SUMMABILITY METHODS OF BOREL TYPE AND TAUBERIAN SERIES

Kyuhei Ikeno

(Received March 16, 1964)

1. Introduction. Let $t_{p}=\sum_{k=0}^{n} c_{p k} s_{k}$ denote a linear transformation of a sequence $s_{n}=\sum_{k=0}^{n} u_{k}$ where $\left\{u_{k}\right\}$ is a real or complex sequence. When a sequence $\left\{u_{n}\right\}$ satisfies Tauberian condition of the form $\lambda_{n} u_{n}=O(1)^{1)}$, it is sometimes possible to estimate $\lim \sup \left|t_{p}-s_{n}\right|$ even when $\left\{s_{n}\right\}$ and $\left\{t_{p}\right\}$ are divergent. Such estimation was initiated by H. Hadwiger [5]. R. P. Agnew [1], [2], [3] and [4] gave such estimations for Borel, Abel and integral transforms.

In a recent paper, A.Meir [7] defined summability methods of Borel type $B(a, q)$ which contained Borel, Valiron, Euler, Taylor and S_{α} transformation and showed the following fact:

If $t_{p}=\sum_{k=0}^{\infty} c_{p k} s_{k}$ belongs to $B(a, q)$,
(1. 1)

$$
\limsup _{\alpha \rightarrow \infty}\left|\sqrt{n} u_{n}\right|=L<+\infty
$$

and $n=n(\alpha), p=p(\alpha)$ are positive increasing functions tending to $+\infty$ as $\alpha \rightarrow \infty$ such that

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty} \sup |n-q| / \sqrt{q}=M<+\infty \tag{1.2}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty} \sup _{p}\left|t_{p}-s_{n}\right| \leqq A \cdot L \tag{1.3}
\end{equation*}
$$

where A is a finite constant depending only on M.
In the present paper, the author will consider the case

$$
\limsup _{\alpha \rightarrow \infty}|n-q| / \sqrt{q}=+\infty
$$

1) We have $\lambda_{n}=\sqrt{n}$ for Borel transforms and $\lambda_{n}=n$ for Abel transforms.
and show that with the same constant $A,(1.3)$ is also true for the series satisfying the more general Tauberian condition of Schmidt type when $\left\{t_{p}\right\}$ belongs to $B(a, q)$.

In section 4, we shall consider a problem on limit points of $\left\{t_{p}\right\}$ and $\left\{s_{n}\right\}$. We shall show by a counter example that the statement on limit points in [7] is not generally valid and shall give a substitute theorem on this problem.

Finally I wish to express my gratitude to Professor G. Sunouchi for his kind suggestions.
2. Summability Methods of Borel Type. After A. Meir let us say that the linear transformation $t_{p}=\sum_{k=0}^{\infty} c_{p k} s_{k}$ belongs to $B(a, q)$, if the matrix $\left[c_{p k}\right]$ satisfies the following conditions: p is a discrete or continuous parameter, a is a positive constant and $q=q(p)$ is a positive increasing function such that for every fixed $\delta, \frac{1}{2}<\delta<\frac{2}{3}$

$$
\begin{equation*}
c_{p k}=\left(\frac{a}{\pi q}\right)^{1 / 2} \exp \left(-\frac{a(k-q)^{2}}{q}\right)\left(1+O\left(\frac{|k-q|+1}{q}\right)+O\left(\frac{|k-q|^{3}}{q^{2}}\right)\right) \tag{2.1}
\end{equation*}
$$

as $p \rightarrow \infty$ uniformly in k for $|k-q| \leqq q^{\delta}$,

$$
\begin{equation*}
\sum_{|k-q|>q^{8}} k c_{p k}=O\left(\exp \left(-q^{\eta}\right)\right) \tag{2.2}
\end{equation*}
$$

where η is some positive number independent of p, and

$$
\begin{equation*}
c_{p k} \geqq 0 . \tag{2.3}
\end{equation*}
$$

It is known that the family $B(a, q)$ with appropriate a and q contains such transformations as Borel, Valiron, S_{a}, Euler and Taylor, see [6] and [7].

