ON THE DECOMPOSITION THEOREMS OF FOURIER
TRANSFORMS WITH WEIGHTED NORMS

SATORU IGARI
(Received October 23,1962)

1. Introduction. Littlewood and Paley [ 6] proved the following result;
For fx) € LP(—m,m)(1 < p << <o), let

fw) = %T f_ :f(x)e“””dx, 1. 1)
flx)~ U.Zl Fw)e. 1. 2)
If
Z”Z_I Fe™  n=1,2...
@ =] JO) n=0
l _zi— F)e n=—1, 2., (1. 3)
then o

0<a,= [ |5 1@l | [ i@ ay< oo

N=—oo

Concerning this theorem, discrete and integral analogues were proved by
G.Sunouchi [12], [11] and recently J.Schwartz [ 8] gave a new proof. On the
other hand, the theorem just cited was extended by ILIHirschman Jr. to the
weighted L?-class (Theorems 6 and 7) and the Fourier integral case with the
weighted norms was investigated by D.L.Guy [ 2 ] (Theorems 1 and 2). However
their proofs are complicated.

In the present note we shall prove the integral, discrete and ordinary cases
with weighted norms with the idea of J.Schwartz. Our main methods depend
upon the extended Marcinkiewicz interpolation theorem and the test for an
operator to be weak type (1, q) due to L. Hérmander [ 5] which are applied
to vector-valued functions by J.Schwartz [ 8 ], and another tool is of a substitute
of Parseval’s relation.

§82-6 and 887-8 are devoted to the proof of Fourier integral and discrete
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cases respectively.

In §89-11, we shall prove the theorems for Fourier series.

In §12 we shall consider some well known inequalities concerning the func-
tions of Littlewood-Paley ¢g(¢), g*(¢), the function of Lusin s(¢#) and that of
Marcinkiewicz u(#) in view of decomposition theorem. These considerations
give unified real treatment of these functions.

2. The Integral case. The integral analogue of Littlewood-Paley’s de-
composition theorem with weighted norms is stated as follows.

THEOREM 1. Let 1< p<oo, —1<a<p—1 and f(x) € LE, that is,
[flx)|?|x|* € L(— oo, 00). Let A (x)= A,(z, f) be the function whose Fourier
transforms A,,(x) is identical with that of f(x) in the domain 2" = |x| < 2"*!
and vanishes outside this domain. Then,

. ) pj2 ™
0< 4= [ | £ i@ fiziae) [ ADlelde = 450 < o
21

The inequalities in this note are to be interpreted as meanings, “if the
majorant is finite, then the inequality is satisfied”, and A, A,, A, etc. are posi-
tive constants depending only on the indices submitted and may be different
in each case.

For the proof of Theorem 1, we introduce the auxiliary function used by
J. Schwartz. Let ¢(x) be even C~ function equal to 1 for 1= |x| =<2 and
equal to zero for |x| =1/2 or |x| = 3, chosen so that its first few moments

are zero. Let l/'(\l be the vector valued function with values in the two-sided
Hilbert sequence-space [* as
ay
Ki(x) = (+ « «, $(2"x), $(2"*'2),0 + )
= (' ) kn(x)> kn+1(x)s' M ') (2 2)
and define K,(x) by

K@= 5 [ e ROMy = (- ul@), bun@)e ), 2. 3)
where
W@ = 5 [ ey
and

k() = 27"k, (27" ). 2. 4)
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For a scalar valued function f(x), put
®H@ = [ Kz - 5oy,

and for a function G(x) with values in Hilbert space /%, put

@O @ = [ Kz~ 5)G0)y.

—eo

(2. 5)

2. 6)

Then ®, maps scalar valued functions into functions with values in /2 and &,
maps functions with values in /? into scalar valued functions. If f(x) and G(x)

are suitably restricted, we have

f_ : & F)N2)C@)dx = f_: AD) @O @dx.

From this equality we can easily deduce the following Lemma.
LEMMA 1. Two inequalities
I f lne=Asalflsa

and
H 8lG "tl.ﬁ < Ap,a “ G “q.ﬂ

are equivalent, where 1 << p<<oo, 1/p+1/g=1,8=Q1Q — q@Qa and

15 1e = { [ @lotede |

First of all we show the L%-case.

LEMMA 2. If —1<a<1, then we have
[ 1@p@lzlde = A [ 1f@)* 2] dz
and

[ 1@o@taltde = AL [ 16@)* |2 da.

—oo

To prove this lemma we use the two theorems.

2.7

2. 8)

2.9

THEOREM A. (L. I.Hirschman, Jr., [4]). If 0<a <2 and f e L. N L%

then

[ r@lizidz =an. [ [ 17@ -fo)l'lz = 5|y,
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where E, denotes the n-dimensional Euclidean space and f(x) is the Fourier

transform of f(x).

THEOREM B (I. L. Hirschman, Jr. [41]). Let a, 0 < a < n be fixed. If T'(x)
is a non-negative measurable function on E, such that

[{z: T(x)=a}| =Aa™* (0<a <o),
then

[ @ Ir@dz=am [ 1fw))e)dz.

PROOF OF LEMMA 2. By Lemma 1, it is sufficient to prove (2. 8) for
0<a<1land 2. 9) for 0<a<1.
For a suitable f(x), we have
A as A
®.f)(x) = Ki(x) fl=),
therefore noting that support of £,(x) is contained in (27*%, 3.2-") and that
k,(z) is uniformly bounded, (2. 8) with @ =0 is shown easily by Parseval’s

relation.

