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1. Introduction. We have already determined the class of saturation for
various methods of summation in the theory of Fourier series and Fourier integral
(Sunouchi-Watari [4], Sunouchΐ [5]). In the present note, the author will deter-
mine the saturation class of local approximation of functions. In the preceding
case, we have used Fourier transform or Fourier series essentially. But in the
present case, we have to make another device. For the sake of simplicity, we
will only study about the uniform approximation by the first arithmetic means.
But it is evident that our method is applicable for another approximation norms
and another summation methods.

Incidently, this method is applicable to determine the saturation class for
such approximation process as Landau's singular integral. This approximation
process has somewhat different feature from the periodic case.

2. Local saturation. Let f(x) be integrable and periodic with period 2ττ
and <rn(x, /) = <rn(x) be the n-ih Fejer means of the Fourier series of f(x).
Moreover we suppose [α, 6] is a fixed closed subinterval situated in [0, 2τrj. Then
we have the following theorem.

^ THEOREM 12). (1) If σn(χ) - f(x) = o(l/n) uniformly in [_a, i], then

f(x) is a constant in [a, b~\.

(2) If <rn(x) — f(x) = O(l/n) uniformly in [a, fc], then f'(x) is essentially
bounded in [a, &].

For the proof of Theorem 1, we need a lemma.

LEMMA. If h(x) is periodic with period 2ττ and h"(x) is continuous in
[0, 2ττ], then

\ιmn{σn(χ9 h) — h(x)\ = h'(x)
n->oα

bourdedly.

PROOF. Interchanging the roles of h(x} and the conjugate of h(x\ we shall
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prove

limn{<rn(x, K) — h(x)} = ti(x)
n~>oo

bourdedly, under the assumption that ti'(x) is continuous.

The Taylor expansion yields

h(x + t) - h(x - t)

= 2th'(x) + 2fh"[x + θ(x - t)}.

By the well known formula (Zygmund [6], p.91), we have

σn(x, K) - h(x)

= ι_- r ih(x + o - h(x - 1)\ *™(n

τr(n + l)Jo (2sin

0 2(sinί/2)2

4- 1 * ^ — /' oiiiy/* τ Jiyfr 7.

' -' ' 2(sinί/2)2

say. But

limJLΓ^sin(. + l>

»->- 7r J0 2(sin£/2)2

and

J = O (1/n) by the Riemann-Lebesgue theorem. Thus we complete the proof of

Lemma.

PROOF OF THEOREM. (1) If we denote by C0, the class of functions g(x)

such that g(x) = 0 outside of [#, b~\ and g'"(x) is continuous in [0, 2ττ]. Then

evidently g'\x) is continuous in [0, 2ττ].

Since

n\σn(x, f) - f(x)\

tends to zero bourdedly in [α, b\ we have

lim Γn[<rΛ(x, /) ~ f(x)}g(x}dx = 0
W->oo JQ

for all g(x) 6 C0.
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Since <rn(x, f) has a symmetric kernel, we can interchange f(x) and g(x\
that is,

Γ n\<rn(x, f) - f(x~)}g(x)dx
J0

/.2τ£

= I n[σn(χ9 g) - g(x)}f(x)dx.
Jo

On the other hand, Lemma gives

limn{<rn(x, g) — g(x)} = g(x\
n^oo

bourdedly. Thus we get

Γf(x)H'(x)dx = 0.
•Ό

By ParsevaΓs relation, this is equivalent to

where F(x) is an indefinite integral of f(x). So, by the well known lemma

(Courant and Hubert [3], p.20l), F(x) is a linear function in [α, b~] and f(x) is
a constant in [<z, έ].

(2) The proof of the second part is almost the same. Since

n[v*(x, f) - f(x)\ =0 (1)

uniformly in [α, 6], by the weak compactness of the space L00(a,b\ we can take
a subsequence WA and a function λ( r) € Lj^a, ti) such that for all g(x) € C0,

lim I nk { σnk(
χ> /) "" /

A -^oo JQ

/.27C

= / h(x)g(x)dχ.

^o

But the left-hand side is

f
'2τr ^̂  «27t ^̂

f(x)g\x)dx = I F(x)g\x)d
Jo

and the right-hand side is

Γ Hz(x)g"(x)dx,
Jo

where H2(x) is the second integral of h(x).
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Thus we can conclude that f(χ) is an indefinite integral of a bounded func-

tion in [α, £].

