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Introduction. In this paper we shall generalize the Hirzebruch polynomial
([!]), representing the index of a compact orientable and differentiable 4&-manifold,
by the simplest way and determine the coefficients of the cobordism decomposition
by means of these polynomials. Moreover we shall compute the coefficients of
cobordism decomposition for a submanifold. This provides us with an analogy
of the Gauss-Codazzi equations in the differential geometry and hence has much
to do with the problem of differentiable imbedding.

1. The Hirzebruch polynomial is defined as follows:

where

oo m

(1.2) ΣA* = Π(l+7«*)
ί=0 ί=l

and pi denotes the 4z- dimensional Pontryagin class. For example we have

(1. 3) L, = -\-plt Lz = -~(7p2 -Pϋ> L3 = -L-_(62p3-13p1 p2+2pl').
o 4o o *o*/

Let X*k be a compact orientable and differentiable 4&-manifold. Then Lk

(pi, ...... ,/>fc) [X4fc] equals to the index of X4*. In order to generalize Lt(ρl9 ...... ,
pi) we use a function

(1. 4) Q (z.y) =

instead of */ z /tghv/ z and define a new multiplicative series

i = 0 ί=l

The first three terms are given by

α /»\ τι / t \ / , 1 \ -π / \ * ^ 4/>2—/>ι2

. b) i ι(y,pι)== (^ "Γ — )/>ι, 12\y,pι,p2) == p2y ~r —^—jrι y +
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ό

It is clear that Ti(y,pl9 ,ρt) is a polynomial of degree i with respect to

y and its coefficients are polynomials of ρl9 ./>t whose weight is i. Let M4ί

or Λτ4j be a compact orientable and differentiable manifold of dimension 4i or

4j respectively. Since ̂ Γ^y,^, ,/>,) is multiplicative ([3] II, p. 317) we have

It follows from the definition that

(l 8) Γ,(0,A, ,ft) =£ι(A, ,A)>

i. e.

(1. 9) Γfapi, A)C^4Ί = index of

Moreover it holds that

(1. 10) I\(l,/>1? ,pk) [X4fc] - 22fc(index of X4fc),

because

(1. 11) . * — (1 + tghV«) =

Furthermore we have

(1. 12) IV- !,/>,, ...... ?A)[^4fc] = A-genus ([1], S. 14)

because

d is) Y*;— a - tghvo = 2r / 2 :-tghy/ 2: smh

In some case we can easily prove the integrality of the coefficients of the poly-

nomials Γk(y,pι, ...... ,ρk) [X4k] Let X4Jfc be an almost complex split manifold.
Then the Pontryagin class of X4Jfc takes the form

(1. 14) p =

We have

(L 15)
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Σ

i α

Meanwhile the index of a submanifold χ(k-ΐr determined by vlt ...... °vr(&

(X4*,Z)) ([1],S.87) is given by

(1. 16)

Comparing (1. 15) and (1. 16) we find that each coefficient of T*k(y,pι, ...... ,pk) is
a sum of many indices of submanifolds and hence is an integer. To prove the

integrality of the coefficients of T£y,pl9 ...... ,pk)[X*k] in general will be done
in another chance.

2. Next we shall deal with the case where X4fc is the complex projective

space P2k(C)' The Pontryagin class of P2k(C) takes the form

(2. 1) (1 + <72Γ+1 = ΣA mod g^ ([1], S.73),
ί=0

where g denotes a generator of H2 (Pzk(C), Z) and

(2. 2) £2ΐP2*(C)] = 1,

i.e.

(2. 3) A-(2Y"1)ί!'" 0 = 1, ...... ,*)•

Then we have from (1. 5) and (2. 1)

(2. 4)

where the integral should be taken around z = 0 in the positive direction.