Now we assume 0 < a < 1. By definition

[ iep@itiziae = [ 5

- —% RB=—co

2

f_ : k(x — y)f(y)dy| |x|*dz,

and using Theorem A,

I-

[tz y)f(y)dy\ || <dz

= 4| [ 1Ok ~ F@R@! |2 — v -odedy=24* (I, + E)

where

L= [ 1f@lde [ 1@ - ko) = 317 dy, (210)
and

E= [ [71R@) o)) - y|-wdady. (2.11)

By the remark just mentioned for /Aen(x), we get

> r= f{ ) l%n(y)l"’}l}‘(x)—f(y)lﬂx—yl'“"‘dxdy

N==—co B=m—co
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=a[ [ 1@ -follz - yl--dyde

=a[ \f@|alwdx

To estimate I}, we consider for x >0

T@= [ T @) — )]tz — y]ody. (212)

oo

Let 27! < x < 2™, m being some integer. If m — 1 =n=m + 3, then we

put
2% oo
J(x) = +f
(@) f

= Ju(x) + Ji(x), say.

Using the fact that |£.(z) — k()| < 2"A|z — y| or Jix) and | Ea(2) — En( )]
= A for Jix), we get
2%
Jix) = A2 [z - ylmedy < A,

0

and
Jyx)=A f lx — y| ' dy = Ax7%,
hence
J(x) = Axe, form—-1=n=m+3
If n>m+ 3 or n>m — 1, then observing lé,,(x) =0,
3.2
J@=A[  lz—y7 dy
2—n—1
and

R.9—m—4

ZJn(x)éA(f + [ )Ix—yl"““ dy

03-"?/8 o o
gA(fO +L)|x—y|—1—ady
= A.xe,

where the summation is taken over {n:n =m — 2 or m + 4 = n}. There-
fore

> Ji@) = A, (213)

N=—oco
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and

5 1;§Aaf°° At x| == dx

N=—oco

gAaf°° A x|* da,

applying Theorem B. Collecting these inequalities, we get (2. 8) for 0 = a < 1.
Now we prove the inequality (2. 9) for 0 < a < 1.
Let G(x) = (+o+, gu(X). Gnes(x), «++) belong to LLI*) and L*1%), i.e.

f lG(x)]Qle“dx<ooandfw |G(@)|2dz < oo, then

—oo

GO = 3 k(). (2.14)

Again by Theorem A,

[ 1@6@ izl ds
S (@) — hO)G))

-l [JZ

<24 + D), (2.15)
r=f" [
r=[ [

Applying Schwarz inequality, we get,

r= fw{ > Ién(x)le > [/%n<x>-én<y>|2} 2yl edzdy, (2.18)

N=—oo

2

|z—y| " *dxdy

where

> @) (@) — k()| |2 — y|2dzdy  (216)

Nm—oo

and

5 A@) (5@) — i)} 'l — y|-=dady.  (217)

n=—o

Nn=—o0

and

Izéf_w f_w { i I%n(x)lz}{ i lAgn(x)—én(y)P} ‘x _yl—l—adxdy. (2'19)

N=—oco N=—oco

Hence we have the required inequality by using the estimate (2.13) for (2.18)
and Theorem A for (2.19).

3. In order to generalize Lemma 2, we shall state here some preliminary
theorems.
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The first is the Marcinkiewicz interpolation theorem extended by Stein-Weiss
[10] and we can state in the following form without essential change of their
proof.

Let (M, M, ) and (N, R, v) be two measurable spaces and a,, a;, 8, and
B, be positive measurable functions with respect to p and v respectively. Let
define the measure p, on M and v, on N by

dp, = ay* a,’dp and dv, = BB, dv 3.1
for0=r,s=1LLetl=p,=qg;=c (j=0,1), po = b1, ¢ # ¢1>
1p=Q—28)/p+t/p, O=t=1) (3. 2)
1/q. =1 —8)/qo + t/q, 0=t=1) 3. 3)
and s(¢) = (¢p,)/p1, 7(¢) = (£q.)/q, and set ‘
df = ( gz;; )< dv. 3. 4)

THEOREM C. Let X and Y be two Banach spaces and T be sublinear
operator, mapping functions defined on M and having values in X into func-
tions defined on N and having wvalues in Y. Suppose that T has the fol-
lowing two properties ;

(i) The domain of T includes LX) u L2(X), where LYX)" denotes
the LP-space with values in X.

) If fisin LX) (7 =0,1), let
Fy={x ¢ N: |Kx)XT))lr > y}
where k= (8,/B))'“ % and y > 0. Then, we have

A
EEI= | L 1 | 3. 5)
Then, T is defined on L% © (X) for 0 <t <1 and if f is in this space
TS Nt npy = A S Upes o (3. 6)

Next two lemmas are the variations of L.H6rmander’s theorem [5] (see
also, J.Schwartz [ 81]).

LEMMA 3. With above X,Y, let K(x), x € ( — oo, ) be the bounded

linear operators of X into Y. Suppose that K(x) is locally integrable ; suppose
that there exist constant A, A’, A” such that

1) In special case du(x) = |z|*dz, Li and ||p| |y will be denoted by L? and || f||pa
respectively. If du = dx, we write simply L? and ||f]|p.
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f I| Kt(x — »)) — K(tz)|| dz = A't™ 3.7
|zl=4

for all vy, |y| = A" and
IK@)l|= A"l x| (3. 8)
for all x. Put for function f(x) having values in X

@@ = [ K — 20y 3. 9)
Suppose also that for some 0 = a < 1,
1815, -2 = Al fls, - (3.10)
Then
pol(z: @@l > a}) = Afalfls (3.11)

where dp_. = |x|~*dx.

REMARK 1. Though this lemma is stated for L”,-space on (— oo, o), it
holds for L”,-space on finite interval, e.g.(— =, ), and for the space /2, con-

sisting of sequences {f(n)} such that | f |, - = ; i L) P(In] + 1)~ '

Nn=—co

<C oo, Since the proofs of other cases are similar, we omit it.

