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Introduction. In this paper we shall generalize the Hirzebruch polynomial
([1]), representing the index of a compact orientable and differentiable 4%-manifold,
by the simplest way and determine the coefficients of the cobordism decomposition
by means of these polynomials. Moreover we shall compute the coefficients of
cobordism decomposition for a submanifold. This provides us with an analogy
of the Gauss-Codazzi equations in the differential geometry and hence has much
to do with the problem of differentiable imbedding.

1. The Hirzebruch polynomial is defined as follows :

— ,\/ YR
(1' l) gLi@“ ...... ,p,)z ichl tghM%z >

where

(1. 2) Zpiz = H 1+ 92

i=0

and p, denotes the 4:-dimensional Pontryagin class. For example we have

— 1 _ 1 _ 1
(1- 3) Ll = ‘?Pu L2 = Z‘g(7p2 '—Pf)’ La = 3.5.7
Let X** be a compact orientable and differentiable 4£-manifold. Then L,
@15 L) [X*] equals to the index of X**. In order to generalize L(p,,-..... R
£:) we use a function

(62 ps— 13 py-p2+2 p}).

tghs/

instead of / 2z /ighy/ 2z and define a new multiplicative series

1.4) Q(zy) = —(1 + ytgh’y/ z )

(1.5) gl", (Y prsese--- P2 = H tg;l/}t_(l + ytgh®’/7:2 ).

The first three terms are given by
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Ty(y, 1 b £5) = p° + i(6p3 N L(171>3 — 8pipa + 2.

+

3. 5 7 (62p5 — 13p,ps + 2p,°).

It is clear that T'(y, py,--.... i) is a polynomial of degree ¢ with respect to
v and its coefficients are polynomials of pi,....... . whose weight is 7. Let M*
or N¥ be a compact orientable and differenuable manifold of dimension 47 or

4 j respectively. Since) Ty, pys------ 2:) is multiplicative ([3] II, p. 317) we have
i

1.7 Tuf3, P s ) IMENY] = Ty piseee o p LM IC (P15 p )NV
It follows from the definition that

(1. 8) L0, prseee--vsti) =L(Prseee-.oip)s
i e.

(1. 9) (0, pyye-- .- 21) [X*"] = index of X**.
Moreover it holds that

(1. 10) Tl pryeenee- 21 [X*] = 2%(index of X**),
because

(1. 11) ﬁ%a +tgh’/z) = tgz—}:;%
Furthermore we have

(1. 12) T(—1,p1e-.--. Lo [X*] = A-genus ([1], S. 14)
because

(1. 13) t;;}i/ (1—tghty/z) = sirzi/?

In some case we can easily prove the integrality of the coefficients of the poly-

nomials T(y, p1,------ P [X*] Let X* be an almost complex split manifold.
Then the Pontryagin class of X** takes the form

(1. 14) p=1IQ + &), o € H*(X*, 2).

We have

@19 T2 yigewm) =00+ /)
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=>"L(piy----- 202 ¥ D tgh’y/ iy eeeee tgh®/ ¥ia
i @

= Z Li(Pl) ------ 7Pi) Z ym Z tghza,-l ...... tgh2aiw.
i @

Meanwhile the index of a submanifold X*-* determined by wv,,...... v, (€ H?
(X*,Z)) ([1],S.87) is given by

(1. 16) T(X* ") = *[tghv,...... tghv, > L(pys--. ... POl

Comparing (1. 15) and (1. 16) we find that each coefficient of I'\{(y,p1,--.--. Di) is

a sum of many indices of submanifolds and hence is an integer. To prove the
integrality of the coefficients of T'(y,p.,...--. L) [X**] in general will be done
in another chance.

