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n

1. Introduction. Let tp = ^Z cP^k denote a linear transformation of a

n

sequence sn = ^ Z u * where {uk} is a real or complex sequence. When a
Λ;=0

sequence {un} satisfies Tauberian condition of the form \nun = O(l) υ , it is
sometimes possible to estimate lim sup \tp — sn\ even when {sn} and {tp} are
divergent. Such estimation was initiated by H. Hadwiger [5]. R. P. Agnew
UL [2], [3] and [4] gave such estimations for Borel, Abel and integral
transforms.

In a recent paper, A.Meir [7] defined summability methods of Borel type
B(a, q) which contained Borel, Valiron, Euler, Taylor and Sa transformation
and showed the following fact:

If tp = Ί2 cPkSk belongs to B(a9 q),
k=0

(1. 1) lim sup \\/ n un\ = L < -\-oo

and n = n(cc), p = pipe) are positive increasing functions tending to + °o as
a-*o° such that

(1. 2) lim sup I n — q \ /*/ q = M < + oo?
a—>°o

then

(1. 3) lim sup | tp - sn \ ^ A-L,

where A is a finite constant depending only on M.
In the present paper, the author will consider the case

lim sup I n — q \ Is/ q = + °°

1) We have λn — Λ/n for Borel transforms and λn = n for Abel transforms.
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and show that with the same constant A, (1.3) is also true for the series
satisfying the more general Tauberian condition of Schmidt type when {tp}
belongs to B(a,q).

In section 4, we shall consider a problem on limit points of {tp} and
{sn}. We shall show by a counter example that the statement on limit
points in [7] is not generally valid and shall give a substitute theorem on
this problem.

Finally I wish to express my gratitude to Professor G. Sunouchi for his
kind suggestions.

2. Summability Methods of Borel Type. After A. Meir let us say that
oo

the linear transformation tp — Σ cvkSk belongs to B(a,q), if the matrix [cpk]
k=o

satisfies the following conditions: p is a discrete or continuous.parameter, a
is a positive constant and q = q(p) is a positive increasing function such

1 2
that for every fixed δ, —^- < δ < —^-

as uniformly in k for \k — q\^q8,

(2. 2) E kcvk = O(exp(- <f))

\!c-Q\>Qδ

where η is some positive number independent of p, and

(2. 3) cpk §: 0.

It is known that the family B(a, q) with appropriate a and q contains
such transformations as Borel, Valiron, *?*, Euler and Taylor, see [6] and [7].

n

THEOREM 2.1. Suppose that a sequence {sn} (sn = E uk) satisfies

(1.1) limsup Isf~n~un\ = L < + oo
[tp] belongs to B(a, q). Let n = W(Λ) α^J p = p{ci) be integer-valued

increasing functions of a parameter oί such that

lim n(a)=+ oo, and lim ρ(oε)= + oo.
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i) //

(2. 4) limsup \n —q\/s/ q = M < + oo,

then we have

(2. 5) lim sup | tv - sn | ̂  A-L,

where A = AM =(awjΊ (e—'+w [ e-"dx)
Jo

= (-^y ϊ \χ - M\e~ax*dx.

Moreover, the constant AM is the best possible in the sense that there

exists a real sequence {sn} such that lim sup \sj n un\ = L < + oo and the
members of (2. 5) are equal.

ii) If lim
«-»oo

and

(2. 6) limsup \n — q\/*/ q =

A /w £/ιe formula (2. 5) z*5 infinite in the sense that there exists a real

sequence {sn} such that l imsup \s/ n un\ — L < + oo and l imsup \tp — sn\

= + oo.

For the proof of this theorem we require the following lemmas.

LEMMA 2.1. If {ak(ά)} is a sequence of real functions defined for a > 0,
such that

oo

(2. 7) limsup Σ \ak(a)\ = M,

where M is finite or infinite and

(2. 8) lim ak(μ)= 0 fork = 1,2,3, ,
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then each bounded real or complex sequence {xn} has a transformation
oo

y(oc)= Σ ak(pc)xk such that

(2. 9) lim sup \y(ά)| ^ M lim sup \xn\.
«-»oo W->oo

Moreover there is a real sequence {xn} such that 0 < lim sup | xn | < + oo and
n—* oo

the members of (2. 9) are equal.