To prove Lemma 3, we need the following,

LEMMA 4. Let u € L., (X), 0=a <1, where X is some Banach space
and let s > 0. Then we can write

oo

u=v+ ) w (3.12)

k=l

where v € L (X)and w, ¢ L' (X) N L'(X),

ol e + 22 lwelh -a = Asllul,-a , (3.13)
k=1
lv(@)x = Asss, a.e. x € (— oo, 00), (3.14)
and for certain disjoint cubes I,
support of wy C I, E=1,2,c0., (3.15)
2 pwa(l) = 1/s|uls, —a (3.16)

k=1

and
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f wy(@)dz = 0, E=1,20.-. (3.17)
I

PROOF OF LEMMA 4. Our proof is similar to that of L. Hormander’s.
Divide the whole real axis into the intervals I, having same measure such
that one of them has origin at its end point and

w-o(l}) Z— Ilullx —a F=1,2... (3.18)

Divide each 1nterval into two intervals of same measure and let I;; be
those intervals on which the mean of u is not less than s, then we have

sp-al) = | Nulxdp-a = 2sp-a(1y). (3.19)

I,

We define v(x) and w,,(x) by

o(x) = f uly)dy if € Ly, j=1,200-, (3.20)
|1| :

uy

w,(x) = L i=1,2.... (3.21)

{u(x)~v(x) if € I
if & I,

Next we divide I;; into two intervals with same measure and repeat the
above process getting new sequence of intervals I,;, Then we extend the defini-
tion (3.20) and (3.21). Continuiting in this way, we get the sequences of func-
tions w’s and intervals I’s; for simplicity we write them by {w,}, {I;}. If we

define
v(x) = u(x) for x § O = U I,
k=1

then (3.12) (3.15), (3.16) and (3.17) hold clearly. Let x € I, for some £k, then
we have

I}—kl _]: )| xdx = —S%~ - (I) f N )| xdps—a(), (3.22)

A, not depending on « or I,. In order to prove (3.22), we denote I, by (a — A
a + h) and we may assume a > 0. Noting a = h by our construction, we have

ll (D)) xdzx

[ @il 2l e = s

In the case a=h = a/2, we get
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a+h

a 1—a
_a(l) = x%dxr < xdr = 1-o
I ( k) j; N j; -z 1—«a a
= Aja~| L],
and in the case a/2>h >0,
a+h
_ o 2h _ _ 2°|L|
po(ly) = f L adr=pTie =Sk
Therefore we have (3.22).
By (3.20), (3.22) and (3.19), we get
1
lv(@)lx= AR ()| xdps-a
k Ik
= A D xdue = 24,05, (3.23)
H— 4(1) Ik

If x & O, then for arbitrary small interval I,

A [l 5 2

hence we get |u(x)]|x=2s for a.e.x & O. Thus (3.14) is proved.
To prove (3.13) we first note

oh-. = ( [ ) ) @l

= Jub o+ T [ 1uty)lady

k=1
and using the inequality (3.22), we have
vl -a = (Aa + 1) Jul -o

Hence

Ik, -« + Z lwilh, -« = 2As + 3lufs -

REMARK 2. In the case of L',-space on (— m,m), it is sufficient for our
purpose to prove this lemma for s > Aa|«|:,-s, A« being some constant. It is
convenient to divide (— =, ) into four intervals I; and take A, = 2/7'~%, then

(3.18) holds.

REMARK 3. In the discrete case /L., intervals I, are successions of integers
and may not be divisible into two intervals of same measure, therefore, we
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must make subdivision in the way that measure of each interval is not greater
than two times of others.

PROOF OF LEMMA 3. Decompose u € L', (x) in the way of Lemma 4.
Let & be fixed and denote w; by w and I, by I = (a — h, a + h), where we

may assume a >0 and a — A = 0. By virture of (3. 3) we may assume that
(9. 7) holds with A=1, A” =1/2.

[ IS di-a)
¥4 (@—2h,a+ 20,
= [ (K = 2) =K ~ @)}w(@)dzlr|y|~*dy
V¢ (@—2h, a+2h) r

= f lo(z)| xdz f IK(y — ) — K(y — a)llly|~*dy

V¢ (a—2h,a+2h)

= | lw(z+ a)lxdz Ky — 2) — KW)llily + al ~dy. (3:29)

—h |y|=2n

Now we show

|z + al® . Ky — 2) — KWllly + al“dy = A, (3.25)
vizen
for |x| = h. It is sufficient to consider the integral over (—3a/2,—a/2)N(— oo,
— 2h) by hypothesis (3. 7). By (3. 8) we get that [[|[K(y)|, [|[K(x — ||| = Aa™*
for y € (— 3a/2, — a/2) N (— oo, — 2h) and x € (— h, h), therefore noting
|x+ al|* = 2* a*, we have (3.25).
By (3.24) and (3.25),

f N @@IG)sdp-o5) = A f e (@) | xdpa(2). (3.26)
V¢ (@—2h.a+2h. xel

If we put w’ = > w,, then it follows from (3.16), (3.26) that there exists a

k=1
set E of measure at must A.s™'|u]: -« such that

f I ®W )P rdp-a(y) = Aal w1, = Acluls,-a (3.27)
Y¢E
By well known argument we have from (3.27) that

p-({y : IRy > 2}) = Au(t™ + s Dlul, o (3.28)
On the other hand it follows from (3.14) and hypothesis (3.10) that

[0z - = Aus'?v]12s = Aust? [u]},. (3.29)

Since # = v + w, we get by (3.28) and (3.29)
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poa({y : [(B)Wr > t}) = At + 57 +27%8) ) -a (3.30)

If we chose s = ¢, we get
p-o({y : [Ru)P)r > t}) = At ).
This completes our proof.

4. LEMMA 5. Let K\(x), £ € (— o0, o) be the function defined by (2. 3),
then

j | K(t(x — v)) — K\(tx)|dx = A/t (4. 1)
lz|=1

for all t >0 and vy, |y| =1/2.
This Lemma was proved by J. Schwartz [8], but for the sake of completeness

we show directely.