Theorem 2.1. Suppose that a sequence $\left\{s_{n}\right\}\left(s_{n}=\sum_{k=0}^{n} u_{k}\right)$ satisfies

$$
\begin{equation*}
\lim \sup \left|\sqrt{n} u_{n}\right|=L<+\infty \tag{1.1}
\end{equation*}
$$

and that $\left\{t_{p}\right\}$ belongs to $B(a, q)$. Let $n=n(\alpha)$ and $p=p(\alpha)$ be integer-valued increasing functions of a parameter α such that

$$
\lim _{\alpha \rightarrow \infty} n(\alpha)=+\infty, \quad \text { and } \quad \lim _{\alpha \rightarrow \infty} p(\alpha)=+\infty
$$

i) If

$$
\begin{equation*}
\limsup _{\alpha \rightarrow \infty}|n-q| / \sqrt{q}=M<+\infty, \tag{2.4}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\limsup _{\alpha \rightarrow \infty}\left|t_{p}-s_{n}\right| \leqq A \cdot L, \tag{2.5}
\end{equation*}
$$

where

$$
\begin{aligned}
A=A_{M} & =(a \pi)^{-\frac{1}{2}}\left(e^{-a M^{2}+2 a M} \int_{0}^{M} e^{-a x^{2}} d x\right) \\
& =\left(\frac{a}{\pi}\right)^{\frac{1}{2}} \int_{-\infty}^{+\infty}|x-M| e^{-a x^{2}} d x .
\end{aligned}
$$

Moreover, the constant A_{m} is the best possible in the sense that there exists a real sequence $\left\{s_{n}\right\}$ such that $\lim \sup \left|\sqrt{ } \bar{n} u_{n}\right|=L<+\infty$ and the members of (2.5) are equal.
ii) $I f$

$$
\lim _{\alpha \rightarrow \infty} q(p(\alpha))=+\infty
$$

and

$$
\begin{equation*}
\limsup _{\alpha \rightarrow \infty}|n-q| / \sqrt{q}=+\infty \tag{2.6}
\end{equation*}
$$

then A in the formula (2.5) is infinite in the sense that there exists a real sequence $\left\{s_{n}\right\}$ such that $\lim \sup \left|\sqrt{ }{ }^{n} u_{n}\right|=L<+\infty$ and $\lim \sup \left|t_{p}-s_{n}\right|$ $=+\infty$.

For the proof of this theorem we require the following lemmas.
Lemma 2.1. If $\left\{a_{k}(\alpha)\right\}$ is a sequence of real functions defined for $\alpha>0$, such that

$$
\begin{equation*}
\limsup _{\alpha \rightarrow \infty} \sum_{k=1}^{\infty}\left|a_{k}(\alpha)\right|=M, \tag{2.7}
\end{equation*}
$$

where M is finite or infinite and

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty} a_{k}(\alpha)=0 \quad \text { for } k=1,2,3, \cdots, \tag{2.8}
\end{equation*}
$$

then each bounded real or complex sequence $\left\{x_{n}\right\}$ has a transformation $y(\alpha)=\sum_{k=1}^{\infty} a_{k}(\alpha) x_{k}$ such that

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty} \sup |y(\alpha)| \leqq M \limsup _{n \rightarrow \infty}\left|x_{n}\right| \tag{2.9}
\end{equation*}
$$

Moreover there is a real sequence $\left\{x_{n}\right\}$ such that $0<\lim _{n \rightarrow \infty} \sup \left|x_{n}\right|<+\infty$ and the members of (2.9) are equal.