For the proof of this lemma, see R. P. Agnew [2].

LEMMA 2. 2. If the matrix [cpk] belongs to B(a, q), then

(2. 10) £ cpk =1 + o(q 2 ) as
k=0

The proof follows from (2.1), (2. 2) and (2. 3) by simple calculations.

LEMMA 2.3. If we put Σ k 2 = I x 2 dx - emt7l,

where 0 ^ m <n, then we have

0 < Smt7l < m when m > 1,

and 0 < £OTfW < 2 w/ι^ m = 0.

3. Proof of Theorem 2.1. Since the first part of this theorem has been
proved by A. Meir [7], we shall prove the second part.

By using Lemma 2. 2 and setting s/ k uk = xk9 we get

oo

tp — Sn = X ) Cpk Sk — Sn

k=0

( \ n I °° \

i - Σ ^ I - Σ «*U - Σ) ̂  I
j=0 I k=\ \ j=k I

oo

— Σ cPi

+
oo

Z-, x

I
7 2

:kκ

CO

because the series are absolutely convergent.
If we set
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(3

then we get

j = k

for n < k,
j = k

(3.2) tp- sn = o(ΐ)+
k = i

Since (2.6) holds, there is no loss of generality in setting
doo \n — q\/\/ q = limΛ_>oo \w\ = + oo, where w =(n — q)/\/q

1°) The case where w/^~q = O(l).
Using Lemma 2. 2 and 2. 3, we have

CO

Σ lα*(c

fc=l

n _ 1

t)\^Σk 2

k=0

= <$•)+

k-1

Σc

n-\

fc=0

CO

k=n+l

n _1^

Pk Σ J
j=k+l

_ 1

k 2

+

o β

Σc2
j = k

CO

Σ c
k=n+l

oj-\c

k

•pk Z-j
j-n

-J n \cpk.

Now we shall set

(3.4) F(μ)=2Σ, Wk -V n \cpk.

In the case n > q, w is positive and therefore we get

n — q + W\/ g ^Ξ # + wcf

s/k + ^/^ ^ Is/q + ^ ^ δ for max (1, q — τv<f) t==ίkt==Ξ q +

and

\k — n\ — n— k^ w*/q for max (1, q — w(f)

Then from (3.4) we have

213
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-s/n \cpk

r3"Σ \k-n\cpk

If we take a large enough, then we get from (2.2) and Lemma 2. 2

In the case n < q, we get the followings similarly for sufficiently large a

3

Consequently we have for sufficiently large a

(3. 5) F(ά)^ -5- -7 , Λ

and then

(3. 6) lim sup F(ά)^ lim sup - ^ J ^ ^ | g B = + -

Since for each fixed k, we have easily

(3. 7) lim ak(a)= 0,
a-*oo

then from Lemma 2.1, (3. 3) and (3. 4) we get

00

(3. 8) A = limjnip £ \ak(ά)\ = + 00.

2°) T h e case where lim sup \w\/s/q = 4 - 0 0 .
0ύ-*oo

Since we have
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it follows from Lemma 2. 2 and 2. 3 that

(3. 9) I «*(«)! = Σ
j = 0

k=\ j=Ό k=n+l j=k

= O(l)+F(«)-i

Hence we get from (3. 5) and Lemma 2. 2 for sufficiently large a

(3.io) it*)- 4
'- \ 1/2

6

Now (3. 7) also holds in this case and then we get from (3. 9), and (3.10)

A = lim sup = + °°

Thus Theorem 2.1 is completely proved.

4. Tauberian constant and Limit points. The constant AM mentioned
_ 1 _

above increases with M, and AM attains to its minimum value Ao =(ατr) 2

when and only when M = 0, that is lim (n — q)/\/ q = 0.
We shall define that this constant Ao =(aπ) 2 is Tauberian constant of

summability method B(a9 q).
Now we can derive the following two theorems from Theorem 2.1. The

same results on Borel transformation have been proved by R. P. Agnew [4].