PROOF. Since ¢ € C~ and its first few moments are zero, we have
ko(x) = O(x™?), ky'(x) = O(x™?) as x — oo, 4. 2)
and ,
ko(x) = OQ), k/(x) = O(x) as = — 0. (4. 3)
Suppose 2" = x < 2™"!, m being some integer, then remembering %.,(x) = 27"
k(27 "x),

A2 2 " for n=m

k(@) = {
A27"(2-"x)"* for n=m + 1.

Therefore, we get

m+1

K@i =( L + £ ) K@i =4/

7% =—o00 n=m+2
Hence

f |K\(x — yt) — K(x)|dx = i |Ky(x— yt) —K,(z)|dx
le] >t

kel dJt2k>|x|Z2kt

= A .
éZW_I—:;[_]?)QZktéA if |yl§1/2.

k=1
Similarly we can get the following by using the first inequalities in (4. 2) and
(4. 3),
LEMMA 6. We have

|Ki(x)| = Alx; ™ 4. 4
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LEMMA 7. Let 1< p=2 and — 1 <a<p—1, then with the notation
of §2,

[ 1@ |2lode = Ay [ 1f@)17 21z, . 9

—oco -

and

f [(®.G)(@)|?|x]*dx = Apa | |G(2)]?| x|"dx. 4. 6)

PROOF. We show (4. 5) only, a proof of (4. 6) is similar.

Operator &, mapping L! into L'(/?) is weak type (1, 1) by Lemmas 2 and
3 with @ = 0. On the other hand this mapping is strong type (2. 2) by Lemma
2 with @ = 0 and applying Theorem C, we get the inequality (4. 5) in case
a = 0. Thus we get (4.5)for p= p,, 1 < p, <2, =, = 0and for p= p, = 2,
a=a, 0=a, <1 by Lemma 2, therefore using Theorem C again, we have
4.5 for0=a<p—1land 1<p=2.

In the case — 1 < @< 0, operator &, is weak type (1. 1) with respect to
measure |x|*dx by Lemma 2 and 3 and strong type (2. 2), therefore by Theo-
rem C, inequality (4. 5) is proved for — 1 <a <0 and 1 < p = 2. Thus Lem-
ma is proved.

LEMMA 8. Lemma 7 holds for 1 < p<<oo and —1<a<<p—1.
A proof is obvious by Lemmas 1 and 7.

5. The last lemma is the following which is due to J. Schwartz [ 8 ]. .

LEMMA 9. Let 1< p<oo, —1<a<p—1 and for each N, let &y be
the transformation in LX(I*) which maps the vector whose n-th component has

the Fourier transform hn(;c)fn(x) for n= N, and f,(x) for n > N. Then there
exists a finite constant A independent on N such that the norm of &, regarded
as mapping of L4(*) into itself, is at most A.

Lemma 9 was proved by J. Schwartz for « = 0 and since a proof of the
case for — 1 <<a < p— 1 does not differ from it except to use the following
theorem, we omit it. We need only Corollary 1 below to prove Theorem 1,
which follows from Theorem 2 only.

THEOREM 2. Let 1<p<oo, —1 <a<p—1land X be L? space,1 <q

<oo, on any measure space (S, F, m). If we defined the conjugate function ?
by

Fay=2pv. [ L,
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Jor flz) € LYX), x € (o0, o),

Froy— L N €)!
flx) = T PV. ./_,, 2tan(x — y)/2 @,

for periodic (X) € LYX) with period 2m and
Fiy= L & S

m=+n

for {f(n)} € 12(X), then
1Flpe =< Asg el Floe 6. 1)

where norms denote Li(X)-norms on (— oo, ) or on [— w,w) or [AX)-norms
respectively.

PROOF. We show the case Li(X) on (— oo, ), other cases will be proved

similarly. Since the kernel of mapping Tf = ? satisfies the condition (3. 1) in
Lemma 3, 7" is weak type (1. 1) with respect to the measure du* = |z|*dx,
—1<a=0. On the other hand we have

| A9l = A [ 1f(2 )| gpe
for1<g <oo,—1<a<qg — 1and s e S (e g. see Hirschman [ 3], where
we find the proof of compact case, but other cases may be proved by the same
way.) Integrating above inequality we get (5. 1) for p = q. Therefore by inter-
polating argument we have (5. 1) for 1 < p = gq. The validity of our theorem
for 1 < g < p will follow from adjoint argument.

COROLLARY 1. Let (' * "fn(x>9 fn+1(x)” ¢ ') € Lg(lq): 1< b2 < oo, 1< q<
o, —1<a<p—1, and define

L

Su(Z 5 tn, V) = f " e=1f.(y)dy,

Un

then

o . vla o o pia
[ 12 |sn<x;un,vn>1q} |zlodz = Ay {z lfn(x)lq} | z|*dx.

N=—co i N= —co

PROOF OF THEOREM 1. Let ®(x) € L%(/*) and its n-th component @,(x)
have Fourier transform ¢,(x). Consider an operator which maps ®(x) to the
vector with n-th component V() defined by

, pa) i 2= |z] <2
o= | 20 P EEE 6.2

L0 elsewhere,
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then the norm of this operator mapping LZ(/?) into itself is bounded by Corol-
lary 1. Therefore if we put ®(x) = (8, f)(x), then the right hand of (2. 1) is
obvious by Lemma 8. The left hand follow at once from the equality

RO)D) = 3 gu@@).

Thus our proof is completed.
REMARK 4. By Corollary 1, we may easily modify the left hand of (2. 1)
in the following way ;
If (oo ey @l @), Grir(Z)ye o 0) € LE(ID), 1 < p< o0, — 1 < a< p—1is suitably
restricted then there exists f € LE, such that
Aa) = gu2)  for 20 = |z| <2
and

[ @ Plelde= Ay, |

—co —oo

o /2
{ 5 lgn(x)P} | z|“dx.

