ON THE EXISTENCE OF HARMONIC FUNCTIONS ON A RIEMANN SURFACE

AKIRA SAGAWA

(Received April 16, 1963)

1. Let R be an open Riemann surface and G be a non-compact region on R whose relative boundary C consists of a finite or infinite number of compact or non-compact analytic curves clustering nowhere on R.

Let *HP*, *HB* and *HD* denote the classes of single valued harmonic functions, which are respectively positive, bounded or have a finite Dirichlet integral.

We denote by $O_{HX}(X = P, B \text{ or } D)$ the class of Riemann surfaces R such that every function $u(p) \in HX$ on R reduces to a constant. Further, denote by SO_{HX} the class of non-compact regions G with relative boundary C, such that every function $u(p) \in HX$ on G which vanishes continuously at every point on C, vanishes throughout G.

R.Nevanlinna [3], R.Bader-M. Parreau [1] and A.Mori [2] proved the following theorem.

THEOREM. A Riemann surface R does not belong to $O_{HX}(X = B, D)$, if and only if there exist two non-compact regions G_1 and G_2 on R which are disjoint from each other and do not belong to $SO_{HX}(X = B, D)$.

In this paper, by modifying Nevanlinna's method [3], we shall give a necessary and sufficient condition in order that a Riemann surface belongs to $O_{HB} - O_{HP}$.

Further, we shall give some criteria for a Riemann surface to belong to $O_{HX}(X = B, D)$ which is slightly different from Theorem mentioned above.

2. Let R be an open Riemann surface and C_1 be a system of at most an enumerable number of compact or non-compact analytic curves clustering nowhere on R.

We suppose that C_1 separates R into two non-compact regions G_1 and $R - \overline{G}_1 (\overline{G}_1 = G_1 \cup C_1)$.

Let G_2 be a non-compact region on R which contains $R - \overline{G}_1$ and whose relative boundary C_2 is contained in G_1 .

We have the following theorem.

THEOREM 1. Suppose that there exist two non-compact regions G_1 and

 G_2 on R satisfying the following conditions:

- (i) $G_1 \in SO_{HB}$ and $G_2 \in SO_{HB}$,
- (ii) $\sup_{C_1} \omega(p, C_2, G_2) = \lambda < 1$, where $\omega(p, C_2, G_2)$ is the harmonic measure of C_2 with respect to G_2 ,
- (iii) there exists a non-constant single-valued positive harmonic function V(p) in G_1 which is bounded (< M) on $G_1 \cap G_2$ and equals zero on C_1 .

Then $R \in O_{HP}$. Conversely, if $R \in O_{HB} - O_{HP}$, we can find non-compact regions G_1 and G_2 satisfying (i), (ii) and (iii).

PROOF. Suppose that there exist two non-compact regions G_1 and G_2 satisfying the conditions (i), (ii) and (iii).

Let $\{R_n\}$ (n = 0, 1, ...) be an exhaustion of R such that R_n is compact with respect to R and the boundary Γ_n of R_n consists of a finite number of analytic closed curves on R and $R_n \cup \Gamma_n \subset R_{n+1}$.

Let f(q) be an arbitrary continuous real function on C_2 such that $0 < f(q) \le M$ on C_2 .

We construct a harmonic function $f_n(p)$ in $G_2 \cap R_n$ such that $f_n(p) = 0$ on $\Gamma_n \cap G_2$ and $f_n(p) = f(p)$ on $C_2 \cap R_n$.

By the maximum principle, we get $f_n(p) < f_{n+1}(p) < M$ for each *n*, whence the sequence $\{f_n(p)\}$ converges to a harmonic function u(p) in G_2 which is uniquely determined by f(q).

For simplicity, we shall call u(p) the lower function in G_2 with the boundary value f(q) on C_2 .

Further, by the maximum principle, we have

$$u(p) \leq M \cdot \omega(p, C_2, G_2)$$

for any $p \in G_2$, so that from (iii),

(1)
$$\sup u(p) \leq M \cdot \lambda.$$

Now we construct two sequences $\{u_n(p)\}\$ and $\{v_n(p)\}\$ (n = 0, 1, ...) as follows.