THEOREM 4.1. Let tp = Σ cpksk belong to B(a9q) and let q(ρ) tend to
A:«=0
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infinity as a->°o. A sequence {a^} for which at tends to infinity is such that,

_\_

(4. 1) l im sup \tv — sn\t^(μir) 2 l im sup \sjn un\,
<Xi-+co n~*oo

whenever ^jun satisfies Tauberian condition (1.1) in which L is positive, if

and only if

(4. 2) lim (n - q)/*/q~= 0.
αt->oo

There is no sequence {tfj such that cct tends to infinity and

(4. 3) lim sup \tp — sn\ <(ατr) 2 lim sup |s/n un\,

whenever ^ un satisfies Tauberian condition (1.1) in which L is positive.

THEOREM 4. 2. Let tp = ^ cpksjc and q(p) satisfy the same conditions as

in Theorem 4.1.

A function n{cί) which is integer-valued for a > 0 and tends to infinity

as a—>oo is such that,

(4. 4) lim sup \tp — sn\^(aτή 2 lim sup \s/n un\9

whenever ^ un satisfies Tauberian condition (1.1) in -which L is positive,

if and only if

(4. 5) Urn (n - q)l*J~q = 0.

There is no function n(ά) such that n(ά) tends to infinity and

_\_
(4. 6) lim sup \tp — sn\ <(aτr) 2 lim sup |*Jn un\,

whenever Σ un satisfies Tauberian condition (1.1) in which L is positive.

Now we take the theorem concerning limit points of [tp] and {sn}.

It is mentioned in [7] without proof that if (1.1) is satisfied and Z and
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ZB denote the set of limit points of {sn} and {tp} respectively, then for each
s € Z there exists at least one t e ZB such that

However this statement is not generally valid without some appropriate
condition on q(p). This fact is shown by the following example.

EXAMPLE. Define a sequence {un} by

(4. 7) uo = l

- v~2 (ι/4 - i/8 < n ^ v\ v = 1, 2,3, •)

v~2 (y* <n^v* + v3 + v2, v = 1, 2, •)

0 (for other n).

Here we can easily see

(4. 8) L = lim sup | s/n un \ — 1

and

(4. 9) v = 0, if = 1,2,3... .

Hence s — 0 is a point of Z.
Let a summability matrix [cpfc] belong to JB(α, ρ), where q = q(p) is a

strictly increasing continuous function of p and q(β tends to infinity as
p—»oo#

Now we set for ^ = 1, 2, 3,

(4.10) qv - ς<A)= ^4 + 2 (*3 + * 2 )+ -~-

and construct a new summability matrix [c^k] from [cpA;]. Since [cpfc] belongs
to B(af q) the new matrix [c^k] also belongs to B(a, qv). W e divide the

summation of tpy = 53 ̂ Λ into two parts and set £pυ, ί^ as follows:
k=0
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(4.11) ίΛ = Σ. cPυksk
k=0

-fe +Σ

If we take v large enough, then we get

(4.12) sk = v + 1 for |k - qυ\ ̂  ql

and applying Lemma 2. 2, formulas (4. 9), (2.1), (2. 2) and (2. 3) to (4.11),
we get

(4.13) t'Pιι=(v + ϊ)Σ, scvk

and

^ Σ

as z;—>oo.
Then we get from (4.11), (4.13) and (4.14) lim inf tPυ = + oo and thus we

If—>oo

_ 1 _

have shown that there is no point teZB such that lim sup \t — s\ ^{am) 2

for 5 = 0 € Z.

A.Meir have proved in [7], using the sequence {un} denned by (4.7),
that the least constant A satisfying the condition that for every sequence
{sn} which satisfies Tauberian condition (1.1) and each s e Z, there should

exist at least one t € ZB such that \t — s\^ A L, is Ao =(aτr) 2

If we assume that q = q(jϊ) is continuous and tends to infinity as p—>°o?

then using Theorem 2.1 the statement mentioned above is valid and the
following theorem shows that this statement is true to some generalized
condition on q(p).
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THEOREM 4. 3. Let a summability matrix belong to B(a, q) where q —
is a increasing function of p and tends to infinity as >̂—»oo? and let a
sequence {sn} satisfy the Tauberian condition (1.1). J(p) denotes q(p + 0) —
q(p - 0).