2. Next we shall deal with the case where X* is the complex projective
space P,{C). The Pontryagin class of P,(C) takes the form

k
2 1) 1+ ¢)¥** =>"p, mod g¥***  ([1],S.73),
=0
where ¢ denotes a generator of H? (Py(C), Z) and
@. 2) g PCO)] = 1,
i.e.
e 9 R G A )
Then we have from (1.5) and (2.1)
@. 4 Ty, prsee---- L PauC)]
_ 1 1 \/zh__ . o 2k+1
=5 z’““(tgh\/z (1 + ytgh*y/ = )) dz,

where the integral should be taken around 2 = 0 in the positive direction.
Changing variable to

(2. 5) u=tgh/ 2z ,
we have
1 (1 +yu2)2k+l
(2 6) Plc(yyplr """ rpk) [P‘.’lc(c)] = ”2? u2k+1(1 _ ug) du’

where the integral should be taken around % = 0 in positive direction. We have

2.7 Ty, pise-eveeipi) [Pai(C)]
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= -ZL u—zrm(l + o utt -l-u”‘—l----)(l + yuz)z’““du
7T

14 (2k+1>y + <2k+1>y2+.__Jr <2k+ 1>yk'
1 2 k
We put as follows:

Ty, p) [PAC)] = 3y + 1 = Q.(y),
Ty(y, p1 £2) [PC)] = 10y* + 5y + 1 = Qu(y),
2. 8) Ly(y, pis P2 3) [PC)] = 35y° + 21y* + Ty + 1 = Qs(y),

L(y, p1s prsee - L) Pa(C)] =(2k]:— 1)3’k+ et (Zk]—_*- 1) y+1=Quy)

It should be noted that

(2. 9) Tu1,pueep)[P(C)] = 1 + (Zk ¥ 1> . +(2k ¥ 1) _ g

which follows from (1. 10). It is clear that I'y(y, p;-...... ) [X**] is a cobordism
invariant. Furthermore T'(y, py,...... Lr) [X*] is multiplicative as we have seen
in (1.7). Meanwhile the classes of cobordism with respect to the rational coeffi-
cients are generated by the P,(C)’s ([2]). Hence we have from (2. 8)

(2. 1) Ty, poeeeeep) [X¥T = 20 A anQu(0)Qu(y)---- Qu(y)

f+e.. +ig=k
according as
(2. 12) X%~ > Ay...... 1L (C)Pyi(C) ... P, (C) mod torsion,
i1+ +ig

where A, ...... 4 s denote some rational numbers and = means “cobordantes” and
Q. (¥) = 1. For example we have

(2. 13) T3y, 1, Pos Ps)[ X?] = A(B5y° + 21y* + 7y + 1)
+ B(10y* + 5y + 1) 3y + 1) + C(3y + 1),
where A,B and C are some rational numbers.
3. Decomposition of X% Concerning the Thom algebra we shall make
use of the following table ([4]):

k'1’2'3l4’5]6’7‘ 8 ' 9 ’10'11‘ 12 l

o* Z, Z, | Z, Z+Z+Z

o(o)o(z

0[0]Z+Z|Z,+Zz
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where 0 denotes the Thom algebra of dimension % with rational coefficients and
the generators of Q*, Q% and Q'? are given by

Q' Py(0),
Q8 : P,(C)*, P(C),
02 Py(C), Py(C)PLC), P,C).
First of all let us consider the cobordism decomposition of a X3, i.e.
(G X8, = APLC) + BP,C)*
where A and B denote some rational numbers. For this purpose we have to solve

thz equation

(3. 2) Dy, pup2) [X°] = AQx(y) + BQ(Y)’,
which follows from (2. 11) and (3. 1)

B 3 pLXD + 2 (g — ATy + o (Tpe — PIX]
= A(10y* + 5y + 1) + B8y + 1)
Comparing the coefficients of y,’s (& = 0, 1,2) we have

lOA + gB = Pz[Xs:],
5A + 6B = %—(41» — pOIXY,

3. 4)
A+ B=-L (7, — pIx*]
45
The first equation is linearly dependent of two others. Solving (3.4) we have
A= (=2 + PDIX°]
3. 5) B = —-(5p: — 2D X").
index = A + B = —4% (T2 — PIX"].
Hence we have