THEOREM 2. We suppose that f(χ) is integrable in [0, 2ττ] If f(x) is

constant in [a, £], then <rn(x) — f(x) = o(l/n) uniformly in [a + δ, b — δ] /or

any fixed δ > 0. And if f'(x) is bounded in {a, b~\, then <rn(x) — f(x) = O(l/n)

uniformly in [a 4- δ, b — δ].

PROOF. We set A(X) the Dirichlet kernel and Ak(x) = ak cos jb; + bk sin fcr.

Then by a theorem of localization [Zygmund 6, p. 367],

1 Γ*^.^,.. d* r _ , βί)]Λ

is uniformly summable (C,l) to zero in [a + δ/2, έ — δ/2], where

fc=0 fc=ι

= a constant, and

1, in [α + δ/2, b - δ/2]
=

0, outside [α,

is continuous with derivatives of sufficiently high order. Integrating by parts

successively,

*„(*) - (C, 1) ~ F(t)\(t)1Dn(x - t)dt = o(Ϋ>

uniformly in [a + δ/2, b — δ/2], where rn(χ) is the n-th (C, l)-mean of trigono-

metric series Σ kA*(x). Since f(x) exists in [Λ, b~\, by the Riemann-Lebesgue

theorem we have
-| Γ6-fi/2-^

τ.(a:) - (C, 1) — I f'(x}Dn(x - t)dt = o(l)

uniformly in [α -1- δ, b — δ]

Hence, in the case f'(x) = 0 in [α, έ]

IK(x)||e = 0(i)
where C means C-norm with respect to the interval \a + δ, b — δ]. Since

σn(x) — σn.^x) = Sn-\(x)/n(n — 1)

where 5M(.r) is the w-th partial sum of y^ ^Afc( :̂),

jf
σ^α:) — σ^) = ^ Sn-ι(x)/n(n — 1)
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^ ___ 1 \ , τ*(x) _ ra(χ)
»-1 n + l) M-l N-l

Hence we get

Letting M-* °°,

Thus we get the first part of the Theorem. The proof of the remaining part is
the same.

From the above two theorems, we can conclude Theorem 3.

THEOREM 3. For the Fourier series of f(x), which is integrable and pe-
riodic, the local saturation of the first arithmetic means for the uniform

approximation over (a, b) is [_\f(po)\f'(x) is bounded over [a, b}\, 1/n, f(x) is
constant over (a, £)].

3. Landau's singular integral. The singular integral of Landau is
defined by

u ,
kn

where kn is the normalization factor. Since f(x) is not necessarily periodic, we
subtract a linear function from f(x) and suppose f(x) is periodic. But the kernel
is not periodic. A useful result of Arnold [1] is that

limn\Sn(x,f)-f(a:)} = JL/'(*)
n-»oo ^

provided that f"(x) exists and this converges boundedly provided that f\x) is
bounded.

Our theorem is the following.

THEOREM 4. (1) If Sn(x9f) -f(x) = o(l /n) uniformly, then f(x) is a
linear function.

(2) If Sn(x,f) - f(x) = O(l/n) uniformly, then f(x) € Lipl.
(3) Iff\x) € Lip 1, then Sn(x,f) - f(x) = O(l/«) uniformly.
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From this, we can say: The saturationof Landau's singular integral is

Sat[Sn(xy]c = l{f(x)\f'(x) € Lip 1], 1/n, linear function].

This is the affirmative answer to a conjecture of Butzer ([2], plOO).

PROOF. (1) From the hypothesis, we have

lim fn\f(x} - Sn(x,f)]e-™kxdx = 0.
n->co Jυ

Noticing the fact that the kernel is symmetric and using the above mentioned
Arnold's results,the left-hand side is equal to

lim

where ak is the Fourier coefficient of f(x). Consequently we get

β» = 0 (k = ±l, ±2, ......... ).

(2) Since

\\f(x)-Sn(x,f)\\ΰ=0(l/n),

by the weak compactness Loo-space, there is a function c/(x) £Ξ L=o(0, 1) and a
subsequence \np\ of natural numbers such that

lim fn,\f(x) - Snp(x,f)\e-™**dx
p— Λ

= C g(x)e-Mk'dx.
Jo

By the same argument with the case (l), we have

τr2£V = g(x)e-^^dx, (k = ±l, ±2, ......... ),

that is f'\x) € Loo(0, 1). This is equivalent with the fact f\x) € Lip 1.
(3) If f\x) € Lip 1, then f"(x) exists almost everywhere and is essentially

bounded. So we have, from Arnold's result,



But the continuity of f(x) — Sn(x, f ) yields

/Or) - Sn(x, /) = 0(l/«)

uniformly.
Thus the theorem is proved completely.
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