
ON THE EXISTENCE OF HARMONIC FUNCTIONS

ON A RIEMANN SURFACE

AKIRA SAGAWA

(Received April 16,1963)

1. Let R be an open Riemann surface and G be a non-compact region
on R whose relative boundary C consists of a finite or infinite number of
compact or non-compact analytic curves clustering nowhere on R.

Let HP, HB and HD denote the classes of single valued harmonic functions,
which are respectively positive, bounded or have a finite Dirichlet integral.

We denote by OHX(X = P, B or D) the class of Riemann surfaces R such
that every function u(p) £ HX on R reduces to a constant. Further, denote by
SOHχ the class of non-compact regions G with relative boundary C, such that
every function u{β) £ HX on G which vanishes continuously at every point
on C, vanishes throughout G.

R.Nevanlinna [ 3 ], R.Bader-M. Parreau [ 1 ] and A.Mori [ 2 ] proved the
following theorem.

THEOREM. A Riemann surface R does not belong to OHX(X = B, D), if
and only if there exist two non-compact regions Gλ and G2 on R which are
disjoint from each other and do not belong to SOHX(X = JB, D).

In this paper, by modifying Nevanlinna's method [ 3 ], we shall give a
necessary and sufficient condition in order that a Riemann surface belongs to
Oj[B — OHp.

Further, we shall give some criteria for a Riemann surface to belong to
O[jX{X = B, D) which is slightly different from Theorem mentioned above.

2. Let R be an open Riemann surface and Cλ be a system of at most an
enumerable number of compact or non-compact analytic curves clustering
nowhere on R.

We suppose that Cx separates R into two non-compact regions Gι and

R - G , (G, = G t u CO.

Let G2 be a non-compact region on R which contains R — Gλ and whose
relative boundary C2 is contained in G,.

We have the following theorem.

THEOREM 1. Suppose that there exist two non-compact regions Gί and
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G2 on R satisfying the following conditions:

( i) Gx ^ SOHB and G2 €" SOHB,

(ii) sup ω(p, C2, G2) = λ < 1, where ω(p, C2, G2) zs £/i£ harmonic measure

of C2 with respect to G2,

(iii) there exists a non-constant single-valued positive harmonic function

V(p) in Gx which is bounded (< M) on Gx Π G2 and equals zero on

cλ.
Then R € OHP. Conversely', if R € OHB — OHP, we can find non-com pact

regions Gx and G2 satisfying ( i ), ( i i) and (iii).

PROOF. Suppose that there exist two non-compact regions Gx and G2

satisfying the conditions ( i ) , ( i i) and (iii).
Let {Rn} (n = 0,1, . . .) be an exhaustion of R such that Rn is compact

with respect to R and the boundary Yn of Rn consists of a finite number of
analytic closed curves on R and Rn u Γ n c Rn+ι-

Let f{q) be an arbitrary continuous real function on C2 such that 0<f(q)
^ M on C2.

We construct a harmonic function fn(p) in G2 Π Rn such that fn(p) = 0 o n
Tn Π G2 and fn(j>) = f(p) on C2 Π 2?n.

By the maximum principle, we get fn(j>) ^/w+iC/0 ^ ^ f° r each n, whence
the sequence \fn(p)} converges to a harmonic function u(p) in G2 which is
uniquely determined by f(q).

For simplicity, we shall call u(p) the lower function in G2 with the
boundary value f(q) on C2.

Further, by the maximum principle, we have

for any p € G2, so that from (iii),

( 1 ) sup u{ρ)^M λ.
Cx

Now we construct two sequences {un(p)} and {vn(p)} (n = 0,1, . •) as
follows.

First we put

voip) = V{p)

in Gj. Let ŵ(̂ >) (n = 0,1, •) be the lower function in G2 with boundary
value vn(fi) on C2 and vn+1(p) be the harmonic function in Gλ such that
vn+1(p) — vo(p) is bounded in G1 and vn+1(p) = un(p) on Cλ.

From the formula (1), we see easily that for n^O

λ
un(ρ) < M(λ + λ2 + . . . + Xn+ι) < M-

1 - λ
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on Cx and

vn+1(p) ϊ

on C2. Since by the maximum principle, two sequences {un(f>)} and {vn(p}}
increase monotonically with n, these sequences converge to harmonic functions
u(j>) and v(j>) in G2 and Gl9 respectively.