(3. 6) X*~ —;~ (= 2p2 + PIXEIPLC) + 31— (5p2 — 2D X*IPAC)?
([2], p. 85).
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For example we consider the quaternion projective space
3.7 Py (K) = SK(q)/SP(1)- Sp(g — 1), ¢=2 (3], 1,p.517).
The Pontryagin class of P,_,(K) is given by
3. 8 P(Pe-(K)) = (1 + «)*"(1 + 4u)™", u € H'(Py—(K), Z).
In the case g = 3, (3. 8) becomes
3.9 p=12u+ 7d,
i.e.
(3. 10) P =2u, p,=Td
We adopt an orientation
3. 11) w’[Py(K)] =1 ([3] 1,p. 531).
Hence we have from (3.6)
3. 12) P,(K)=~— 2P,(C) + 3P,C)%.
It should be noted that
3. 13) index of Py(K) = I'y(0, 1, 22)[P(K)] = 1
and hence
(3. 14) Ty(1, p1, p2)[Po(K)] = 2.

Another example is the complex quadric Q, = SO(n + 2)/SO(2) - SO(n)
([3]1, p. 525).

In this case the Pontryagin class is given by
@. 1) p(Qw) =1+ ¢)*(1 + 49°),7" (> 2),
9 € H(Q,, 2).
In particular we have
{P(QO =1+ 29" + 74",
1p(Qe) = 1 + 4¢* + 12¢* + 8¢°.
Hence we have from (3. 6)
{Q4 ~— 27P(C) + 37P,(CY’,
T = ¢'[Q,] = index of Q..

4. Cobordism decomposition of X'2. Next let us consider the cobordism
decomposition of X', i.e.

X' = APy(C) + BP(C)P,(C) + CP,(C).

3. 16)

3. 17
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For this purpose we must solve the equation follows from (2. 11):

(Y Ts(y, p1s b2 ) X"*] = AQW(Y) + BQy(»)Q\(») + CQ.(»Y,

1. €.
P XV ]y + “‘é— (6ps — pip2) [ X1y + Tlg (17ps — 8p.p. + 293 [X'?]

L1
357

+ 7y + 1) + B(10y* + 5y + 1)X3y + 1) + C(3y + 1),

(62p5 — 13pip. + 2p1) [X'*] = A(35y° + 21y*

where A, B and C denote some rational numbers. Comparing the coefficients of
ya’s (@ =0,1,2,3) we have

354 + 30B + 27C = p[ X**],

21A + 25B + 27C = _;_ (6p5 — pup2) [X],

“. 2) 1
7A + 8B + 9C = 5Ty (17ps — 8p.p. + 2p1) [XV],

1

A+B+C=
357

(62ps — 13p.p, + 2p1) [X"°].

The first equation is linearly dependent of three others. Solving (4. 2) we have

A= %(3103 — 3ppe + P [X2],

1

B = 5 (= 21ps + 19p,p. — 6p1) [X'*],
(4. 3)
C = 2—17-<28pa — 23p.p0 + THD[X].
index = A + B+C = — 15 (621 — 13pips + 2pD[X"]

Hence we have
49 XA Gp = 3ppe + AIXMIPO) + (= 21
+ 19p.p, — 659 [X ] PC)PL(C) + —217(28p3 — 23p.p0

+ 7p1) [ X IP(C)".
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For example we consider Py(K). In this case the Pontrygin class takes the form

(4. 5) p=1+4du+ 124 + 84, u € H(P(K), Z),
i.e.

(4. 6) P = 4u, p. = 124°, p; = 8u’.
Hence we have from (3. 18)

4. 7 Py(K) =~— 8\{Py(C) — 3P(C) P,(C) + 2P,(C)*},
where

A = w’[P(K)].
In this case it should be noted that

4. 8 Index of Py(K) = I's(0, py, p2; 5) [Ps(K)] = 0.