For the proof of this lemma, see R.P.Agnew [2].
Lemma 2.2. If the matrix $\left[c_{p k}\right]$ belongs to $B(a, q)$, then

$$
\begin{equation*}
\sum_{k=0}^{\infty} c_{p k}=1+o\left(q^{-\frac{1}{2}}\right) \quad \text { as } p \rightarrow \infty \tag{2.10}
\end{equation*}
$$

The proof follows from (2.1), (2.2) and (2.3) by simple calculations.
Lemma 2.3. If we put $\sum_{k=m+1}^{n} k^{-\frac{1}{2}}=\int_{m}^{n} x^{-\frac{1}{2}} d x-\varepsilon_{m, n}$,
where $0 \leqq m<n$, then we have

$$
0<\varepsilon_{m, n}<m^{-\frac{1}{2}} \quad \text { when } m>1
$$

and

$$
0<\varepsilon_{m, n}<2 \quad \text { when } m=0
$$

3. Proof of Theorem 2.1. Since the first part of this theorem has been proved by A. Meir [7], we shall prove the second part.

By using Lemma 2.2 and setting $\sqrt{k} u_{k}=x_{k}$, we get

$$
\begin{aligned}
t_{p}-s_{n} & =\sum_{k=0}^{\infty} c_{p k} s_{k}-s_{n} \\
& =-u_{0}\left(1-\sum_{j=0}^{\infty} c_{p j}\right)-\sum_{k=1}^{n} u_{k}\left(1-\sum_{j=k}^{\infty} c_{p j}\right)+\sum_{k=n+1}^{\infty} u_{k} \sum_{j=k}^{\infty} c_{p j} \\
& =o(1)-\sum_{k=1}^{n} x_{k} k^{-\frac{1}{2}}\left(1-\sum_{j=k}^{\infty} c_{p j}\right)+\sum_{k=n+1}^{\infty} x_{k} k^{-\frac{1}{2}} \sum_{j=k}^{\infty} c_{p j},
\end{aligned}
$$

because the series are absolutely convergent.
If we set

$$
a_{k}(\alpha)=\left\{\begin{array}{cl}
-k^{-\frac{1}{2}}\left(1-\sum_{j=k}^{\infty} c_{p j}\right) & \text { for } 1 \leqq k \leqq n \tag{3.1}\\
k^{-\frac{1}{2}} \sum_{j=k}^{\infty} c_{p j} & \text { for } n<k
\end{array}\right.
$$

then we get

$$
\begin{equation*}
t_{p}-s_{n}=o(1)+\sum_{k=1}^{\infty} a_{k}(\alpha) x_{k} . \tag{3.2}
\end{equation*}
$$

Since (2.6) holds, there is no loss of generality in setting $\lim _{\alpha \rightarrow \infty}|n-q| / \sqrt{q}=\lim _{\alpha \rightarrow \infty}|w|=+\infty$, where $w=(n-q) / \sqrt{q}$.
$\left.1^{\circ}\right)$ The case where $w / \sqrt{q}=O(1)$.
Using Lemma 2.2 and 2.3, we have

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left|a_{k}(\alpha)\right| & \geqq \sum_{k=0}^{n} k^{-\frac{1}{2}} \sum_{j=0}^{k-1} c_{p j}+\sum_{k=n+1}^{\infty} k^{-\frac{1}{2}} \sum_{j=k}^{\infty} c_{p j}-\left|o\left(q^{-\frac{1}{2}}\right) n^{1 / 2}\right| \\
& =o(1)+\sum_{k=0}^{n-1} c_{p k} \sum_{j=k+1}^{n} j^{-\frac{1}{2}}+\sum_{k=n+1}^{\infty} c_{p k} \sum_{j=n+1}^{k} j^{-\frac{1}{2}} \\
& =O(1)+2 \sum_{k=1}^{\infty}|\sqrt{k}-\sqrt{n}| c_{p k} .
\end{aligned}
$$

Now we shall set

$$
\begin{equation*}
F(\alpha)=2 \sum_{k=1}^{\infty}|\sqrt{k}-\sqrt{n}| c_{p k} . \tag{3.4}
\end{equation*}
$$

In the case $n>q, w$ is positive and therefore we get

$$
\begin{gathered}
n=q+w \sqrt{q} \leqq q+w q^{8} \\
\sqrt{k}+\sqrt{n} \leqq 2 \sqrt{q+w q^{8}} \quad \text { for } \max \left(1, q-w q^{\delta}\right) \leqq k \leqq q+w q^{\delta},
\end{gathered}
$$

and

$$
|k-n|=n-k \geqq w \sqrt{q} \quad \text { for } \quad \max \left(1, q-w q^{8}\right) \leqq k \leqq q .
$$