Tom —oco

6. Now we state the Marcinkiewicz type theorem.

THEOREM 3. Let 1< p< oo, —1<a< p— 1. For each x, let Mx) be
a bounded operator in I, suppose that Mx) is bounded and that its variation
satisfies

vari Mx)=A, n=0, =1, £2.... 6. 1)

< x| <2n+1
Let M be the mapping defined by
Mf)(@) = Ma)f(@) in 2" = |z <27,
for f € L% then M is a bounded mapping of the space LE(I*) into itself.

A proof follows at once from Theorem 1.

COROLLARY 2. In Theorem 3, the hypothesis (6. 1) may be replaced by
assumption

M| = Alx|
A proof is obvious.

7. The Discrete Case. In this section we consider the weighted form of
a theorem in G. Sunouchi [12], that is,

THEOREM 4. Let 1< p<<oo, -1 <a < p—1 and {f(k)} € I8, that is,
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] 1/p

1N pa= i IR P(1 k] + 1) J' < oo, Suppose {f(k)} be a Fourier coefficient of

ke—oo

some integrable function _;‘(0),

j(0)~ i FlR)eraes,

k=—co

and define

9—n-+1

8.(k) = f FOe*™ds n=1,2,0 ., (7. 1)

—n

then

©o oo p/2 st
0< A= 2 {Z'Bn(k)P} (&l +1)= [/ 20 1R I*(|k] + 1)

km—oco | m=1 k=—oo

=A,, <co. (7. 2)

We can proceed with a proof in the way of integral case, so we sketch it
only.

Now let I%z(x) be vector (£,(x), ky(x),e « +), where £,(z) (n = 2) are periodic

with period 1 and identical with the functions of (2. 2) for 0 =<z < 1 and £,(z)

equal to the function of (2. 2) for 1/2 = 2 < 3/2 and is periodic with period 1.
Let

Kim) = [ Ru(aersedae = ), talm) ), @. 9

then we can use the same estimate as (4. 2) and (4. 3), therefore replacing m
for x, we get

2 1Kym—1)— Kym)| = A for |I] = [m/2], (7. 4)
Imizt
and
|Ky(m)| = A/(Im| + 1) for all m =0, £1,..., (7. 5)
For a scalar valued sequence {f(m)}, put

@) = 3 Kulm — DA 7. 6)

le—o

and for a sequence {G(m)} with values in one sided sequence space %, put

@GXm) = ¥ Kim — DGO, @. 7

l=—oco
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If {f(m)} and {G(m)} are suitably restricted, we have

S @G = 3 fom) @CYom).

M= —oco M=—co

By this relation we get Lemma 1 replacing £,, 8,, by R, &, and LZ-norms by
I2-norms.

LEMMA 10. Let —1<a<1, feli and G < [X(?), then

i | P (Im] + 1)* = Aa i fm)*(Im| + 1%, (7. 8)

M=—eco M= —oco

and

o oo

2 @G (Im|+1) = Aa 3 IGm)|*(Im] + )% (7. 9)

M=~oco Me —oco

Since a proof is similar to that of Lemma 2, we omit it, but we must use
the followings in place of Theorems A and B.

THEOREM E (A.Devinatz and L.LHirschman, Jr. [1]). If f e 2, 0 <a <1
and f(ﬂ) ~ 3, flm)e ™ then

A% lf(m)lﬂ(imi+1>“§fofollf(ﬂ)—f(<p)|2{sinwl0—¢|}“'“d¢d0

oo

=4, 2 1fmP(im| + D~
M= — oo, M0
THEOREM F (special case of Pitt’s theorem). With above notations

o

fu A@)|¥sin mx) “*dz = As 3 |fim)|*(Im| + 1.

M= —oco

By (7. 4), (7. 5), Remark 1 and Lemma 10, operators §, and &, are weak
type (1. 1) with respect to the measure concentrated in integers only and having
mass (|m| + 1)* at m (— 1 <a =0). Hence by interpolating arguments and
discrete analogue of Lemma 1, we get,

LEMMA 11. Let 1<p<oo, —1<a<p—1 and feli, Ge I5(P,
then

o

S @A (m| 17 = Ape 3 fom)| (] + 1), (7.10)

M= —co m= —oco

S @G X(m| + 1= Aye 3 1Gom) (I m] + 1. (7.11)

Mm=—oco = —oco
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8. LEMMA 12. Suppose that {f.(m)} € li(l°), where 1 <p<oo, —1
<a<p—1,1<g<oco and that there exist integrable fn(ﬁ) such that fn(ﬁ)
~ Y fulm)ermim

Let
Salm s ty) = f :ﬂ(ﬁ)e-“""ﬂda, 0=z,=1,
then
PR oTAC ST CAFRVEY D 33 DalTCOIl SR(EORVCEY

PROOF. This lemma was proved by G.Sunouchi [12] for &« = 0 and ¢ = 2.
In this case we can follow his proof. Denote the characteristic function of (0,¢)

by Xt(ﬁ), then
1 (G- md = { A — e ™) [2mim for m#0
j; Xt B for m = 0,

and

f a(m; tn) = j; .;f n(ﬂ)X¢"(t9)e —imimb 16

o

1 — e 2mill,

= Z —%Tfn(m - l) + tnfn(m)

l=—~co

_ s Sam =D s, s € m — D)
=X oy teTt 2 2l

+ tof u(m), 8. 2)

where Z/denotes the summation for / # 0. Therefore by Theorem 2, we get
8. 1.

lm oo

PROOF OF THEOREM 4. The left hand of (7. 2) follows from

RG)0) = T ku6)546), G = {g.},
n=1
and (7.11). The right hand of (7. 2) follows from (7.10) and Lemma 12.