Since un(p) - vn(p) = 0 on C2, un(p) - vn(p) = un(p) - un-x{£) on CΊ and

\un(p) — vn(p)\ < -: —in G1 Π G2, we obtain by the maximum principle
J- — λ»

applied in G x Π G 2 Π Rm

\un(p) - vn{p)\ < un(p) - vn(p) + γ^ω(p,rm n Gx n G2, i?m π GxπG2),

where ω(̂ >, Γm Π Gλ Π G2, i?m Π Gγ Π G2) is the harmonic measure of
ΓmπG1πG2 with respect to Rm ί) G{ Π G2.

Making m —> oo and next n —> °o? we have from Gx € 5 0 ^

in Gλ Π G2. Hence if we put U(p) = v(p) in Gx and ϊ7(/>) = u(p) in G2, then
U(p) is non-negative and harmonic on R.

It is easy to see that

U(p) = u(p) ̂  j ^ ω(p, Ct, GO

in G2.

Then, since G2 1" SOHB, it follows that

inf U(p) ̂  -j^- inf ω(p, Cu G2) =0.

On the other hand, since Gi £ SOHB, we have

sup £/(/>) = sup Ϊ;(/>) ̂  sup V(p) — °°9
Gι Gι Gi

hence U(p) is non-constant, so that R 1" OHP.
Next, we suppose that R e OHB — OHP. Then there exists a non-constant

single-valued positive harmonic function U(p) on R. We choose a point px on
i? and consider the open set on R, where U(p) < U(pι).

Then it is obvious that each connected component of this open set is a
non-compact region not belonging to SOHE.

Since R €' OHB, it follows by Theorem stated in 1 that this open set
consists of only one non-compact region G which does not belong to the class
SOHB.
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We denote by Gλ any connected component of the complememtary set

R — G of G with respect to R and by Cx its boundary.
It is evident that Gx is non-compact region. We choose a point p2 in Gx.
The part of the niveau curve U(p) = U(p2) contained in Gλ divides R into

two or more parts and denote by G2 that part, which contains G. On the
relative boundary C2 of G2 with respect to R, U(p) equals U(p2).

Since G i" SOπB and G c G2, we have G2 i" SOHB.
Further, since G ? S O ^ and i? € O^ , we have Gx € 5 0 ^ by Theorem

stated in 1.
Next, putting £ = inf U(p), we see easily by the maximum principle that

R

in Go Π i?m, so that

in G2. Hence we obtain

If we put ί7(/>) - C7(/>0 = F(̂ >), then V(ρ) satisfies the condition (iii), so
that two non-compact regions Gγ and G2 satisfy the conditions (i), (ii) and (iii).

3. We can prove the following theorem.

THEOREM 2. A Riemann surface R does not belong to the class OHB, if
and only if there exists a non-compact region G on R satisfying the following
conditions:

(i) GΐSO,,,

where g(p, q) is the Green function of R with its pole at q £ G and C is
relative boundary of G and v is the inner normal with respect to G.

PROOF. First we suppose that every ideal boundary component of R is
regular for the Green function of R.

Let {Sn} {n — 0,1, . . .) be a monotonically decreasing sequence which
tends to zero. We denote by Rn{n = 0, 1,. . .,) the set of all points p on R
satisfying the inequality g(p, q) > 8n and by Tn the boundary of Rn. By the
assumption, Rn is compact with respect to R.

By putting g(p, q) — Sn = gn(p, q), it is obvious that gn(p9 q) is the Green
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function of Rn.
We consider the bounded harmonic function ωn(p) = ω(p, Γn Π G, Rn) in

Rn with boundary values ωn(p) = 1 on Tn Π G and ωn(p) = 0 on Yn — Γn Π G.
Since ωn(p) (n = 0,1, . . .) are uniformly bounded, by taking suitable sub-

sequence, we may assume that ωn(j>) converges to a bounded harmonic function
ω(p) uniformly on any compact region on R.

By Green's formula, we obtain that

dv d s - 2-rr

Hence

SUFFICIENCY. Suppose that there exists a region G satisfying the conditions
( i) and (ii).

Then, from (2), it follows that

ω(q) < 1.

On the other hand, we have

ω(j>, TnΠ G,G Π Rn) < ωn(p)

in G Π Rny so that

lim ω(j>, Yn Π G, G Π i?n) ^ ω(/>)
W->oo

in G.
Hence from ( i ) , we have

1 = sup lim ω(j>, Tn Π G, G (Ί i?n) ^ sup ω(/>).