If we suppose J(ί>)= o(s/ q(p) ) 2 ) , then for each szZ there exists at least

one t € ZB such that

\t - 5 | ^ ( α τ r ) ^ L .

Using Theorem 2.1 we can easily prove this theorem.

5. Schmidt Condition. It is well known and is easy to prove that if a
91

series ^ un satisfies Tauberian condition (1.1), then its partial sums sn = Σ uk

satisfy the more general Tauberian condition of Schmidt type

(5. 1) lim sup max \sQ — sp \ fg L λ, where λ is positive.
2>>oo \qp\^λ/

Letting n(a), p(ά) be defined as in section 1, we shall determine the
least constant A! which depends upon the functions n(pi) and q(p) such that

(5. 2) lim sup I tv - sn \ ^ A'Ly
OCι—*oo

where the sequence {sn} satisfies Schmidt condition (5.1).
Now we shall prove the following theorem.

n

THEOREM 5.1. Suppose that the sequence {sn} (sn — ̂ Z #*) satisties Sch-
k = 0

mίdt condition (5.1) and {tp} belongs to B(q,q), where q(p) tends to infinity
as p-^oo and n(ά), p{ά) are the functions of parameter a as in Theorem 2.1.

Then the least constant A for which (5. 2) holds is equal to the const-
ant A in Theorem 2.1.

Introducing the following two lemmas, we can prove this theorem with
the same method as in [4] by R. P. Agnew.

LEMMA 5.1. Suppose that the sequence {sn} satisfies Schmidt condition
(5.1), n(a)/q(a)->l as α:-»oo, and

2) If />= pi (i = 1, 2, •• ),then the condition is replaced by q(pι) - q(pi-i) = o(/S/q(ρi_{)).
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(5. 3) /(<*)= m a x \sk -sn\,

where X.(cc) is bounded. Then for each 8 > 0 there exists a number a0 such
that

(5. 4) f(ά)< L-X(ά)+ £, a > a*.

For the proof, see R. P. Agnew [4].

L E M M A 5.2. If

(5. 5) flei) = Σ gk(ά)hk(a) ,

where gk(ά) and hk(ά) are nonnegative and bounded and lim gk(ά)= Gk for

each k, then

n

(5. 6) lim sup/(<#) = lim sup ] ζ Gkhk(ά).
J f c = l

PROOF OF THEOREM 5.1. Since each series satisfying Tauberian condi-
tion (1.1) also satisfies Schmidt condition (5.1), it is evident from the defini-
tion of A and A' in (2. 5) and (5. 2) that A' ^ A. Then we can prove A'
= A, provided that we show A/ ^ A. In the case where lim sup \n — q\/

\/q = lim sup | w | = + oo we have A = -\-oo from (ii) of Theorem 2.1 and
the inequality A' i=^A is evidently satisfied. Next, we consider the case
where lim sup | τv | = M < + oo.

Since the sequence {5̂ ) satisfies Schmidt condition (5.1), we can easily

obtain sn = O(\/n ). From this fact and Lemma 2. 2 and since n/q—*! as
a—>oo, we have

/
(5. 7) ^ - sn = Σ cpksk - sn ( Σ cpk + o

A:=0 Vfc=0

= Σ p̂fcfe - s») + 0(1)
A:=0

= H(Λ)+ o(l),

where
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CO

(5.8) H(a)=Σcpk(sk-sn).

Now we shall estimate | H(ά) |, dividing summation of (5. 8) into three
parts and we set Hx{d), H2(ά) H3(ά) as follows:

(5.9)

Σ
H3(ά),

where T is a fixed constant large enough.
At first we consider H^QL). We have

(5.10) Hi(Λ)=Σ \sk-sn\cpk

J V - l

= Σ Σ \sk-sn\

where E(r, ά) is the set of nonnegative integer k for which

(5.11) q + r -^- \/ q ^k ^ q + (r + 1) ~^τ */ q

and

(5.12) fr(ά) = max 15A - sn |

= max 15* — 5n I.

