(x0;
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a) is connected and open in R. Moreover we see that χQ belongs to the
closure R° of R° relative to R. So, R° = R.

2) Take again any yί € R°. Suppose that every ^-neighborhood of yx is
not contained in R°. Then at a suitable xι € R — R\ we can find a normal
^-neighborhood N^Xι\ b) such that yx € NR(xi; b). By 1), R° Γ) iVβfe; 6)
( 3 J Ί ) is a connected open set in R. This contradicts with our assumption.
Accordingly, there exists an ^-neighborhood of yi9 contained in R\ This
shows that R° is open in R.

3) Let zl9 z2 be any points of R°. Take a curve a in R joining zx to
z2. By 1) and 2), if we cover a by a finite number of suitable normal i?-
neighborhoods, we can sea that zL and z2 are joined by a curve in R\ So,
jR° is connected.

By Lemma 3. 5, M° is also regarded as the union set of all 5-geodesics,
each of which passes through a point of R\ Accordingly 1) — 3) above show
that M° is a connected open submanifold of M whose closure is M by
Lemmas 3. 1 and 3. 5.

Next, take again any x0 € R — R°. Let NR(x0; a) be a normal R-neigh-
borhood. Then, a point y0 € R° Π NR(x0; a) is a limit point of I(y0) relative
to R. In fact, let ud € TR(xd) ba the inverse image of y0 by the exponential
map at x0. The vector ud is not singular at x3. Hence, if we put Y = \y\y
^ I(yo\ dj,xθ9y) = \uo\\ where \u3\ is the length of ud> Y is an infinite set.
Take a normal i?-neighborhood NR(y0\ c). For any δ(0 < 8 < c\ we can find
yμ9yv € Y(JV 4 s jO such that dniy^y,) < δ. Here displace a minimizing geodesic
[yμ9yj] parallelly along S(yj). At 3/j we get a geodesic arc ly^y^i CZ NR(y0; c).
By Lemmas 3.3 and 3.4, it follows that 3/j € /(y,), d^y^y]) < δ, and ^ +
yό Hence our assertion is easily seen. This fact shows that each y of R° is
a limit point of /(jθ relative to JR. For, if we express a geodesic arc [0:^3;]
by g(xi)9 u, d), the vector u is not singular. From this and the above fact, it
is easily verified.

By Lemmas 3.1 and 3. 5, we can now see that each x € M° is a limit
point of I(x) relative to R(x). This is not valid for any x φ M\ S(x0) being
closed.

Accordingly, if p{R) > 0, M is of non-fibred type III or non-fibred type
VI by Theorem 1. If p[R) = 0, M is of almost clustered type with kernel
M° by Lemma 4. 3. This completes the proof of our theorem.

REMARK 5. 1) In Theorem 5, almost clustered type is not clustered type.

2) There exist RS-manifolds of the respective types enumerated in The-
orem 5 each of which has both closed S-geodesic and non-closed one (see
Appendix).
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THEOREM 6. In M suppose that all the S-geodesies are closed. Then
among them there exist S-geodesics with the longest length. In all of such
ones let M° be the subspace of M which is their union set. Then M° is a
connected open submanifold of M whose closure is M, and a maximal
subspace which becomes a fibre bundle where each fibre is an S-geodesic. In
other words, M is of almost fibred- type with kernel M°.

PROOF. 1) First, take an R-submanifold R. At x0 € R let NR(x0; a) be
a proper normal jR-neighborhood. Let \n{x)\x ^ NR(xύ; a)\ be a normal
vector feld. Here, put Lj = \S(xo)\. Let T be the congruent transformation
in TR(xύ) induced from a cylinder map at xΰ. Since all the /S-geodesics are
closed, we can find the least positive integer m such that Tm becomes the
identity transformation. And there exists a unit vector u0 € TR{x0) such that
the vectors

uθ9 Tuϋ, ^j ̂ -i u^

are distinct from one another where Tnlu} — u . If y € NR(x0; a) is an interior
point of a geodesic arc g(x, u0, a), we have |5(j/)| = mLj because NR(x0; a)
is proper. Here we put L = mL . Take any z € R. Let u be the vector at
x0 tangent to a geodesic arc [x, z]. Of course, Tmu = u. Hence, L is an
integral multiple of \S(z)\ by Lemma 3.4. So |5(2;)| ^L. Consequently, the
above S(y) is an 5-geodesic with the longest length.