Thus the function co(p) is non-constant.
NECESSITY. If R ? O ^ , there exists a non-constant single-valued bounded

harmonic function u{β) on R.
We take a point p0 on i? arbitrarily and denote by G a connected component

of the open set on R, where u(p) < u(p0).
If we consider the function u(p0) — u(β) in G, then it is easy to see that

G Έ SOHB. Similarly we can prove that each connected component of R — G
is non-compact region and does not belong to SOHB.

If Γ yj[y q* ds = 0, then from ( 2) and maximum principle, the function
Jr OV
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1 — ω(β) reduces to the constant zero, hence each component of R — G belongs
to the class SOHB, which is a contradiction.

Thus we have our assertion, when any ideal boundary component of R is
regular for the Green function of R.

Next we suppose that at least an ideal boundary component of R is
irregular for the Green function of R.

We use the same notations as above. Then we may assume that Rn is
non-compact region.

As is easily seen from the above proof, it is sufficient to prove that the
equality ( 2) holds in this case.

Let {Fm} (m = 0,1, •) be an exhaustion of R such that, for each m,Fm

contains q and an outer point of Rn.
Let i?4m) be the connected component of Rn Π Fm which contains q. Denote

by Γ<m) the boundary of R™ and by y™ the part of Γ™ contained in Rn.
Denote by ω(™\p) the harmonic measure of (Γ<OT)—γ^) Π G with respect to R™
and by gT\p->q) the Green function of R^ with its pole at q.

By Green's formula, we have

Since Rn belongs to SOHB, it is easy to see that

lim ω4m)(̂ >) = cύn(p).

It is evident that

for w > m 0.
Letting first m —> °o and next m 0 —> °°, we obtain

0 (m) n r

 3 Z /

On the other hand, since g{nn\p,q) — gn(p,q) in p £ R(

n

m\ it follows that

T Γ dffΪΓKpyq) j ^ Γ ^Qn(p,q) j
lim I — ^ cίs ^ J _ us.

Hence we obtain

2τr J
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Therefore, it holds that

as was required.

THEOREM 3. A Riemann surface does not belong to the class OHD, if
and only if there exists a non-compact region G on R satisfying the following
conditions:

( i )

(ϋ)

where g(p> q) is the Green function of R with its pole at q € G and C is
relative boundary of G and v is the inner normal with respect to G.

PROOF. We consider the case when every ideal boundary component of
R is regular for the Green function of R.

We use the same notations as in the proof of Theorem 2.
First, suppose that there exists a non-compact region G satisfying the

conditions ( i) and (ii).
Since G ? SOΠD = SOHBD, there exists a non-constant single-valued positive

harmonic function V(p) in G such that V(p) = 0 on C, sup V(p) = 1 and its
G

Dirichlet integral D(V(p)) taken over G is finite.
Let U(ρ) be the function on R such that U(ρ) = V(j>) in G and U(p) = 0

in R — G and on C, and let un(p) be the harmonic function in Rn whose boundary
value on Tn equals to U(p).

Since 0 ĝ un(p) fg 1, we may suppose that sequence {un(p)} converges to
a harmonic function u(p) on any compact set in R.

For m < n, we obtain

DRm(un) ^ DEJJJ) = DQnBJY).

Letting n -> °° and next m —> °o, we have

Since V(p) 5g u(p), 1 = sup V(p) ^ sup u(p) and since 0 ^ un(p) ^ 1, we
G G

have
sup u(p) = 1.

G

On the other hand, since

a ^ jΓ to
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2- L . 3" '
we have

Therefore, u(p) is non-constant.

To prove the converse, we suppose that u(p) is a non-constant harmonic
function whose Dirichlet integral over R is finite.

We choose a point p0 on R and denote by G a connected component of
the open set on R, where u(p) > u(p0).

Since DG(u(p) — u(p0)) < DR(u(p)), we have G ? SOHD, hence it follows

that GτSOHB.

Therefore, by the same argument as in the proof of Theorem 2, we get

ί
Jo

Thus our assertion is proved.
In the case when at least an ideal boundary component of R is irregular

for the Green function of R, since the inequality ( 3 ) holds, we can prove the
assertion similarly.
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