Another example is given by Q, = SO(8)/S0(2)-SO(6) ((3. 15)). From (3 .16) and
(4. 3) we have

Q, = - 8uPy(C) + 24uP(C)P,(C) — 16uP,(C)’,
index of Qg = 0, p = ¢g%[Q,l.

5. Cobordism decomposition of X'°. Our multiplicative series >_ I'(y,p.,

4. 9)

...... ) is not available for the cobordism decomposition of X'¢, because in this
case the number of independent equations such as (3. 16) is less than 5. For this
reason we introduce a new multiplicative series such that

'm.’\/%z 2_—1_‘” i
(5' 1) E tgh\/'yi—z (1 +ytgh '\/'Yiz) —gAi(y;pb ------ P i)z’

where

5. 2) M+ v = i P

i=1

The first three terms of (5. 1) are given by

/ .A(] — l’
(1
A‘ - <? y )Pl’
= (p? — 2 _1- 2 __ _1_ 42
(5. 3) A= (pf = )" + -l = dpaly + = (T — £,
A= —(ps — 20,0, + P)y* + (— 205 + 3pip. — P
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1 1
+ —(— 17, 8 2 ? o3 = - 2 ? s
15 (= 17ps + 8pupr — 291y + 57 (62ps — 13p,p2 + 2p1)
Ay = (= ps + 20,95 + pi — 3pip. + pily*

+ —;—( — 8py + 13pips + 8p% — 18p%ps + 5pi)°

+ —115—(— 36p, + 43pipy + 298 — ATpIp, + 11p0)y°

33_15'7 (— 744p, + 325p.py + 176p% — 248pp, + 51pdy
+ g (38104 = Tipipy — 1941 + 220%ps — 3¢1)

It is clear that Ay, p,...... ) is a polynomial of degree 7 of y and each coeffi-
cient has weight i with regard to (p,,...... 2. Of course A, (0, py,--- - 2,) coin-
cides with the Hirzebruch polynomial L(py,......#), i.e. A0, p1--...ip) [X*]
equals the index of X*. It holds that
1 1 '\/? . o1 2k+1

k+1 { tgh\/z_ (1 + ytgh’/ = ) dz

2t 2z

G 4

= Ak(y>Pl’ ...... ,Pk) [sz,(c)l

where the integral should be taken around z = 0 in positive direction. Changing
variable to

(5. 5) u=1tgh vz .
we have
1 1 + 2\-2k-1
5. 6)  Alyput) [PulC)] = Lty ™ 4,

2 u?®(1—u?)

where the integral should be taken around # = 0 in positive direction. We have
from (4.6)

5.7 R{(y) = Ay P15 1) [Pa(C)]=1— 2k + 1)y

¥ (2k+ 1)(2;52 '+ 2)--+(3k) .

+ (2k+ 1) (2k + 2)

2—---’ —
2 y +(—1

Especially we have
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R(y) = Ay, p)[PC)] = 1 — 3y,
(5. 8) Ry(y) = Ay, p1, £2) [PA(C)] = 1 — 5y + 157,
Ry(y) = As(3:01,02,85) [P(C)] = 1 — Ty + 28y* — 84y%,
R(y) = Ady,pupabsps) [P(C)] = 1 — 9y + 45y* — 165y° + 495y".

Suppose that
(5. 9) X' = AP{(C) + BPy(C)P,(C) + CP(C)* + DP,(C)P,C) + EP,C)

mod torsion, where A,B,C,D and E denote some rational numbers. Since D A,
i

is multiplicative we have
(5. 10) Ay pu-....ps) [X'®] = AR(y) + BRy(y)R,(y) + CRy(y)*
+ DRy(y)R\(y)* + ER,(y)".
Comparing the coefficients of y*’s (¢ = 0,1,2,3,4) we have from (5. 8) and (5. 3)
(i) 4954 + 252B + 225C + 135D + 81E
= (= P4 + 2psp1 + pi — 3pips + pD[X"],
(ii) — 1654 — 168B — 150C — 135D — 108E