We can prove Theorem 5 using the analogue of Lemma 9, but without it
we can prove the following (see G.Sunouchi [12]),

THEOREM 5. If M0) is a function such that
8- (=

A =M, |d(®)| = M, n=12...,

Q7
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and fell, 1<p<oo, —1l<a<p-—1,

£6) ~ 3= fiom)er=me
then

MO FO) ~ 3 glm)e=™, g < I3
and

19lp.0 = ApaM|flsa.

9. Now we prove the decomposition theorem generalized by I.LHirschman,
Jr. along the line of integral and discrete case.
In this and next sections we use the following notation; f € L, implies

1flpe= { f ) )7 x|*dx }”p< oo and f(n) represent Fourier coefficients of
f@.

THEOREM 6. Let 1 <p<<oo,—1<a<p—1land f € L, then
o<tz [ | T a@ | lxias] [ f@irds = A< w001

N=—o0c0

where A,(x) are the functions defined by (1. 3).

First we define the two sided vector K;(x) = (s « o, kp(x), kpsi(X),e «+). Let
us denote

1 — |¢] if 2] =1
0 if [¢] >1,

A(t)={

and
T(x) = 289 (x) — Ajp(x), n 7~ 0.

Define Fourier coefficients l}n(x) by

k"(m):{o i om=0

én(m) == 'Tz’l—!(m - 3'2"_2), m = 0, =+ 1,. LK) (n ; 1)
Bum) = Tyman(m + 327", m =0, 1,000 (n =< — 1)
so that

ko(x) = i ko (m)em=, 9. 2)

Mm=-—co

and
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ko(x) = 1’
2e*"*cos x, if ol =1
20 %(cos 2P — cos 2Vx) .
k() = 205 (sin z/2)" ifn>1 . 3)
e_3.2—(n+z)zi(cos 2—(n+2):c — COS"("“).T) . _
209 (sin z/2) if n<<—1.
LEMMA 13.
[ lle = 1)~ k@) ldz = 4, ©. 9)
x| =t
for all |y| =1/2, m=¢>0.
PROOF. Let n = 2. By definition of k,(x), we have
|l — ty) — ku(x)| = |ka(z — ty) + |Ra(2)]
A A
S —ayly T
< A2"x2, 9. 5)
form=|x| =¢ |y| =1/2 and n = 2,3,4,. . . On the other hand, since
a __2erTH T nes net
Iz kx) = (2sin z/2) [3Z(COS 2"2x — cos 2" 'x)
+ (2sin 2" 'z — sin2"~%x)
_ cos T/2, (cos 2"*a — cos 2""'x) ]
2"2 sin x/2 ’
we get
lki(x — ty) — ka(x)| < A2"¢|y|7, 9. 6)
forall = |z| =¢, |y|=1/2and n=2,3,...
Hence for arbitrary positve integer N, we have
JQ(x) = Z Ikn(x - ty) - kn(x)l ’
n=0
N oo
=(Z+ = ) Ik — 1) - k@I
n=0 n=N+1
S AQY x| "W+ 2 W), 9.7

for all m =|x|=tt> 0,|y| =1/2, applying (9. 5) for the second term and (9. 6)
-1

for the first term. For the sum > |k (x — ty) — k(x)|®> we get the similar

NB=—o0
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estimation.

Therefore

f Ky — 1) — K@)\ de
= |z|=t

<Af( 2Nt 2le2 )dx+A'

©. 8)

Let 2-™*'=¢>2 ™ m being positive integer, then the last integral is less

than

I= fr,.( 21"1,7:2 >dx

2—v+1

=z = Y_ I, say.

v=1 vY2—v v=1

If we choose N = [(v + m — 1)/2], then
Ié 2Nt2v.2—v + 2—N22v,2—v é 2N—m+1 + ZV—N

§ QW-m+D]2 4 Q-m+3)[2 é 3}\/7(21;12 /\/T)
Hence

=§:L§Z 322 t)=A x/t
By (9. 8), (9. 9) and (9.10) we have (9. 4).

LEMMA 14.
|Ky(x)| = Alx| Y, for m= |x| > 0.

PROOF. By definition of &,(x)
|k(x)| = A2-I"x-% and A2
for |x| =mand =0, =1, + 2,. ... Hence

> k@=( X + T ) k@l

Nn=—co Inl<v |n| >N
= A(2F + 27 Y),
Choosing N so that 277*2 > x = 2-"*'_ we have

S k(@) = Az

N=—oco

At = A.

9.9

(9.10)

(9.11)
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10. For a scalar valued measurable function f(x), x € (— =, m), we put

@@ = [ Kz — »)f5)dy (10.1)

-7

and for function G(x) of two sided sequence space [?,

(B:G)(x) = f ) Ky(z — y)Gu(y)dy. (10.2)

-7

Since
[ @p@T@dz= [ fiz) @CY@) da, (103)

we have the analogue of Lemma 1 replacing £, and &, by &; and &; re-
spectviely.

LEMMA 15. Let —1<a <1, then

f_ |(@3f)(x)|2|x|~dx§Aaf_ |f@)|?| | *dx, (10.4)
f‘ [:(G)2)|*| x|® dxr = A fﬂ |G(x)|?| x| *dzx. (10.5)

To prove lemma 15, we use the following.

THEOREM G. (LI Hirschman, Jr [3]). If flx) € L% and 0 <a <1,
then

Ac[ f@lzlde= 55 10 - Ok - 1]

l =—co kml+1

= A, f ) |A@)|?| 2| *dz, (10.6)

where f(k) mean Fourier coefficients of f(x) now and later.