2) We put R° = \x\x € R, \S(x)\ - L\. At y0 € R°, let N£y0; b) be a
proper normal i^-neighborhood. Let \n(y)\y € Ni^y^; b)} be a normal vector
field. Define the cylinder map / : NR(y b) X [L] - > M by f(y, t) = (y, n(y\
t). Then for all y € N^y^ b\ we have f(y9θ) =f(y,L). Hence \S(y)\ = L9

and Nπiyo; b) Cl R°. Accordingly, R° is open in R.

Next, provided that R — R° -4= 0, suppose that at z0 € R — R° there
exists a normal i^-neighborhood NR(zy, c) which is contained in R — R°.
Hence, \S(z)\ < L for all z € NR(zό; c). And by Lemmas 3. 4 and 6. 2, \S(x)\
< L for all x € R. This contradicts with 1). So, it follows that relative to
R the closure of R° is R.

On the other hand, M° is also regarded as the union set of all 5-
geodesics whose lengths are all L. Accordingly, the above facts show that
M° is an open submanifold of M9 whose closure is M by Lemmas 3. 1 and
3.5.

3) Let us prove that M° is connected. If R — R°> we have M = M°
and M° is obviously connected. So, suppose R 4= R° Take any z3 € R — R°
and a proper normal R-neighborhood NR(z0; c). In NR(z0; c) we put WR =
NR(z0; c) Π R°. In WR let W denote the union set of S(y) for all y € ί^n.
On the other hand, let To be the congruent transformation in TR(z,)) induced
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from a cylinder map at z0. As mentioned in 1), there exists the least positive
integer h such that Tfi becomes the identity transformation. Then, h ^ 2 and
L = h\S(ZQ)I. Here, let us call a vector u € TR(ZO) singular at z0 if TQ U
= u for an integer μ (0 < μ < h). Of course, the zero vector of TR(z0) is
singular. Take a suitable frame (ea) in TR(z0), relative to which To is repre-
sented by a matrix (6. 1). The following three cases are considered :

a) The case where rλ + r2 = n — 1, r2 = 1. Then, h = 2. All of singular
vectors at 20 form an (n — 2) vector-subspace Z. If we map Z by the expo-
nential map at zθ9 we get in NR(z0; c) an (n — 2)-surface geodesic at #0. So,
WR is not connected. However, W is connected. For, if u € TΛ(£ ) is not
singular, we have Tou = — u. From this it is obvious.

b) The case where rx -\- r2 = n — 1, r2 > 2. Then, h = 2 too. All of
singular vectors at z0 form a vector subspace of dimension ^ n — 3. This
implies that WR is connected. So, W is connected.

c) The case where rx + r2 < n — 1. Then Λ > 2, and for a suitable
integer /,

M - = hθk = 2τr/.

Now we take a singular vector

u = u1eι + -r αn-i ^ - 1 .

From its components ^α, let us construct the following H 1 combinations :

Then, there exists at least one combination, all of whose elements are zero. So,
we can see that all of singular vectors form the union set of a finite number
of vector subspaces in TR{xΰ). If r2 4= 1, all the singular vectors form the
union set of some vector subspaces of respective dimensions fj n ~~ 3. This
implies that WR is connected. So, W is also connected. In the case r2 = 1
too, it follows that W is connected even if WR is not connected.

Consequently, it has been proved that W is connected. From this we
can see that M° is connected. For, take any yl9y2 € R° and a curve in
R joining yx to y2. Cover the curve by a finite number of proper normal
^-neighborhoods N\(λ> — 1,2, ). Let Wλ denote the union set of S(y) for
all y € iVλ Π i?°. Then, PFλ are all connected. By 2), the union set of all
Wλ is also connected. This implies that yu y2 are joined by a curve in M°.
Therefore by Lemma 3. 5, M° is connected.