= —é—(— 8. + 13pepy + 8pi — 18pip, + 5p1) [X1°],

(. 11) | (iii) 454 + 49B + 55C + 54D + 54E
= Tls* (— 36p, + 43papy + 29p% — ATpip, + 11p1) [X'°],

(iv) — 94 — 10B — 10C — 11D — 12E
=_._l—

3.5.7

(v) A+B+C+D+E

1
3%.5%7

(— 744p, +325psp, + 176p3— 248p5 p, +51p)[ X',

(381ps — T1pspy — 1997 + 22pips — 3pD) [X'°].
Solving (5.11) we have

A= %(— dp, + 4psp, + 205 — 4pip. + P [X),
B= 5} (36, — 33pspr — 181 + 33pip, — 8p) [X'],

(5. 12) { C= ?15—(18p4 — 18peps — AL + 16p3° — 4p1) [ X',
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D= 215— (— 180p, + 159p5p, + 80p% — 150pp; + 36pD)[X*],
E= 511-(1651’4 — 137pgpy — TOPE + 1273, — 30p8) [X'*].

In the case of the quaternion projective space P,(K) it is known from (3. 8) that
(5. 13)  p = 6u, p» = 211, py = 36u°, ps = 664, u € H' (P(K), 7).

We put
(5. 14) w'[P(K)] =
Then we have from (5. 12)
.15 A== =90, C=45, D=—200, E= 205,

Hence we have

(5. 16) 3P(K) =— 82APy(C) + 270AP,(C)P,(C) + 135AP,(C)?

— 600ALP(C)P,(C)?* + 280AP,(C)* mod torsion.

In this case A\ equals to the index of P,(K), i.e.

(5. 17) A = A0, pi; pos P35, £4) [PAK)]
by virtue of (5. 3).
Another example is found in the manifold W = F,/Spin(9) ([3]1], p. 534).

The Pontryagin class of W is given by

(5. 18) p, =p3s =0, p» = 6u, p, = 39%°, W’[W]=1, u € H(W, Z).

We have from (5. 12)

(5. 19) A=~——23§,B=36,C=18,D=—92,E=—1§—5~.

Hence we have
(5. 20) 3W =— 28P4C) + 108P(C)P,(C) + 54P,(C)*
— 276 P,(C)P,(C)?* + 145P(C) mod torsion.
The index of W equals to 1.

Of course our multiplicative series D A, is applicable for the cobordism decom-
i

position of X® and X'*. The results coincide with those of § 3.
6. Genus of submanifold. Let V** be any submanifold of V**2. We
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assume that both manifolds are compact orientable and differentiable. Let v € H*
(V¥**2/ Z) be the cohomology class representing V**. The Pontryagin class of the
normal bundle of V** is given by j*(1 + v?), where j denotes the injection j:
V* — V*+2 Then the Pontryagin class of V* is given by

(6. 1) 1+ p(VF) + po(VH) +-oveee= (1 + p(V**) + ) A+ 0)7']
([11, S.86). Since > T'(y, pryee---- P02t is generated by *J—i———(l + ytgh®’/ % )
i=0 tghy/ 2

- o tghv =
(6- 2) g Ft(y’l)u ''''' ’Pt) - .7 ‘: 'U(l +ytgh2'v) g Pz(y’[’l’ """" ’Pi)jl-

In general we have
(6. 3) FHXNVH] = vX[V**2],

where X denotes any 4k-cohomology class, i.e. X € H*(V*+%).) Hence we have
from (3. 2)

A D — | dk+2 tghv ri7ak+2
6. ) T2 V1= 60 | S S| 7

1 ) 3 ( 2 2 > 5
= 4k+2.0 9 — +__ v + + +~——— v
[" { (y 3 YTy T s

2 3 2
__( 217 + 2 + 3y*+ 2y + 45y* +60y*+ 17y >'v7
3*.5.7 15 9 45

deeiees } Z Pt(.’)”Pu ______ ’Pt)] [V4Ic+2].