Then from (3.4) we have

$$
\begin{aligned}
F(\alpha) & \geqq 2 \sum_{q-w_{q} \delta \leq k \leq q+w_{q} \delta}|\sqrt{k}-\sqrt{n}| c_{p k} \\
& \geqq \frac{1}{\sqrt{q+w q^{\delta}}} \sum_{q-w_{q} \delta \leq k \leqq q}|k-n| c_{p k} \\
& \geqq \frac{w \sqrt{q}}{\sqrt{q+w q^{\delta}}} \sum_{q-w_{q} \delta \leq k \leqq q} c_{p k} .
\end{aligned}
$$

If we take α large enough, then we get from (2.2) and Lemma 2.2

$$
F(\alpha) \geqq \frac{1}{3} \frac{w \sqrt{q}}{\sqrt{q+w q^{i}}} .
$$

In the case $n<q$, we get the followings similarly for sufficiently large α

$$
F(\alpha) \geqq \frac{|w| \sqrt{q}}{\sqrt{q+|w| q^{\delta}}} \sum_{q \leq k \leq q+w q^{\delta}} c_{p k} \geqq \frac{1}{3} \frac{|w| \sqrt{q}}{\sqrt{q+|w| q^{\delta}}} .
$$

Consequently we have for sufficiently large α

$$
\begin{equation*}
F(\alpha) \geqq \frac{1}{3} \frac{|w| \sqrt{q}}{\sqrt{q+|w| q^{8}}} \tag{3.5}
\end{equation*}
$$

and then

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty} \sup _{\alpha \rightarrow \infty} F(\alpha) \geqq \limsup _{\alpha \rightarrow \infty} \frac{1}{3} \frac{|w| \sqrt{q}}{\sqrt{q+|w| q^{\delta}}}=+\infty . \tag{3.6}
\end{equation*}
$$

Since for each fixed k, we have easily

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty} a_{k}(\alpha)=0, \tag{3.7}
\end{equation*}
$$

then from Lemma 2.1, (3.3) and (3.4) we get

$$
\begin{equation*}
\mathrm{A}=\lim _{\alpha \rightarrow \infty} \sup _{k=1}^{\infty}\left|a_{k}(\alpha)\right|=+\infty . \tag{3.8}
\end{equation*}
$$

2°) The case where $\lim _{\alpha \rightarrow \infty}|w| / \sqrt{q}=+\infty$.
Since we have

$$
\frac{1}{\sqrt{q}} \sum_{k=1}^{n} k^{-\frac{1}{2}} \leqq \frac{1}{\sqrt{q}}\left(1+\int_{1}^{n} x^{-\frac{1}{2}} d x\right) \leqq \sqrt{\frac{n}{q}}=\left(\frac{q+|w| \sqrt{q}}{q}\right)^{1 / 2}
$$

it follows from Lemma 2.2 and 2.3 that

$$
\begin{align*}
\sum_{k=1}^{\infty}\left|a_{k}(\alpha)\right| & =\sum_{k=1}^{n}\left|-k^{-\frac{1}{2}} \sum_{j=0}^{k-1} c_{p j}+o\left(\frac{1}{\sqrt{q}}\right) n^{-\frac{1}{2}}\right|+\sum_{k=n+1}^{\infty} k^{-\frac{1}{2}} \sum_{j=k}^{\infty} c_{p j} \tag{3.9}\\
& \geqq \sum_{k=1}^{n} k^{-\frac{1}{2}} \sum_{j=0}^{k-1} c_{p j}+\sum_{k=n+1}^{\infty} k^{-\frac{1}{2}} \sum_{j=k}^{\infty} c_{p j}-\frac{1}{3} \sqrt{\frac{n}{q}} \\
& =O(1)+F(\alpha)-\frac{1}{3}\left(\frac{q+|w| \sqrt{q}}{q}\right)^{1 / 2}
\end{align*}
$$