Appliying Lemma 5.1 to /r(^) in (5.10) we find that there is a number (Xo

such that for each integer r satisfying — N^r^N — 1 and for each £ > 0,

(5.13) fr(ά)^ L X(r,Λ)+ £, Λ > tf0,

where
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(5.14) X(r,α)=max(|r^ -w\, (r+ϊ)~ -w\).

Then we have

(5.15) H^ct^Σ (L X(r,ά)+Σ

r=-N

Since the summability matrix [cpjc] belongs to B(a, q) we get for suffici-
ently large cc

(5.16) Σ cpk = Σ cpk
kE(r) T/N^(k)/V ^{l)T/N

= i/7 e x p ( - ax2)dx

Applying Lemma 5. 2 to (5.15) we have

(5.17) lim sup Hλ(ά)= L lim sup 2Z X(r, rt) v/ — I exp(- ax2)dx

= L v/^~ lim sup HΪ(Λ),

where

(5.18) ίί(α)=Σ x ( r ^ ) I
r=-N Jrτ/N

By the definition of X(r,ά), (5.14), when rT/N S *r ̂ ( r + 1)T/N and
when iV is large enough, from (5.18) we have the following inequality
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(5.19) Hί(ά)^Σ, (jf +\xr-w\ f exp(-αx2)^)

T Cτ Cτ

— jr I exp(— ax2)dx + 1 \x — w\ exp(— ax2) dx + S.
•*• ** —ψ * —T

If we take T large enough and for this T we take N large enough
such as

(5.20) Γ \x - w\-aχi dx<S and jr~ f e~aχ2 dx<8,
\χ\>T

then we get from (5.17), (5.19) and (5.20)

(5.21) H m s u p H ^ g S a + L J v | I Λ Γ - M I ^ ^ Λ C .

In the next place we shall estimate H2(ά) defined by (5. 9). Since the
sequence {sn} satisfies Schmidt condition (5. 1) and from the fact that

I k — n I >\/n for 7\/ q < | k — n \ rg g8, we obtain

(5.22) 15* - sn\^ cWT-*/n \ for

where c is a constant independent of k and #.
Then we have

(5.23) H2(ά) = £ | 5 * - 5 n | c p * g c Σ

^7nrΣ. \k-n\cvk
W δ

= Hn(p£)+ Hn(a),

where
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c\vυ\
and HUά)— ' , — V

Since the summability matrix [cpk] belongs to JB(α, q), we have for suffi-
ciently large a

^Λs/Έ- ί **••*dx+° ( Λ Γ "

If we take T large enough, we get

(5.24) H2l(a)^ 8 -

At the same time we obtain for sufficiently large T

(5.25) H22(ά) = , — Σ */ S

From (5. 23), (5. 24) and (5. 25) we consequently obtain

(5.26) H2(ά)^ 28 + o(l).

Finally we consider HZ(OL) defined by (5.9). Since n/q—>l as α-»oo and

Is/ k — \/w I ^ n for k <q — q8,

\s/ k — \/n \ ^ >& for q + qδ < k,

and from (5. 22) and Lemma 2. 2, we have

(5.27) Hid) = £ I s* - 5WI <7pA:
|A:-(z|>Qδ
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-// n \cpk

+ Σ
δ

- O(q exp(- g ') + exp(- ς ')) = o(l).

From (5. 9), (5. 21), (5. 26) and (5. 27) we obtain

(5.28) lim sup |H(ά)\^ lim sup H ^ + lim sup H2(α)+ lim sup

^bε + LsJ—r f \x - M\e-ax*dx.

Since (5.28) holds for each θ > 0, it implies that

lim sup I H(ά) I ̂  L v /-^r f | a: - M| e"*" Jα:
Λ—*o° » ^ ^ ,7—00

and therefore

A' =g ̂ /-J J + "k - M\ e-^dx - A.

Thus we get A' = A and prove Theorem 5.1, completely.
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