i=0

For example we have

6. 8) Tu3p V] = {(wps = vy + - (wps = ) (V"]

(6. 6) Pz(y,Pva)[Va]=[(v5 — Vp; + vpy)y: + ~;— {3v° — 2v°p,

+ (dpy — Py + é {6v° — 50%p, + w(Tps — pD} ][va,

(6- 7) Ps(J’:PuPz,Ps)[Vm] = [(—'07 + vspl - 'Uzpz + "'453).')’3 + _;‘ {*5'07 + 4715?1

1) Precisely speaking x € Hte(Vik+2r, A) @ B (A, B additive groups).
2) ™ denotes the n-component of a cohomology ring.
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+ (P — Bp)v® + (6ps — pipa)vly’ + T15— {— 119" + To'p,

-1
3357

+ (261 — 9p2)v* + (17ps — 8pipa + 2p1)vly + §— 517" + 420°%,

+ 7@t — Tpa)v* + (62p5 — 13pipe + 2pD)0} 1 [VH].

Next we consider the case where V** is a submanifold of a V****" and both
manifolds are compact orientable and differentiable. We assume that V** is deter-

mined by a sequence of cohomology classes v;,...... 0, € HXV** Z) ([1]S. 87).
In this case we have
®. 8) POV = vyeven 0, X[V*]

where X € H*™(V***) and j denotes the injection j: V* — V***. Applying
(6. 4) many times we have

69 Tbpi k>[V4k]=[“4k+2r{( 15}:.;12 v ) ( H;g?g:; v, )

2Ly pisee-e 1) } }[V“HZT]-

For example we have

6. 10) Tu(p)V']= [(y i %)gmzp] ~ (vuvi + v} (V7]
6. 11) T,(,pup)[V®] =[ {viv, + viv, + vivi — (00} + vrdp, + vivap.ly?
+{ Vv, + viv, + % s — % (0,03 + vd)p,
+ 1 0,0(4ps — p‘f)} y+ {l (Yo, + viv,)
3 15

+ % vk — % (00} + vad)p, + 4_151;1«02(71;2 - pf)” [v*].

7. Cobordism decomposition of X*“ < X**% In this paragraph we
shall study the cobordism decomposition of a 4k-manifold which is a submanifold
of a (4% + 2)-manifold. First of all let us consider a X® imbedded in a X'°
where we assume that both manifolds are compact orientable and differentiable.
Let v € H(X',Z) be a cohomology class corresponding to X® ([1] S. 87).
Suppose that

(7. 1) X8~ AP,(C) + BP,(C):.
Then we have from (6.6) and (3. 2)
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(7. 2) A(10y* + 5y + 1) + By + 1)* = [(v“ — Upy + vp)y?
+ % {305 — 20%p, + (dps — PDIy
L 5 3 52 10
+ e §6v° — 5v%p, + U(Tp, — p1)} ][X 1

Comparing the coefficients of y*’s (& = 0,1,2) we have
10A + 9B = (v* — v°p, + vp. [ X,

(7.3 | 5A+6B= % {8v° — 20%p, + v(dp, — pDIX"],
A+B= 4_15 {6v° — 50, + w(Tps — PDIXM].
The first equation follows from two others. Solving (7.3) we have
A= % (= v = 2up, + o) [X"],
T4 § B= (30"~ vipy + 5up — 20X
index = A + B = 21—5— {(6v° — 5v°p, + UTpy — pDI[X°].
Thus the cobordism components of a X® are vniquely determined by v and the
Pontryagin classes of X'°.

Let us consider the case where X' = Py(C). In this case the Pontryagin
class takes the form

(7. 5) 2=0Q+ ¢ =1+ 6¢* + 15¢* + 20¢°, g € H*(P,(C),2).

Hence we have

= L (= o + 6o PO}
7. © | B=L @2y + u PO
index =A + B= % (2v° — 10v°g + 23vg*) [ P(C)].