Hence we get from (3.5) and Lemma 2.2 for sufficiently large α

$$
\begin{align*}
F(\alpha)-\frac{1}{3} & \left(\frac{q+|w| \sqrt{q}}{q}\right)^{1 / 2} \geqq \frac{1}{3}\left\{\frac{|w| \sqrt{q}}{\sqrt{q+|w| q^{\phi}}}-\left(\frac{q+|w| \sqrt{q}}{q}\right)^{1 / 2}\right\} \tag{3.10}\\
& =\frac{1}{3} \frac{|w| \sqrt{q}}{\sqrt{q+|w| q^{\phi}}}\left(1-\left(1+\frac{q}{|w|}\right)^{1 / 2} \frac{\left(|w|^{-1}+q^{\delta-1}\right)^{1 / 2}}{\sqrt{q}}\right) \\
& \geqq \frac{1}{6} \frac{|w| \sqrt{q}}{\sqrt{q+|w| q^{\delta}}}
\end{align*}
$$

Now (3.7) also holds in this case and then we get from (3.9), and (3.10)

$$
\mathrm{A}=\underset{\alpha \rightarrow \infty}{\lim \sup } \sum_{k=1}^{\infty}\left|a_{k}(\alpha)\right|=+\infty .
$$

Thus Theorem 2.1 is completely proved.
4. Tauberian constant and Limit points. The constant A_{M} mentioned above increases with M, and A_{M} attains to its minimum value $A_{0}=(a \pi)^{-\frac{1}{2}}$ when and only when $M=0$, that is $\lim (n-q) / \sqrt{q}=0$.

We shall define that this constant $A_{0}=(a \pi)^{-\frac{1}{2}}$ is Tauberian constant of summability method $B(a, q)$.

Now we can derive the following two theorems from Theorem 2.1. The same results on Borel transformation have been proved by R. P. Agnew [4].

THEOREM 4.1. Let $t_{p}=\sum_{k=0}^{\infty} c_{p k} s_{k}$ belong to $B(a, q)$ and let $q(p)$ tend to
infinity as $\alpha \rightarrow \infty$. A sequence $\left\{\alpha_{i}\right\}$ for which α_{i} tends to infinity is such that,

$$
\begin{equation*}
\limsup _{\alpha_{i} \rightarrow \infty}\left|t_{p}-s_{n}\right| \leqq(a \pi)^{-\frac{1}{2}} \limsup _{n \rightarrow \infty}\left|\sqrt{n} u_{n}\right| \tag{4.1}
\end{equation*}
$$

whenever $\sum u_{n}$ satisfies Tauberian condition (1.1) in which L is positive, if and only if

$$
\begin{equation*}
\lim _{\alpha_{i} \rightarrow \infty}(n-q) / \sqrt{q}=0 . \tag{4.2}
\end{equation*}
$$

There is no sequence $\left\{\alpha_{i}\right\}$ such that α_{i} tends to infinity and

$$
\begin{equation*}
\limsup _{\alpha_{i} \rightarrow \infty}\left|t_{p}-s_{n}\right|<(a \pi)^{-\frac{1}{2}} \lim _{n \rightarrow \infty} \sup \left|\sqrt{n} u_{n}\right|, \tag{4.3}
\end{equation*}
$$

whenever $\sum u_{n}$ satisfies Tauberian condition (1.1) in which L is positive.

THEOREM 4.2. Let $t_{p}=\sum_{k=0}^{\infty} c_{p k} s_{k}$ and $q(p)$ satisfy the same conditions as in Theorem 4.1.

A function $n(\alpha)$ which is integer-valued for $\alpha>0$ and tends to infinity as $\alpha \rightarrow \infty$ is such that,

$$
\begin{equation*}
\limsup _{a \rightarrow \infty}\left|t_{p}-s_{n}\right| \leqq(a \pi)^{-\frac{1}{2}} \limsup _{n \rightarrow \infty}\left|\sqrt{n} u_{n}\right| \tag{4.4}
\end{equation*}
$$

whenever $\sum u_{n}$ satisfies Tauberian condition (1.1) in which L is positive, if and only if

$$
\begin{equation*}
\lim _{\alpha \rightarrow \infty}(n-q) / \sqrt{q}=0 \tag{4.5}
\end{equation*}
$$

There is no function $n(\alpha)$ such that $n(\alpha)$ tends to infinity and

$$
\begin{equation*}
\limsup _{\alpha \rightarrow \infty}\left|t_{p}-s_{n}\right|<(a \pi)^{-\frac{1}{2}} \lim _{n \rightarrow \infty}\left|\sqrt{n} u_{n}\right| \tag{4.6}
\end{equation*}
$$

whenever $\sum u_{n}$ satisfies Tauberian condition (1.1) in which L is positive.