Changing variable to

(2. 5) u =

we have

(2. 6) Γk(y,pι, ,ρk.

where the integral should be taken around w = 0 in positive direction. We have

(2. 7)
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1 Γ

2-rτi J

We put as follows:

(2- 8)
7-y

It should be noted that

(2. 9) Tk(l,Pl, ......

which follows from (1. 10). It is clear that Tk(y9p19 ...... .pk) [X4fc] is a cobordism

invariant. Furthermore Tk(y,pι, ...... ,/>*) [X4fc] is multiplicative as we have seen
in (1.7). Meanwhile the classes of cobordism with respect to the rational coeffi-
cients are generated by the P2ί(C)'s ([2]). Hence we have from (2. 8)

(2. 11)

according as

(2. 12)

= Σ

i ...... ίfcPah(C)P2ί2(C) ...... P2ίfc(C)mod torsion,

where A f l ...... ίλ:'s denote some rational numbers and ̂  means "cobordantes" and

QoCv) — 1- F°r example we have

(2. 13) Γ3(J;,/>1,/>2,/>3)[X12] = A(35y + 21^2 + 7v + 1)

+ B(Wy2 + 5y+ϊ) (3y + 1) + C(3;y + I)3,

where A,B and C are some rational numbers.

3. Decomposition of X8. Concerning the Thorn algebra we shall make
use of the following table ([4]) :

k

0*

1

0

2

0

3

0

4

Z

5

z,

6

0

7

0

8

z+z

9

Z2 + Z2

10

Z2

11

Z2

12

z+z+z
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where Ω* denotes the Thorn algebra of dimension k with rational coefficients and
the generators of Ω4, Ω8 and Ω12 are given by

Ω 4 : P2(C),

Ω8: P2(C)2, P/C),

Ω'2: P2(C)3, P2(C)P4(C), Pβ(C).

First of all let us consider the cobordism decomposition of a X8, i. e.

(3. 1) X8 * AP4(C) + BP^Cγ

where A and B denote some rational numbers. For this purpose we have to solve

the equation

(3. 2) Γ2(y,/>,,/>,) [X8] = AQ,(y) +

which follows from (2. 11) and (3. 1)

(3. 3) />2[XV + ~
45

= A(Wy* + 5y + 1) + B(3y + I)2

Comparing the coefficients of ya's (a = 0, 1, 2) we have

10A + 9B =

(3. 4)

A + B =
45

The first equation is linearly dependent of two others. Solving (3. 4) we have

(3. 5)

index = A + B = - - (7/>2 - />2)[X8].
45

Hence we have

(3. 6) X s />2)[X8]Λ(C) + -i- (5/>2 - 2/>?)[X8]P2(C)2

y

([2], p. 85).
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For example we consider the quaternion projective space

(3. 7) Pα-X/O = SP(q)/SP(l) - Sp(q - 1), q ̂  2 ([3], 1, p. 517).

The Pontryagin class of Pα.1(lζ") is given by

(3. 8) XPα-ι(K)) = (1 + «)"(! + 4*)-1, * € H4(Pα-ι(n Z).

In the case # = 3, (3. 8) becomes

(3. 9) p = 1 + 2w + 7w2,

i. e.

(3. 10) p1 = 2«, />2 = 7u\

We adopt an orientation

(3. 11) w2[P2(K)]=l ([3] I, p. 531).

Hence we have from (3. 6)

(3. 12) Λ(K)*- 2F4(C) + 3P2(C)2.

It should be noted that

(3. 13) index of P2(K) = T2(Oypl9p2)[P2(K)] = 1

and hence

(3. 14) Γ2(l,pl9p2KP2(K)] = 24.

Another example is the complex quadric Qn — SO(n + 2)/SO(2) SO(n)
([3] I, p. 525).

In this case the Pontryagin class is given by

(3. 15) XQ.) = (1 + g^M<l + 4 )̂,- (« > 2),

0 € /ί CQ., Z).

In particular we have

= 1 + 2flf" + 7ίΛ(3. 16)

Hence we have from (3.6)

(3- 17)
T = ̂ [(2,] = index of Q«.