Putting v = Ag (A : integer) we have

. 7 A=%(6x—x5),3=%—(v—zm+x)
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and index = %5 (20 — 100° + 23N).
It is easy to show that A and B are integers for every A and they change sign

with A. The actual values A and B in the simple cases are given by the follo-
wing table:

The rule (7.7) restricts the kind of
v=9g |v=29|v=3g differentiable 8-dimensional orientable
A 1 —4 | —45 submanifold of P4(C).
- The relation

B 0 [ 6| 64 _

index (8. 12) Py(K)=<— 2P,(C) + 3P,(C)
=A+B 1 l 2 19 shows that Py(K) cannot be “cobord-
(1) antes” with any differentiable 8-dim-

ensional submanifold of PiC). Concerning Q, = SO(6)/SO(2) - SO(4) we see
from (3. 17) and (7. 7) that Q, cannot be “cobordantes” with any differentiable
8-dimensional submanifold of PyC) other than those which are determined
by v == 2¢.

The case X' < X*". Let X' and X' be compact orientable and differen-
tiable manifolds and the former be a submanifold of the latter. We denote the
cohomology class corresponds to X'? by v € H*X“,Z). Suppose that

X2 =~ APy(C) + BP,(C)P,(C) + CP,C) .
From (6. 7) and (4. 1) we have
(7. 10) A(35y° + 21y* + 7y + 1) + B(10y* + 5y + 1)8y + 1) + C(3y + 1)°
= {:(— v+ Vp, — V'py + up)y® t+ —é— {— 50" + 4v°p,

+ V(! — 5ps) + v(6ps — pip)iY + T1§ f— 110" + Tv°p,

{— 517"

+ 02t — 9pa) + W1Tps — 8pipa + 2PDYy +

+ 420%, + TP} — Tps) + v(62ps — 13p,p. + 2p3)} J[X“].

Comparing the coefficients of y*’s (¢=0,1,2,3) we have
354 + 30B + 27C =(— v" + v’p, — vps + vps) [ XM],

214 + 25B + 27C = % f— 507 + 4vp, + V(PE — 5py)

(7. 11) + v(6ps — pp2) [ XM]
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7A + 8B + 9C = %5 {— 1107 + Tv°p, + v¥(2p% — 9py)

+ v(17ps — 8pipa + 2PDI[XM],

A+B+C= 33157 {— 510" + 420%, + T(p? — Tp)v®

+ (62p; — 13p,ps + 2pD0i[X™M].

The first equation follows from three others. Solving (7.11) we have

(7. 12)

A=L §— o + (3p, — 3psps + pDOI[XM],

7
B = %5 {8v" — v'p, + (2P — p)V* + (— 21ps + 19p,p. — 6pD)0}[XM],
C= —217 {— 120" + 30, + (29} — 5po)0°
+ (28p5 — 23p.p, + TpHv[X"],
index = A + B+ C=—1  {— 510" + 420%, + 7(p} — Tp)*

3%.5.7
+ (62p; — 13p.p, + 2p)vi[XM].

Thus the cobordism components of X'? are uniquely determined by v and the
Pontryagin classes of X''. When X" is P,(C) the Pontryagin class taks the

form

(7. 13)

p=~0+ g¢*), g € H¥(P(C),Z),
1 = 8¢%, p. = 28¢*, py = 56¢°, g[P(C)] = 1.

Hence we have from (6. 12)

(7. 14)

Putting v =

(7. 15)

A= %(— ‘Z)7 + 8‘096)[P7(C)],
B=2 (7 — vy vy + PO
C = % (— 40" + 8‘1}592 — 4U394)[P7(C)_]

Ag (A : integer) we have

8

1
A==, B=-22(\— A=A + ),
= ) 15 ¢ )

= & (=4 + 8y — 4,
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index = A + B+ C = — 0 (= 1707 + 1120~ 3080° + 5281,

Changing v over g, 2¢, and 3g we have the following table :

o= =2 v=3 It is easy to show that A, B
g g g and C are integers for every A.
A 1 —16 —309 We have seen
c 3P,(C)P,(C) + 2P(C),
0 —32 —768
; = ’[Py(K)],
index = 1 0 _ 53
A+B+C , u € HY(Py(K),Z).
(2) From (7.15) we see that Pi(K)

cannot be “ocbordantes” with any 12-dimensional differentiable submanifold of
P,C) other than those which are determined by v = %= 2g. The same thing
holds for Q(4.9)).