Now we take the theorem concerning limit points of $\left\{t_{p}\right\}$ and $\left\{s_{n}\right\}$. It is mentioned in [7] without proof that if (1.1) is satisfied and Z and
Z_{B} denote the set of limit points of $\left\{s_{n}\right\}$ and $\left\{t_{p}\right\}$ respectively, then for each $s \in Z$ there exists at least one $t \in Z_{B}$ such that

$$
|t-s| \leqq(a \pi)^{-\frac{1}{2}} \cdot L
$$

However this statement is not generally valid without some appropriate condition on $q(p)$. This fact is shown by the following example.

Example. Define a sequence $\left\{u_{n}\right\}$ by
(4. 7) $\quad u_{0}=1$

$$
u_{n}=\left\{\begin{array}{cl}
-\nu^{-2} & \left(\nu^{4}-\nu^{3}<n \leqq \nu^{4}, \nu=1,2,3, \cdots\right) \\
\nu^{-2} & \left(\nu^{4}<n \leqq \nu^{4}+\nu^{3}+\nu^{2}, \nu=1,2, \cdots\right) \\
0 & (\text { for other } n) .
\end{array}\right.
$$

Here we can easily see

$$
\begin{equation*}
L=\lim _{n \rightarrow \infty} \sup \left|\sqrt{n} u_{n}\right|=1 \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{v^{4}}=0, \quad \nu=1,2,3, \cdots \tag{4.9}
\end{equation*}
$$

Hence $s=0$ is a point of Z.
Let a summability matrix $\left[c_{p k}\right]$ belong to $B(a, q)$, where $q=q(p)$ is a strictly increasing continuous function of p and $q(p)$ tends to infinity as $p \rightarrow \infty$.

Now we set for $\nu=1,2,3, \cdots$

$$
\begin{equation*}
q_{\nu}=q\left(p_{\nu}\right)=\nu^{4}+2\left(\nu^{3}+\nu^{2}\right)+\frac{\nu}{2} \tag{4.10}
\end{equation*}
$$

and construct a new summability matrix $\left[c_{p_{v}, k}\right]$ from [$c_{p k}$]. Since [$c_{p k}$] belongs to $B(a, q)$ the new matrix $\left[c_{p_{v}, k}\right]$ also belongs to $B\left(a, q_{v}\right)$. We divide the summation of $t_{p_{v}}=\sum_{k=0}^{\infty} c_{p_{\nu} k} s_{k}$ into two parts and set $t_{p_{v}}^{\prime}, t_{p_{v}}^{\prime \prime}$ as follows:

$$
\begin{align*}
t_{p_{v}} & =\sum_{k=0}^{\infty} c_{p_{v} k} s_{k} \tag{4.11}\\
& =\left(\sum_{\left|k-q_{v}\right| \leq q_{v}^{\delta}}+\sum_{\left|k-q_{\nu}\right|<q_{v}^{\delta}}\right) c_{p_{v}} s_{k} \\
& =t_{p_{v}}^{\prime}+t_{p_{v}}^{\prime \prime} .
\end{align*}
$$