THEOREM H. (Spacial case of Pitt’s theorem). Let 0 = a <1, then

i @)1k +1) = Aa f_ ) A=)|* | x| “dx (10.7)

k==oco

PROOF OF LEMMA 15. Our proof is almost same as before.
If a =0, then Lemma is easily shown by Parseval’s relation and uniform boun-

dedness of > | Ba(m) 2. Suppose 0 < a < 1. Applying Theorem G, for n-th

N=—co
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component k,*f of &;f,

[ @l = A X 1Ok — Femem) 1L — m]

M=—co l=m+1

= 2A.(1' + 1,?), say, (10.8)
where
= X 170 = Jonl k@11 - ml e, (10.9)
B= T % k0= b fon|t L - m| (1010)
Using Theorem G again,
T B= % T 0 -jer] £ kor]i-me-

<A S X PO - Jm)Hll = m] e

M=—co l=m}1
=4, f |fx)?| x| “dz. (10.11)

Concerning with the term I?,

E= 3 1Km 2 ) — kam)|*]l — m| s

M= ==oco l=m+1

= 3 ()]t Tom), (1012)
where o
Ty = 5 k@) = ) 1*|2 = m] =
If we have -
ni J.(m) = A(lm| + 1)-* form=0, 1, +2,..., (10.13)

then applying Theorem H,

£ r= E | T g }

=AY Jm)lm| + 1)

B=—0c0
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= A, f_ Ax)|?| z|*dx. (10.4)

Hence by (10.11) and (10.14), we have

f (®PH@Fzl°= Ae 3 (I + I

fN=—oco

= A. { f(@)]2] x| *dz.

Therefore (10.14) is proved.
Now we verify (10.13). If 2= |m| then J.(m)=0forn = — 1 and n= 2.

For any case J,(m)= > |l —m|?* <A < oo, therefore (10.3) is proved

lem+1
in this case. If m =3 then J,(m) = 0 for n = 2.

Let us fix m = 3. If m =522 then k. (m) = £,() = 0 and J,(m) = 0. If

m =< 2"-2, then k,(m) =0 and

Bean—2
Ju(m) = Z 12D — m)—-=
la2r—241
Hedn—2 \
A — 27) o
< 4 —2m? e
- ‘-a"z—ux { 5e2n-2 __ Qn—2 } (- 2"

an

=83 27 = A2

l=]

If 2" < m < 5:2"* then

Jm) = 'Z; D) — k() |0 — m)-1-=

=A2 "= Am
Hence we get

S hm= ¥ o+ X

N —co {nym=2r—1} {n;2"—2<m<5, 2" 2}

=A > 2 +3Am*

{nym=<an—2}

=Am= for m = 3. (10.15)

For m < — 3, we can prove in the same way.
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To prove (10.5), we denote n-th component of G(x) by g.(x), then by
Theorem G and

@C)Ym) = 3 ham)gam),

Nn=—oco

we have

[ " 1@UG) )|zl d

S (ham)gntm) k,m‘g(l)}f 1| =24 + I),

S b (m){ gulm) — gn(m\ m — 1],

N==00

Z 9D ka(m) — /Qn(l)}‘ lm —1]7-=.

N=—oco

I=—co m=l+1

-> =

l=—co m=al+1

By Shwartz inequality and Theorem G
1= 5T b T 1 - .00 m - 17
l=—com=1+1 N=—oco N=—oo
=AY ¥ X%

lm—oco m=l+1 B=—co

=A. 3 [ lg@llelidz= A [ 1G@)*|xlda.

N=—oco -7

gum) = guD)|*|m — 1)1~

On the other hand, using Schwartz inequality again

r<y ¥ { > 1g*n(Z>|2}{ > |%n<m>—1‘e;<1>lzlm—u-l-“}

lm—oco m=l+1 M= —oo M=—co

-y 5 l‘gna)lﬂ{ > J(l>}<A Z Z | D12(|2] + 1)=

N=m—co | = —oo Yeoo—meo )  m=—oco l=—oco

§Aaf_“ |G(@)|? || d.

Therefore a proof is completed.

By Lemma 15,13,14 and Remark 1 in §3, operators & and &, are weak
types (1, 1) with respect to the measure |x|*dx (0 = a > — 1). Hence applying
interpolating arguments and analogue of Lemma 1, we have the following

LEMMA 16. If 1<p<ooand —1<a<p—1, then for f < L% and
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G e LY
I1R:/1p.e = Ap ol flb.e, (10.16)
"83G"P,a S AP,aIIG"p,au (1017)

11. LEMMA 17. Let f, € L% 1< p <oo, —1< a <p—1 and let
Si(x; k,) be the k,th partial sum of Fourier series of f., then

f{ fj Skl | zlde = Ae [ 1A@)]7|x]d. (11.1)

12

PROOF. This Lemma follows from Theorem 2 at once.

PROOF OF THEOREM 6. The left hand of (5. 1) is obvious by (10.17),
formula

RGYm) = 32 ha(m) guim),

N= —oo

where G(x) = {Ax,f)}. The right hand of (5. 1) follows from (10.16) and
Lemma 17.
Next Theorem follows from Theorem 5 (e.g.see [ 7]).

THEOREM 7. If {\,} is a sequence such that

|7\'n'§M, Z |7\m—7\m+1l§M

-1 |v|=22"!
and fe LL, 1< p<oo, —1<a<p-—1, then
3 fnhe'n
is the Fourier series of an h(x) € L% and
1Als.e = MAyalfloa

12. From above results, we can give a real proof of the theorem on the
functions of Littlewood-Paley, Lusin and Marcinkiewicz. Up to the present
these theorems were all proved by the complex methods.

For any function @(z) regular in |z| <1, the Littlewood-Paley functions

9(6), g*(0) are defined by

96) = g6, p) = 1 ﬁ (1 — p)| @(pe*)|*dp } |

and

1 12
746) = g*(6,p) = { [ @ = oo, 00 }
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where

6) = __,1 - 1_P2 (e @Y | 2t K
X0 =1 5r [ Tt PPN |

Lusin’s function s(¢) is defined by

‘1/2
sO=s69) = | [[ lo+i)| Cdudy |
EY0)

where Q5(¢) means the open domain bounded by the two tangents from z = €*
to circle |z| =8 <1 and by the more distant are of |z| = & between the po-
ints of contact.