4. Cobordism decomposition of X12. Next let us consider the cobordism
decomposition of X12, i. e.

X"« AP,(C) + BPJ&P&C) + CP2(C)3.
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For this purpose we must solve the equation follows from (2. 11)

(4. 1) ΓaG^^

. e.

ID
- splPΐ

33 5 7

+ 7y + 1) +

(62/>3 -

+ ζy + l)(3;y + 1) + C(3y + I)3,

where A, JS and C denote some rational numbers. Comparing the coefficients oi

;y<Λ (a = 0, 1, 2, 3) we have

(4. 2)

/ 35A + SOB + 27C = />S[X
12],

21A + 25JS + 27C = — (6p3 - pφl) [X12],

7A + 8B + 9C = —- (I7p9 -

+ B + C=
o *O* i

) [X12],

+ 2^0 [X12].

The first equation is linearly dependent of three others. Solving (4. 2) we have

(4. 3)
C =

index = A + β + C =
33 5 7

(62p3 -

Hence we have

(4. 4) X12;
15

-~
t t I
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For example we consider P3(K). In this case the Pontrygin class takes the form

(4. 5) /> = 1 + 4u + I2u2 + Su\ u € H*(P3(K\ Z),

i. e.

(4. 6) />! = 4w, />2 = I2u\ ρ.d = 8ιΛ

Hence we have from (3. 18)

(4. 7) P3(K) **- 8λ ίFβ(C) - 3P4(C) P2(C) + 2P2(C)3 j ,

where

λ = u3[P3(K)].

In this case it should be noted that

(4. 8) Index of P9(K) = Γβ(0,^, />„/»,) [P3(̂ )J = 0.

Another example is given by Q6 = 5O(8)/5O(2) 5O(6) ((3. 15)). From (3 .16) and

(4. 3) we have

1 ' index of Qβ = 0, μ = /[Q6].

5. Cobordism decomposition of X16. Our multiplicative series Σ Γι(y,ρί9
i

...... ,pi) is not available for the cobordism decomposition of X16, because in this

case the number of independent equations such as (3. 16) is less than 5. For this
reason we introduce a new multiplicative series such that

(5. i)

where

(5.2)

1 =ΣAi(y,A, ...... ΛX,

Π (1
ί=l (=0

The first three terms of (5. l) are given by

A, = 1,

Λ , = -!-,

(5-

+(-2p3
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2p\) ,

Ib

It is clear that Ai(y,pι, ...... ,pt) is a polynomial of degree i of y and each coeffi-

cient has weight i with regard to (pl9 ...... ./>*). Of course Λ^O,^, ...... .pi) coin-

cides with the Hirzebruch polynomial Lt(ply ...... ,/>,), i.e. Λt(0,/>ι, ...... ,/>ί) C^4*]
equals the index of X4ί. It holds that

+

where the integral should be taken around z — 0 in positive direction. Changing

variable to

(5. 5)

we have

(5. 6)

u = tgh

= -̂ - J t̂̂ T"*) du'

where the integral should be taken around u = 0 in positive direction. We have

from (4. 6)

(5. 7) Rk(y} ̂ = 1 - (2k

(2k +1) (2k + 2)

Especially we have
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(5. 8)

Y; TOMONAGA

= 1 - 3v,

R3(y) =
495/.

Suppose that

(5. 9) Xlβ^AP,(C) + BPQ(C)P2(Q + CF4(C)2 4-

mod torsion, where A,B,C,D and £ denote some rational numbers. Since

is multiplicative we have

(5. 10) Λ,GΆ. ......