If we take ν large enough, then we get

$$
\begin{equation*}
s_{k}=\nu+1 \quad \text { for }\left|k-q_{v}\right| \leqq q_{v}^{\delta} \tag{4.12}
\end{equation*}
$$

and applying Lemma 2.2, formulas (4.9), (2.1), (2.2) and (2.3) to (4.11), we get

$$
\begin{align*}
t_{p_{v}}^{\prime} & =(\nu+1) \sum_{\left|k-q_{v}\right| \leq q_{\nu}^{\delta}} c_{p k} \tag{4.13}\\
& \geqq(\nu+1)\left\{\frac{1}{2}+o\left(1 / \sqrt{q_{v}}\right)-O\left(e^{-q_{v}^{\eta}}\right)\right\}
\end{align*}
$$

and

$$
\begin{align*}
t_{p_{v}}^{\prime \prime} & =\sum_{\mid k-q_{\nu} \backslash q_{v}^{\delta}} c_{p k} s_{k} \tag{4.14}\\
& \leqq \sum_{\left|k-q_{v}\right|>q_{v}^{\delta}} c_{p_{v} k}=O\left(e^{-q_{v}^{\eta}}\right)=o(1),
\end{align*}
$$

as $\nu \rightarrow \infty$.
Then we get from (4.11), (4.13) and (4.14) $\liminf _{\nu \rightarrow \infty} t_{p_{\nu}}=+\infty$ and thus we have shown that there is no point $t \in Z_{B}$ such that $\lim \sup |t-s| \leqq(a \pi)^{-\frac{1}{2}}$ for $s=0 \in Z$.
A.Meir have proved in [7], using the sequence $\left\{u_{n}\right\}$ defined by (4.7), that the least constant A satisfying the condition that for every sequence $\left\{s_{n}\right\}$ which satisfies Tauberian condition (1.1) and each $s \in Z$, there should exist at least one $t \in Z_{B}$ such that $|t-s| \leqq A \cdot L$, is $A_{0}=(a \pi)^{-\frac{1}{2}}$

If we assume that $q=q(p)$ is continuous and tends to infinity as $p \rightarrow \infty$, then using Theorem 2.1 the statement mentioned above is valid and the following theorem shows that this statement is true to some generalized condition on $q(p)$.

THEOREM 4.3. Let a summability matrix belong to $B(a, q)$ where $q=q(p)$ is a increasing function of p and tends to infinity as $p \rightarrow \infty$, and let a sequence $\left\{s_{n}\right\}$ satisfy the Tauberian condition (1.1). $J(p)$ denotes $q(p+0)-$ $q(p-0)$.

If we suppose $J(p)=o(\sqrt{q(p)})^{2)}$, then for each $s \in Z$ there exists at least one $t \in Z_{B}$ such that

$$
|t-s| \leqq(a \pi)^{-\frac{1}{2}} \cdot L
$$

Using Theorem 2.1 we can easily prove this theorem.
5. Schmidt Condition. It is well known and is easy to prove that if a series $\sum u_{n}$ satisfies Tauberian condition (1.1), then its partial sums $s_{n}=\sum_{k=0}^{n} u_{k}$ satisfy the more general Tauberian condition of Schmidt type
(5.1) $) \limsup _{p \rightarrow \infty} \max _{|q-p| \leqq \lambda \sqrt{p}}\left|s_{q}-s_{p}\right| \leqq L \cdot \lambda$, where λ is positive.

Letting $n(\alpha), p(\alpha)$ be defined as in section 1 , we shall determine the least constant A^{\prime} which depends upon the functions $n(\alpha)$ and $q(p)$ such that

$$
\begin{equation*}
\limsup _{\alpha \rightarrow \infty}\left|t_{p}-s_{n}\right| \leqq A^{\prime} L, \tag{5.2}
\end{equation*}
$$

where the sequence $\left\{s_{n}\right\}$ satisfies Schmidt condition (5.1).
Now we shall prove the following theorem.
ThEOREM 5.1. Suppose that the sequence $\left\{s_{n}\right\}\left(s_{n}=\sum_{k=0}^{n} u_{k}\right)$ satisties Schmidt condition (5.1) and $\left\{t_{p}\right\}$ belongs to $B(q, q)$, where $q(p)$ tends to infinity as $p \rightarrow \infty$ and $n(\alpha), p(\alpha)$ are the functions of parameter α as in Theorem 2.1.

Then the least constant A^{\prime} for which (5.2) holds is equal to the constant A in Theorem 2.1.