First we put

$$v_0(p) = V(p)$$

in G_1 . Let $u_n(p)$ (n = 0, 1, ...) be the lower function in G_2 with boundary value $v_n(p)$ on C_2 and $v_{n+1}(p)$ be the harmonic function in G_1 such that $v_{n+1}(p) - v_0(p)$ is bounded in G_1 and $v_{n+1}(p) = u_n(p)$ on C_1 .

From the formula (1), we see easily that for $n \ge 0$

$$u_n(p) < M(\lambda + \lambda^2 + \ldots + \lambda^{n+1}) < M \frac{\lambda}{1-\lambda}$$

on C_1 and

$$v_{n+1}(p) < M(1 + \lambda + \ldots + \lambda^{n+1}) < M \frac{1}{1-\lambda}$$

on C_2 . Since by the maximum principle, two sequences $\{u_n(p)\}\$ and $\{v_n(p)\}\$ increase monotonically with n, these sequences converge to harmonic functions u(p) and v(p) in G_2 and G_1 , respectively.

Since $u_n(p) - v_n(p) = 0$ on C_2 , $u_n(p) - v_n(p) = u_n(p) - u_{n-1}(p)$ on C_1 and $|u_n(p) - v_n(p)| < \frac{M}{1 - \lambda}$ in $G_1 \cap G_2$, we obtain by the maximum principle applied in $G_1 \cap G_2 \cap R_m$

$$|u_n(p) - v_n(p)| < u_n(p) - v_n(p) + rac{M}{1 - \lambda} \omega(p, \Gamma_m \cap G_1 \cap G_2, R_m \cap G_1 \cap G_2),$$

where $\omega(p, \Gamma_m \cap G_1 \cap G_2, R_m \cap G_1 \cap G_2)$ is the harmonic measure of $\Gamma_m \cap G_1 \cap G_2$ with respect to $R_m \cap G_1 \cap G_2$.

Making $m \to \infty$ and next $n \to \infty$, we have from $G_1 \in SO_{HB}$

$$u(p) \equiv v(p)$$

in $G_1 \cap G_2$. Hence if we put U(p) = v(p) in G_1 and U(p) = u(p) in G_2 , then U(p) is non-negative and harmonic on R.

It is easy to see that

$$U(p) = u(p) \leq \frac{M}{1-\lambda} \omega(p, C_2, G_2)$$

in G_2 .

Then, since $G_2 \in SO_{HB}$, it follows that

$$\inf_{G_2} U(p) \leq \frac{M}{1-\lambda} \inf_{G_2} \omega(p, C_2, G_2) = 0.$$

On the other hand, since $G_1 \in SO_{HB}$, we have

$$\sup_{G_1} U(p) = \sup_{G_1} v(p) \ge \sup_{G_1} V(p) = \infty,$$

hence U(p) is non-constant, so that $R \in O_{HP}$.

Next, we suppose that $R \in O_{HB} - O_{HP}$. Then there exists a non-constant single-valued positive harmonic function U(p) on R. We choose a point p_1 on R and consider the open set on R, where $U(p) < U(p_1)$.

Then it is obvious that each connected component of this open set is a non-compact region not belonging to SO_{HB} .

Since $R \in O_{HB}$, it follows by Theorem stated in 1 that this open set consists of only one non-compact region G which does not belong to the class SO_{HB} .

A. SAGAWA

We denote by G_1 any connected component of the complementary set $R - \overline{G}$ of G with respect to R and by C_1 its boundary.

It is evident that G_1 is non-compact region. We choose a point p_2 in G_1 .

The part of the niveau curve $U(p) = U(p_2)$ contained in G_1 divides R into two or more parts and denote by G_2 that part, which contains G. On the relative boundary C_2 of G_2 with respect to R, U(p) equals $U(p_2)$.

Since $G \in SO_{HB}$ and $G \subset G_2$, we have $G_2 \in SO_{HB}$.