4) From the above results, we see that M is of almost fibred type with
kernel M°. In fact, at any yd € R° let NR(y0; b) be proper. By 2), we have
•JVsίjyo; b) C R°. If we apply the cylinder map to λτ

R(y0; b) X [L], the image
is wholly contained in M°. We can thus verify that M° is a fibre bundle
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where each fibre is an 5-geodesic (cf. Proof of Theorem 4). It is easy to see
that, there is no sυbspace, ZD M°, 4= M°, which becomes such a fibre bundle.
So our assertion is true. This completes the proof of our theorem.

REMARK 6. 1) If M is of almost fibred type which is not fibred type,
the S~geodesies are all closed (by Theorems 4, 5).

2) There exist RS~manifolds of almost fibred type which is not fibred
type. Such an RS-manifold is further of type III or VI, or non-simple
type. There exist RS-manifolds of fibred type whose S-geodesics are all
closed. Such an RS-manifold is further of type II, III, V, or VI, or non-
simple type. (See Appendix.)

Finally, if we sum up Theorems 4—6, the following theorem is obtained :

THEOREM 7. M is of almost fibred type, almost clustered type, non-
fibred type III, or non-fibred type VI.

The auther wishes to express here his sincere gratitude to Prof. S
Sasaki for his kind guidance during the preparation of the manuscript.

APPENDIX

In Remarks 1—6, we treated of the existence of i?*?-manifolds which
satisfy some conditions. For the RS-manifolds there enumerated, we can all
construct their models. Here let us show some of them, whose constructions
seem comparatively to be difficult.

1. We take the torus D in Euclidean 4-space E*, defined by

xx = cos σ, χ2 = sin σ, χ3 = cos τ, χi = sin r

(— oo < σ9 T < oo)

where .zλ(λ== 1,2,3,4) denote usual orthogonal coordinates in Ei. Let us-
regard D as a Euclidean 2-space form with the metric naturally induced
from E\ Construct the metric product D X [L]. Let ZXO), D(L) be the 2-
submanifolds of D X [L] defined by t = 0, L respectively. Define

Φo : ZXO) -» ZXO) by φjfr, r, 0) = (σ + TΓ, - r, 0).

Next, take a constant τo(O < τ0 < 7r) and again define

φL : ZXL) -* IXL) by φL(σ9 τ, L) = (σ + TΓ, - r + 2τ0, L).

Indeed, the maps φc, ΦL are isometric involutive homeomorphisms and have
not fixed point. Accordingly in D X [Z/] if we identify x with Φo(x) for all
x £ί -D(0) and y with φiϋy) for all y €E IXL\ we get a Euclidean space form
Mz. Mz is also an i^-manifold of type VI. Especially, if τr/τ0 is an ir-
rational number, M3 becomes an RS-manifold of non-fibred type VI whose
S-geodesics are all non-closed (Remark 4). If 7r/τ0 is a rational number, M*
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becomes an RS-manifold of fibred type and further type VI, whose S-
geodesics are all closed (Remark 6).

2. Instead of the torus D above, we take a cylinder in Euclidean 3-
space E3

9 defined by

xx = cos cr, χ2 — sin σ, χ3 = τ ( — 00 < σ, r < 00 \

where X\0^ = 1> 2, 3) denote usual orthogonal coordinates in E3. In the same
way, we can also get an i?<S-manifold M3. M3 is an RS-manifold of fibred
type and further type VI, whose S-geodesics are all non-closed (Remark 4).

3. In Euclidean 3-space E3, let Dhe the subspace \(xl9X2,t)\ \xi\ Ŝ 1,0
^ t ^ 1} where xl9x2,t denote usual orthogonal coordinates of E3. Let
ZXO), D(l) be the subspaces of D defined by t = 0, 1 respectively. For a
constant £(4=0) we define

φ : ZXl) -» ZXO) by φ(xu χu 1) = {xl9 x2 + c, 0).