Comparing the coefficients of y"'s (a = 0,1,2,3,4) we have from (5. 8) and (5. 3)

( i ) 495A + 2525 + 225C + 135D + 81E

= (-ρt + 2p3p! +Pl- 3pfr, + pi) [X"l

(ii) - 165 A - 168B - 150C - 135D - 108E

(5. 11) { (iii) 45 A + 49B + 55C + 54Z) +

= ~(-36p4 + 43P& + 29pί -
lo

(iv) -9A- 105 - IOC - 1 ID - 12E

+325^1

(v) A + B + C + D+ E

t - I9pl

Solving (5.11) we have

1 A = — (-4>4

B = —

(5. 12) C = - -

2pί - pi) [Xl
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80$ -
45

= -i- (l65/>4 - 137 p^ - 70$ + I27pίp2 -
81

In the case of the quaternion projective space P4(K) it is known from (3. 8) that

(5. 13) ρl = 6u, ρ2 = 2lu\ ps = 36u3, p4 = 66w4, u €

We put

(5. 14)

Then we have from (5. 12)

(5. 15) A = - — λ, B = 90λ, C = 45λ, D = - 200λ, £ = - - λ.
o o

Hence we have

(5. 16) 3P4(K) ^~ 82λP8(C) + 270λP6(C)P2(C) + 135λP4(C)2

- 600λP4(C)P2(C)2 + 280λP2(C)4 mod torsion.

In this case λ equals to the index of P4(K), i. e.

(5. 17) λ = Λ4(0, pl9 ρz, p3)p4) [P4(Ky]

by virtue of (5. 3).

Another example is found in the manifold W — F4/Spin(9) ([3] I, p. 534).

The Pontryagin class of W is given by

(5. 18) p, = pi = 0, p2 = 6u, p4 = 39u\ u2[W] = 1, u € //W Z).

We have from (5. 12)

(5. 19) A = - — , J5 = 36, C = 18, D = - 92, £ = -^- .
o O

Hence we have

(5. 20) 3W**- 28F8(C) + 108Pβ(C)P2(C) + 54F4(C)2

- 276P4(C)P2(C)2 + 145P(C) mod torsion.

The index of W equals to 1.

Of course our multiplicative series ]P At is applicable for the cobordisrn decom-
i

position of X8 and X12. The results coincide with those of § 3.

6. Genus of submanifold. Let V4* be any submanifold of y4**2. We
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assume that both manifolds are compact orientable and differentiable. Let v € H*
(V4fc+2, Z) be the cohomology class representing V4Jb. The Pontryagin class of the
normal bundle of V4fc is given by j*(l + t;2), where j denotes the injection j :
V43b -» V4fc+2. Then the Pontryagin class of F4fc is given by

(6. 1) 1 +pl(V*«) + p*(V^ + ......
CO /

([11 S.86). Since £Γ«(y>/>ι> ...... ̂ X is generated by ^ *— (l + 3*ghV
<-0

we have

In general we have

(6. 3)

where X denotes any 4^-cohomology class, i. e. X € //^(V4*4" 2).υ Hence we have
from (3. 2)

(6. 4)
- ί=0

_/ 17 , _2_ v , 3y + 23> , 45y+6θy + 17y\ τ

V 3 2 5 7 15 ̂  9 45 ^

For example we have

(6. 5) Γ.Cy.AXV*] = |(t#, - ^3)y + -|- (t̂ i - f 3) [[V8],

(6. 6)

- p\)\y + - -
45

(6. 7)

1) Precisely speaking x £ H*(V**+*r, A) ®B (A, B additive groups).
2) κn denotes the w-component of a cohomology ring.
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(pi - 5/>>3

15

(2p\ - 9/>>3 + (17p3 - 8p,p2 + 2pf)v\y
o *O* /

+ l(p\ - 7/>>3 + (62ps - 13AP, + 2^>}][V14].