Further, since $G \in SO_{HB}$ and $R \in O_{HB}$, we have $G_1 \in SO_{HB}$ by Theorem stated in **1**.

Next, putting $k = \inf_{R} U(p)$, we see easily by the maximum principle that

$$\boldsymbol{\omega}(\boldsymbol{p},C_2\cap R_m,\ G_2\cap R_m) \leq rac{U(\boldsymbol{p})-k}{U(\boldsymbol{p}_2)-k}$$

in $G_2 \cap R_m$, so that

$$\boldsymbol{\omega}(\boldsymbol{p}, \boldsymbol{C}_2, \boldsymbol{G}_2) \leq \frac{U(\boldsymbol{p}) - k}{U(\boldsymbol{p}_2) - k}$$

in G_2 . Hence we obtain

$$\sup_{c_1} \omega (p, C_2, G_2) \leq \frac{U(p_1) - k}{U(p_2) - k} < 1.$$

If we put $U(p) - U(p_1) = V(p)$, then V(p) satisfies the condition (iii), so that two non-compact regions G_1 and G_2 satisfy the conditions (i), (ii) and (iii).

3. We can prove the following theorem.

THEOREM 2. A Riemann surface R does not belong to the class O_{HB} , if and only if there exists a non-compact region G on R satisfying the following conditions:

(i)
$$G \in SO_{HB},$$

(ii) $\int_{C} \frac{\partial g(p,q)}{\partial \nu} ds > 0,$

where g(p,q) is the Green function of R with its pole at $q \in G$ and C is relative boundary of G and v is the inner normal with respect to G.

PROOF. First we suppose that every ideal boundary component of R is regular for the Green function of R.

Let $\{\mathcal{E}_n\}$ $(n = 0, 1, \dots)$ be a monotonically decreasing sequence which tends to zero. We denote by $R_n(n = 0, 1, \dots)$ the set of all points p on Rsatisfying the inequality $g(p, q) > \mathcal{E}_n$ and by Γ_n the boundary of R_n . By the assumption, R_n is compact with respect to R.

By putting $g(p,q) - \varepsilon_n = g_n(p,q)$, it is obvious that $g_n(p,q)$ is the Green

function of R_n .

We consider the bounded harmonic function $\omega_n(p) = \omega(p, \Gamma_n \cap G, R_n)$ in R_n with boundary values $\omega_n(p) = 1$ on $\Gamma_n \cap G$ and $\omega_n(p) = 0$ on $\Gamma_n - \Gamma_n \cap G$.

Since $\omega_n(p)$ (n = 0, 1, ...) are uniformly bounded, by taking suitable subsequence, we may assume that $\omega_n(p)$ converges to a bounded harmonic function $\omega(p)$ uniformly on any compact region on R.

By Green's formula, we obtain that

$$\begin{split} \omega_n(q) &= \frac{1}{2\pi} \int_{\Gamma_n \cap G} \frac{\partial g_n(p,q)}{\partial \nu} \, ds = \frac{1}{2\pi} \int_{\Gamma_n \cap G} \frac{\partial g(p,q)}{\partial \nu} \, ds \\ &= 1 - \frac{1}{2\pi} \int_{C \cap R_n} \frac{\partial g(p,q)}{\partial \nu} \, ds. \end{split}$$

Hence

(2)
$$\omega(q) = 1 - \frac{1}{2\pi} \int_{c} \frac{\partial g(p,q)}{\partial \nu} ds.$$

SUFFICIENCY. Suppose that there exists a region G satisfying the conditions (i) and (ii).

Then, from (2), it follows that

$$\omega(q) < 1.$$

On the other hand, we have $\omega(p, \Gamma_n \cap G, G)$

$$(p, \Gamma_n \cap G, G \cap R_n) < \omega_n(p)$$

in $G \cap R_n$, so that

$$\lim_{n\to\infty} \omega(p,\Gamma_n\cap G,\ G\cap R_n) \leq \omega(p)$$

in G.