The map φ is an isometric homeomorphism. By this, identify ZXl) with
ZXO). The space thus constructed from D we denote by D . In D let Z)'(l),
Z)( — 1) denote the 2-submanifolds defined by xx = 1, — 1 respectively. Take
an irrational number ίo(O < t0 < 1) and again define

ψ : D\l) -> D\- 1) by ψ(l, ^2, *) = ( - ! , fe], [ί + ft])

where [ r 2 ] = Λ:2 or x2 + c and [ί 4- ί0] = ί -f t0 or ί + ί0 ~" 1 according as
t -\- t0 < 1 or Ξ> 1. The map ψ is an isometric homeomorphism. By this,
identify D'(l) with D (— 1). The space thus constructed from D we denote
by M3. M3 is a Euclidean 3-space form. Mz is also an RS-manifold of fibred
type and further non-simple type, whose S-geodesics are all nonclosed
(Remark 4).

4. Let r, θ, z be cylindrical coordinates in Euclidean 3-space E3. We take
the closed domain D defined by 0 ^ z 5S 2. In D, identify points (r, θ, 0) with
points (r, θ9 2) foi all r, θ. We obtain thus a Euclidean 3-space form D. In
D' X [L] let Z)'(0), D'(L) denote the 3-submanifolds defined by t = 0, L
respectively. Take a constant 0O (0 < θ0 < IT) and define

Φo: D\0) -> D'(0) by φυ(r, », ^ 0) = (r, - 0, [* + 1], 0).

Φ^ : D\L) -> Z)'(L) by <^(r, β, z, L) = (r, - 0 + 2ft, [* + 1], L),
where [z 4- 1] = 2: + 1 or 2 — 1 according as z < 1 or >̂ 1. The maps φ(, </>£
are isometric involutive homeomorphisms and have not fixed point. Ac-
cordingly in D X [L], if we identify x with φo(x) for all x € Z)'(0) and
further y with φz(j>) for all y €D'(L), we get a Euclidean 4-space form M4.
M4 is also an i^-manifold of type VI. If ΊΓ/ΘQ is an irrational number, M4

becomes an RS-manifold of non-fibred type VI, among whose S-geodesics
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there exist both closed one and non-closed one (Remark 5). If π/θj is a
rational number, M4 becomes an RS-manifold of almost fibred type {not
fibred type) and further type VI (Remark 6).

5. Let (eλ) (λ = 1, 2, 3, 4) be an orthonormal frame with origin O in
Euclidean 4-space 22\ Take a constant ad (0 < a0 < π). We consider the
moving frames (el9 e2(t), e3(t), e4)(0 <Ξ t fS 1) with origin O, where

lcosta0 — sin ί

\sin £ <x3 cos t I

In the following, let us represent points vectorially. Let D be the subspace
of Ei, which consists of all points xγ eγ -{- x2e2 + x3e3 -\- t e± such that | xx j
Ŝ 1, 0 % t ^ 1. Let Z)(0), D(l) denote the subspaces of £> denned by t = 0,1

respectively. Define

φ: D(l)-ZX0)

by Ψ\X\ex + ^2^2(1) + #3*3(1) + eA) = xxex + ^2^2 + ^3^3.

The map φ is an isometric homeomorphism. By this, identify ZXl) with
ZXO). The space thus constructed from D we denote by D. In D let Z)'(l),
D'(— 1) denote the 3-submanifolds denned by ex-component = 1 , - 1 respec-
tively. Take an irrational number to(O < t0 < 1) and again define

ψ:
by ψ ( β l + Λ:2^2(ί) + x3 elt) +

= - e, + x2 e2([t 4- ί,,]) + x3 el[t + tol) + It + to] eA

where [t + tύ] = t + ί0 or t + ί0 ~ 1 according as £ + t0 < 1 or i> 1. The
map ψ is an isometric homeomorphism. By this, identify D(l) with D(— 1).
The space thus constructed from /) we denote by M4. M4 is a Euclidean
4-space form and also an jRS-manifold. If π/<xλ is an irrational number, M4

becomes an RS-manifold of almost clustered type, among whose S-geodesies
there exist both closed one and non-closed one (Remark 5). If TΓ/OL0 is a
rational number, M4 becomes an RS-manifold of almost fibred type (not fibred
type) and further non-simple type (Remark 6).
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