Next we consider the case where F4* is a submanifold of a V4fc+2ί* and both
manifolds are compact orientable and differentiate. We assume that V*k is deter-
mined by a sequence of cohomology classes vl9 ...... ,vr € ff(V4*+2r,Z)([l]S. 87).
In this case we have

(6. 8) f(X) [Vίk] =

where X € Hί\Vik+zr) and j denotes the injection j : Vίk -». V4"^. Applying
(6. 4) many times we have

(6. 9)

For example we have

(6. 10) Γ.Cy.^XV4] = [(y + -i-jf^t;^ - (t .tί +

(6. 11) ΓjCy.p^OCV] = { t ΐ » , + tfei + tίtί - (w,t4 + t»,tίV», +

ivu + τ if , + — v\v\ -- — (v,vl

45
[V12].

7. Cobordism decomposition of X4* c X4fe+2. In this paragraph we
shall study the cobordism decomposition of a 4^-manif old which is a submanifold
of a (4k + 2)-manifold. First of all let us consider a X8 imbedded in a X10

where we assume that both manifolds are compact orientable and differentiable.
Let v € H\Xl\ Z) be a cohomology class corresponding to X8 ([1] S. 87).
Suppose that

(7.1) X*

Then we have from (6. 6) and (3. 2)
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(7. 2) B(3y

- p\)\y

5y

~3~

+ 1
45

Comparing the coefficients of yn's (a — 0,1,2) we have

10A + 9B = (v

1. 3) 5A + 6B =

The first equation follows from two others. Solving (7. 3) we have

1 / .

(7. 4)

A =
O

0],

index = A + B =
45

Thus ίλtf cobordίsm components of a Xs are vniquely determined by v and the
Pontryagin classes of X10.

Let us consider the case where X10 = -P5(C). In this case the Pontryagin
class takes the form

(7. 5) p = (1 + g*γ = 1 + 60* + 15<74 + 20<Λ 9 € H2(P5(C),Z).

Hence we have

(7. 6)

index = A + B = — (2v5 - Wvsg +
lb

Putting v = λ^ (λ: integer) we have

(7. 7) A = —(6λ - λ5), B = — (λ5 - 2λ3 + λ)
o o
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and index = — (2λ5 - 10λ3 + 23λ).
lo

It is easy to show that A and B are integers for every λ and they change sign
with λ. The actual values A and B in the simple cases are given by the follo-
wing table:

The rule (7. 7) restricts the kind of
differentiate 8-dimensional orientable
submanifold of P5(C).

The relation
A

B

index
=A + B

v=g

1

0

1

v=2g

-4

6

2

v = 3g

-45

64

19

( 1 )

(3. 12) P2(K)^~ 2P4(C)

shows that P2(K) cannot be "cobord-
antes" with any differentiable 8-dim-

ensional submanifold of P5(C). Concerning Q4 = SO(6)/SO(2) SO(4) we see
from (3. 17) and (7. 7) that Q4 cannot be "cobordantes" with any differentiable
8- dimensional submanifold of P$(C) other than those which are determined
by v = it 2g.

The case X12 C X14. Let X12 and X14 be compact orientable and differen-

tiable manifolds and the former be a submanifold of the latter. We denote the
cohomology class corresponds to X12 by v € JF/2(X14,Z). Suppose that

X12 * AP6(C) + BP4(C)P,(C) + CF2(C)3.

From (6. 7) and (4. l) we have

(7. 10) A(35y* + 2ly2 + 7y + 1) + J3(10;y2 + 5y + l)(3;y + 1) + C(3y + I)3

= - v {- 5t;7

- 5/>2) + v(6ps - ρlt

- 9pz) + v(l7ρ3 —

15

2tf)}y
33-5-7

~ 7/>2) + τ<62/>3 - 13/>ι/>2 + 2/>?)l |[X14].
J

Comparing the coefficients of y*'s (α = 0,l,2,3) we have

( 35A 4- 30J5 + 27C =(- v

1

(7. 11)

21 A + 255 + 27C = — {- 5v7 +
O

+ vs(pl - 5/>2)
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7A + 8B + 9C = - - {- lit;7 + 7^ + v\2p\ -
15

v(l7p, -

A + B + C =
33 5 7 1 + 70? -

+ (62/>3 -

The first equation follows from three others. Solving (7. ll) we have

(7. 12)