Hence from (i), we have

$$1 = \sup_{G} \lim_{n \to \infty} \omega(p, \Gamma_n \cap G, G \cap R_n) \leq \sup_{G} \omega(p).$$

Thus the function $\omega(p)$ is non-constant.

NECESSITY. If $R \in O_{HB}$, there exists a non-constant single-valued bounded harmonic function u(p) on R.

We take a point p_0 on R arbitrarily and denote by G a connected component of the open set on R, where $u(p) < u(p_0)$.

If we consider the function $u(p_0) - u(p)$ in G, then it is easy to see that $G \in SO_{HB}$. Similarly we can prove that each connected component of $R - \overline{G}$ is non-compact region and does not belong to SO_{HB} .

If
$$\int_c \frac{\partial g(p,q)}{\partial \nu} ds = 0$$
, then from (2) and maximum principle, the function

 $1 - \omega(p)$ reduces to the constant zero, hence each component of $R - \overline{G}$ belongs to the class SO_{HB} , which is a contradiction.

Thus we have our assertion, when any ideal boundary component of R is regular for the Green function of R.

Next we suppose that at least an ideal boundary component of R is irregular for the Green function of R.

We use the same notations as above. Then we may assume that R_n is non-compact region.

As is easily seen from the above proof, it is sufficient to prove that the equality (2) holds in this case.

Let $\{F_m\}$ $(m = 0, 1, \dots)$ be an exhaustion of R such that, for each m, F_m contains q and an outer point of R_n .

Let $R_n^{(m)}$ be the connected component of $R_n \cap F_m$ which contains q. Denote by $\Gamma_n^{(m)}$ the boundary of $R_n^{(m)}$ and by $\gamma_n^{(m)}$ the part of $\Gamma_n^{(m)}$ contained in R_n . Denote by $\omega_n^{(m)}(p)$ the harmonic measure of $(\Gamma_n^{(m)} - \gamma_n^{(m)}) \cap G$ with respect to $R_n^{(m)}$ and by $g_n^{(m)}(p,q)$ the Green function of $R_n^{(m)}$ with its pole at q.

By Green's formula, we have

$$\omega_n^{(m)}(q) = \frac{1}{2\pi} \int_{(\Gamma_n^{(m)} \cap \gamma_n^{(m)}) \cap G} \frac{\partial g_n^{(m)}(p,q)}{\partial \nu} ds.$$

Since R_n belongs to SO_{HB} , it is easy to see that

$$\lim_{m\to\infty} \omega_n^{(m)}(p) = \omega_n(p).$$

It is evident that

$$\int_{(\Gamma_n^{(m_0)}-\gamma_n^{(m_0)})\cap G}\frac{\partial g_n^{(m)}(p,q)}{\partial \nu}\,ds < \int_{(\Gamma_n^{(m)}-\gamma_n^{(m)})\cap G}\frac{\partial g_n^{(m)}(p,q)}{\partial \nu}\,ds$$

for $m > m_0$.

Letting first $m \to \infty$ and next $m_0 \to \infty$, we obtain

$$\int_{\Gamma_n\cap G} \frac{\partial g_n(p,q)}{\partial \nu} \, ds \leq \lim_{m\to\infty} \int_{(\Gamma_n^{(m)} - \gamma_n^{(m)})\cap G} \frac{\partial g_n^{(m)}(p,q)}{\partial \nu} \, ds.$$

On the other hand, since $g_n^{(m)}(p,q) = g_n(p,q)$ in $p \in R_n^{(m)}$, it follows that

$$\lim_{m\to\infty}\int_{(\Gamma_n^{(m)}-\gamma_n^{(m)})\cap G}\frac{\partial g_n^{(m)}(p,q)}{\partial \nu}ds\leq \int_{\Gamma_n\cap G}\frac{\partial g_n(p,q)}{\partial \nu}\,ds.$$

Hence we obtain

$$\omega_n(q) = \frac{1}{2\pi} \int_{\Gamma_n \cap G} \frac{\partial g_n(p,q)}{\partial \nu} ds.$$

Therefore, it holds that

$$\omega(q) = 1 - \frac{1}{2\pi} \int_c \frac{\partial g(p,q)}{\partial \nu} \, ds,$$

as was required.