8. Next we consider the case X® C X'%. We impose the same conditions
upon X?® and X'? as before. Let X® be determined by wv,v, € H¥X', Z)
([1] S.87). We have proved that

(6- 11) P2(3’~P1:P2)[X8] = l:{'v?'vz + ‘Ug‘vl + 'Uﬁ“llg - (‘Ul‘vg + ‘Uz‘v:;)Px + 'Ul‘v'zpz}yz

+ {v?vz + viv, + —2— v — %(vmﬁ + v,h)p,
+ —1—'0{02(41)2 — ) ly + {—2—(va2 + viv,) + L'zﬁ'vi
3 J 15 9

- ’?];“ ('Ul'vg + v2v?)Pl + ’41? 7)1712(71’2 - P?)}}[Xm]

Suppose that
8. 2) X8~ AP,(C) + BP,(C).
Then we have from (6. 11)
8. 3) AQ0y* + 5y + 1)+ B3y + 1) =[{viv, + vjv, +----- rx*=].

Comparing the coefficients of y*’s (& = 0,1,2) we have

10A + 9B = {vaz + Y, + vivi— (0,0 + vd)p, + vlvzpz}[X”],

5A + 6B = {vi’vg + v, + —g—‘v?vi — %(vlvﬁ + v, )P,
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8. 4) + % 0,04 2 — P) }[Xu]’
A+ B=12 (v, + viv) + —-vled — —~(v,rd + vardpy
15 9 9
+ «413 0,0, (Tps — 1Y) }[X”‘].
The first equation follows from two others. Solving (8.4) we have

A ={= LG + viv) + (P — 2PJoma|X"],
B = {% (v, + viv,) + —sl)—'v?'vi — —;—('v,vg + v,v)p,
(8. 5) + —;* (52 — 2pvrv, !’[Xw]y

. 2 1 1
ndex=A+B={— v, + viv) + — i) — —(v,v%
1 15 (‘Ul'vz ‘Uz'Ul) 9 10z 9 ( 1Yz

+ vad)py + e (Th = ) o[ X77)
Thus the coefficients of cobordism decomposition of X® are uniquely determined
by vy, vy and the Pontryagin class of X.

When X' = Py(C), the Pontryagin class takes the form

p=0+ @V =1+ 74 + 21¢* + 35¢°, g € H(P(C),Z),
9 TP(C)] = 1.

Hence we have

oo |

A= {— %(v‘i’vz + o)) + % '01'0294}[[’ «(C)]

6.7 ! B= {—;— (oo, + vhoy) + %«a?vz — %(v,vz + vy

+ % v,v294}r_Ps<C)].

Putting
(8. 8) v, = N, Vs = #g (A\.pu: integers),

we have
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— 1 5 5 7
A ——*5—‘(7\!" + w2 + _5—*7\‘.“,

1 1 7 7
B =—-(\%p + p*A) + — A — —Qp® + §°A) + —p,
(A + p®A) 7 (ww M) M

index = A + B = %(xm + u) + -;—xw

7 98
——— (A + pA’) + ==
(A M) o

For example A and B take the following values :

I a=2, I It is easy to show that A and B are
A=pu=1 pr=1 A=pu=2 integers for every A and @ Py(K)
A 1 —4 —20 cannot be cobordantes with any diffe-
rentiable 8-dimensional submanifold
B 0 6 28 of Py(C) determined by any two co-
index homology classes v,,v, € H*(PiC),Z).
=A+B L 2 8 The Q, has some possibility because
(3) of the existence of the submanifold
determined by A = 2, 4 = 1.
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