A = -|- {- f7 + (Sp, - 3p,p2 + pϊ)v][Xul

B = - [8v7 - v*pt + (2p2 -pϊ)v3 + (-21p3

C = — {- 12ι;7 + 3v*p! + (2pi -
2*1

(28p3 -

index = A + B + C =
33 5 7

{- Sit;7

+ (62p3 -

Thus the cobordism components of X12 are uniquely determined by v and the
Pontryagin classes of X14. When X14 is P7(C) the Pontryagin class taks the

form

(7. 13) /> = (! + 01)8,

Pi = Sfif , Λ =

Hence we have from (6. 12)

€ H\PΊ(C\Z\

(7- 14) B =
lo

Putting v = \g (λ : integer) we have

(7. 15) A = - λ7), 5 = --(λ 7 - λ5 - λ3 + λ),
lo

-4λr + 8λ5-4λ3),
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index == A + B + C =
32.5.7

(- 17λ7 + 112λ5 - 308λ3 + 528λ).

Changing v over g, 2g, and 3g we have the following table :

It is easy to show that A, B
and C are integers for every λ.
We have seen

(4. 7) P3(ίO^-8λ{Pβ(C)-

3P4(C)P2(C) -1- 2P2(C)3},

λ = «3[P3(K)],

u € H\P3(K\Z).

( 2 ) From (7.15) we see that PS(K)
cannot be " ocbordantes" with any 12- dimensional differentiate submanifold of
P7(C) other than those which are determined by v = it 2g. The same thing
holds for Q6((4. 9)).

8. Next we consider the case X8 c: X12. We impose the same conditions
upon X8 and X12 as before. Let X8 be determined by vl9v2 € H\Xl\ Z)
([1] S.87). We have proved that

A

B

C

index =
A+B+C

v=g

1

0

0

1

v=2g

-16

48

-32

0

v=3g

-309

1024

-768

- 53

(6. 11) T*(y,pl9pι$X*\ = 2 + vlv, + vfrt -

o o

v\v\ —

+ , +

- ρί)\y + \-^
i ( 15

+ BP2(C)2.

9 " "Λ * 45

Suppose that

(8. 2) X8

Then we have from (6. 11)

(8. 3) A(lθy + 5y + l)+ B(3y + l)2 =

Comparing the coefficients of y*'s (a = 0,1,2) we have

10A + 9B = \ v\v% f v\Vι + v\v\ — (tΊvl ~

C /I i /? D J 5 .̂ t 5 t ^ .̂3̂ .3 ^
O/l ~Γ ΌlJ —



Q2 Y. TOMONAGA

(8. 4)

A

The first equation follows from two others. Solving (8. 4) we have

A = -

(8. 5)

index = A + β == j
v
—
J.D

+ t^ϋj) +

45

Thus the coefficients of cobordism decomposition of Xs are uniquely determined
by vί9 v2 and the Pontryagin class of X12.

When X12 = Pβ(C), the Pontryagin class takes the form

P = (1 + = 14- 7

Hence we have

A =•!-

(8. 7)

Putting

(8- 8)

we have

»lVlSr« J[P.(O]

Q Q

= λ^r, v2 = : integers),
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(8. 9)

A = - \μ,

B =

index = A + B = — (λ5μ + μδ\) + —
15 9

.
45

For example A and J3 take the following values :

It is easy to show that A and £? are

A

B

index
=A + B

λ=/ί=l

1

0

1

λ = 2,
μ = l

-4

6

2

\=μ = 2

-20

28

8

(3 )
determined by λ = 2, μ = 1.

integers for every λ and μ.
cannot be cobordantes with any diffe-
rentiable 8- dimensional submanifold
of PQ(C) determined by any two co-
homology classes vlyv2 € H2(P6(C),Z).
The Q4 has some possibility because
of the existence of the submanifold
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