Let f be integrable and periodic with period 2w, and F' be integral of f,
then Marcinkiewicz’s function is defined by

0] 2 1/2
u(6) = w6, f) = U |F(6 +t) + F(fs— t) — 2F0)|* }

0

THEOREM 8. Let 1< p<oo and —1<a<p—1. Suppose that ¢(6)
~ > cqe™ € L% and f € L%, then we have

n=0

Apnol@loe = lglne = A'pal@llse

Aval@lne = 19*l100 = A'pal@llp,a

ApaslPlre = Islne = Apas [Plsas
and

Anw"f'“uw = ",U'"p,w = A/p,wuf"p.m

PROOF. First we prove the right hands of inequalities. It is known that
there are the following relations between these functions;

9(6) = Ass(6), (12.1)
46) = Aug(6) and p(6) = Ag*(). (12.2)
(for (12.1) see e.g. Zygmund [16, vol II; p.210] and for (12.2) see Zygmund
[17]).
On the other hand it is well known that
. 1)2
Age) = | &L= 2lOF 17 < g 123
n=1

where 5,(6) and ¢,(f) mean the partial sums and (C, 1) means of = c,e”
respectively.
By Zygmund’s method [16, vol II; p.230], we have
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T oo p/2
f {Z I&.-;m.lz } | x| *dx
-7 | m=1

n { . Zkgl |5,n|2 \!p/Z
= —— x|*dx
LE Z ey | 1

o 2k+1_7

éAp,mf {Z 2 ?le%r_l)—?} |z|*dx

=0 n=2k

£ oo D2
= Ap, o { Z lSzk — O I 2 } lx | “‘dx, (124)

-7 k=0

using Lemma 17. Following Zygmund [15], we get

Z (52 — 53)

ZISZ"_"?"l —Z (2k+1)2

k=0 j=0
o 2k
éz Z ISzk _Sjl2
k=0 i=0
oo k 2t—1 oo |S — s ‘2
=Z Z S sw — 5|24 Y EE—0— (125)
<5 o 2+ 1 .
Hence
x oo /2
/ {le»—w} || odx
- k=0
L oo 1 2¢—1 )IJ,Z
=A Sge — S x|"dx
» 11 kz 2k + 1 §]1.ZZ(—-1‘ 2 J }) I l
+ A " ii ‘Szx"'sol }mzlxlwdx
Pl 241
T 1 p/2
=Ae 27| Spear— —-5:-:]2} |x|%dx
D, _‘{kZ_OZk+1 Z 2 1 2:
+ A f{iu}mmwdx (12.56)
) . Py 2 +1

Since |Sprio1 — Swm| = [A;] + [Ajiq]| + oo + [Agyy], we get’

1 -
Z 2k +1 22 ISZH-:_] '—Sy—-x|2

k=0 j=1
o 1 k+1 S
=3 s 22 (T 14,2 ( S 2e)
k=0 2F+1 j=1 i=f isi

k k+1

AZ 2"%1- 1 Zz |A 122(4”)/2

k=0 - Jel =]

lIA
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=AY A (12.7)

=0

The integrand of the remaining term may be estimated by the same way.
Therefore we have

fn oo ISn—U'nlz /2 u 1 o0 R .
I e L4 dxéAp,.,f > 1Azl *dx. (128)

n=l -7 \ a=0

By Theorem 6, (12.1), (12.2), (12.3) and (12.8), we have the right hand of
our inequalities.
In order to prove the left hand, set for f ¢ L%

H6) = 6, f) = { [ 0= plfte. 0 e }'

where fi(p, §) is the derivative of Poisson integral of f with respect to 6. By
Zygmund [17],

h(0) = Au(0) (12.9)

and if f is the real part of @, then A(4,f) = ¢(@,9) clearly and by conjugacy
method (cf. Zygmund [16, vol II; p.215]) we have

[Aloe = ApalPly.a (12.10)

Therefore the opposite inequalities are obvious.

13. Above arguments hold for the integral analogue. For the function
¢(z) regular in right half-plane R,z > 0, the analogues of above functions are

defined by
g(r) = { f

g¥(7) = { fo

o

1/2
X(o,7) = {%f_”m [¢'(a + iu)lzdu} ’

12
o|¢p(c + i’r)lzda} ’

oo

ox’(o, T)do }"2,

where

and
1/2

_ , N1 |
s(7) = { ”mm |¢'(o + i20))| daduj ,
where Qy(7) = {(o,%): |7 — u| < 38c}. The last function is
l"('r) — {fm | F(r + u) + F(v — u)‘“ZF('T)‘? du }1/2

w3
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where F is indefinite integral of f in L?(p > 1).

THEOREM 9. Let 1 <p<<oo and —1<a<p— 1. Suppose that §(z) is
the boundary function of the function ¢(o + it) regular in right half-plane
and belongs to L%, and f is in L%, then we have the analogous inequalities
in Theorem 8.

PROOF. Waterman [13] and [14] proved that

9(7) = Aps(7) = Asg*(7) - (13)

and
W) = Agh(e). (13.2)
On the other hand if we put for ¢(r) having locally integrable Fourier

transform ¢(z),

(0, 7) = f " Hapedr

and

O ey O
0

@

then

g*() = Aj: | s(w, T) "wa'((l’, m)|* do

(see, G. Sunouchi [11]). Therefore we may follow the above inequalities (12.4),
(12.5), (12.6) and (12.7) term by term, and we will get [g%|s.e = ApalPls a-
Hence the first part of Theorem is proved.

For the remaining part, we set for f € L%

o 1/2
o(7) = { f a|f+o, 7)|’do }

0 >
where f:(o, ) is the derivative of Poisson integral of f with respect to 7, then
it holds that

o(r) = Ap(7]
and
1150 = Asal@ls,a,

by conjugacy (see Waterman [14]). It is clear that if f is real part of ¢, then
o(7, f) = g(7, ¢). Therefore we have the opposite inequalities,
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