THEOREM 3. A Riemann surface does not belong to the class O_{HD} , if and only if there exists a non-compact region G on R satisfying the following conditions:

(i)
$$G \in SO_{HD}$$
,

(ii)
$$\int_{c} \frac{\partial g(p,q)}{\partial \nu} \, ds > 0,$$

where g(p,q) is the Green function of R with its pole at $q \in G$ and C is relative boundary of G and v is the inner normal with respect to G.

PROOF. We consider the case when every ideal boundary component of R is regular for the Green function of R.

We use the same notations as in the proof of Theorem 2.

First, suppose that there exists a non-compact region G satisfying the conditions (i) and (ii).

Since $G \in SO_{HD} = SO_{HBD}$, there exists a non-constant single-valued positive harmonic function V(p) in G such that V(p) = 0 on C, $\sup_{G} V(p) = 1$ and its Dirichlet integral D(V(p)) taken over G is finite.

Let U(p) be the function on R such that U(p) = V(p) in G and U(p) = 0in R - G and on C, and let $u_n(p)$ be the harmonic function in R_n whose boundary value on Γ_n equals to U(p).

Since $0 \leq u_n(p) \leq 1$, we may suppose that sequence $\{u_n(p)\}$ converges to a harmonic function u(p) on any compact set in R.

For m < n, we obtain

$$D_{R_m}(u_n) \leq D_{R_m}(U) = D_{G \cap R_m}(V).$$

Letting $n \to \infty$ and next $m \to \infty$, we have

$$D_R(u) \leq D_G(V) < \infty$$
.

Since $V(p) \leq u(p)$, $1 = \sup_{G} V(p) \leq \sup_{G} u(p)$ and since $0 \leq u_n(p) \leq 1$, we have

$$\sup u(p) = 1$$

On the other hand, since

$$u_n(q) = \frac{1}{2\pi} \int_{\Gamma_n \cap G} V(p) \frac{\partial g_n(p,q)}{\partial \nu} ds \leq \frac{1}{2\pi} \int_{\Gamma_n \cap G} \frac{\partial g(p,q)}{\partial \nu} ds$$

A. SAGAWA

$$=1-\frac{1}{2\pi}\int_{c\cap R_n}\frac{\partial g(p,q)}{\partial\nu}\,ds,$$

we have

(3)
$$u(q) \leq 1 - \frac{1}{2\pi} \int_{c} \frac{\partial g(p,q)}{\partial \nu} \, ds.$$

Therefore, u(p) is non-constant.

To prove the converse, we suppose that u(p) is a non-constant harmonic function whose Dirichlet integral over R is finite.

We choose a point p_0 on R and denote by G a connected component of the open set on R, where $u(p) > u(p_0)$.

Since $D_G(u(p) - u(p_0)) < D_R(u(p))$, we have $G \in SO_{HD}$, hence it follows that $G \in SO_{HB}$.

Therefore, by the same argument as in the proof of Theorem 2, we get

$$\int_{c} \frac{\partial g(p,q)}{\partial \nu} \, ds > 0.$$

Thus our assertion is proved.

In the case when at least an ideal boundary component of R is irregular for the Green function of R, since the inequality (3) holds, we can prove the assertion similarly.

REFERENCES

- R. BADER-M. PARREAU, Domaines non-compacts et classification des surfaces de Riemann, C. R. Acad. Sci. Paris, 232(1951), 138-139.
- [2] A. MORI, On the existence of harmonic functions on a Riemann surface, Journ. Fac. Sci. Univ. Tokyo. S. I., 6(1951), 247-257.
- [3] R. NEVANLINNA, Über die Existenz von beschränkten Potentialfunktionen auf Flächen von unendlichen Geschlecht, Math. Zeits., 52(1950), 559–604.

College of Arts and Science, Faculty of Education, Tôhoku Univercity.