Introducing the following two lemmas, we can prove this theorem with the same method as in [4] by R.P.Agnew.

Lemma 5.1. Suppose that the sequence $\left\{s_{n}\right\}$ satisfies Schmidt condition (5.1), $n(\alpha) / q(\alpha) \rightarrow 1$ as $\alpha \rightarrow \infty$, and

[^0]\[

$$
\begin{equation*}
f(\alpha)=\max _{|k-n| \leq X(\alpha) \sqrt{Q} \bar{q}}\left|s_{k}-s_{n}\right|, \tag{5.3}
\end{equation*}
$$

\]

where $X(\alpha)$ is bounded. Then for each $\varepsilon>0$ there exists a number α_{0} such that

$$
\begin{equation*}
f(\alpha)<L \cdot X(\alpha)+\varepsilon, \quad \alpha>\alpha_{0} \tag{5.4}
\end{equation*}
$$

For the proof, see R. P. Agnew [4].
Lemma 5.2. If

$$
\begin{equation*}
f(\alpha)=\sum_{k=1}^{n} g_{k}(\alpha) h_{k}(\alpha) \tag{5.5}
\end{equation*}
$$

where $g_{k}(\alpha)$ and $h_{k}(\alpha)$ are nonnegative and bounded and $\lim _{\alpha \rightarrow \infty} g_{k}(\alpha)=G_{k}$ for each k, then

$$
\begin{equation*}
\limsup _{\alpha \rightarrow \infty} f(\alpha)=\lim _{\alpha \rightarrow \infty} \sup \sum_{k=1}^{n} G_{k} h_{k}(\alpha) . \tag{5.6}
\end{equation*}
$$

Proof of Theorem 5.1. Since each series satisfying Tauberian condition (1.1) also satisfies Schmidt condition (5.1), it is evident from the definition of A and A^{\prime} in (2.5) and (5.2) that $A^{\prime} \geqq A$. Then we can prove A^{\prime} $=A$, provided that we show $A^{\prime} \leqq A$. In the case where $\lim \sup |n-q| /$ $\sqrt{q}=\lim \sup |w|=+\infty$ we have $A=+\infty$ from (ii) of Theorem 2.1 and the inequality $A^{\prime} \leqq A$ is evidently satisfied. Next, we consider the case where $\lim \sup |w|=M<+\infty$.

Since the sequence $\left\{s_{n}\right\}$ satisfies Schmidt condition (5.1), we can easily obtain $\dot{s}_{n}=O(\sqrt{n})$. From this fact and Lemma 2.2 and since $n / q \rightarrow 1$ as $\alpha \rightarrow \infty$, we have

$$
\begin{align*}
t_{p}-s_{n} & =\sum_{k=0}^{\infty} c_{p k} s_{k}-s_{n}\left(\sum_{k=0}^{\infty} c_{p k}+o(1 / \sqrt{q})\right) \tag{5.7}\\
& =\sum_{k=0}^{\infty} c_{p k}\left(s_{k}-s_{n}\right)+o(1) \\
& =H(\alpha)+o(1),
\end{align*}
$$

where

$$
\begin{equation*}
H(\alpha)=\sum_{k=0}^{\infty} c_{p k}\left(s_{k}-s_{n}\right) . \tag{5.8}
\end{equation*}
$$

Now we shall estimate $|H(\alpha)|$, dividing summation of (5.8) into three parts and we set $H_{1}(\alpha), H_{2}(\alpha) H_{3}(\alpha)$ as follows:

$$
\begin{align*}
|H(\alpha)| & \leqq \sum_{k=0}^{\infty}\left|s_{k}-s_{n}\right| c_{p k} \tag{5.9}\\
& =\left(\sum_{|k-q| \leqq T}+\sum_{T_{\sqrt{ }} \bar{q}<|k-q| q^{\delta}}+\sum_{|k-q|>q^{\delta}}\right)\left|s_{k}-s_{n}\right| c_{p k} \\
& =H_{1}(\alpha)+H_{2}(\alpha)+H_{3}(\alpha),
\end{align*}
$$

where T is a fixed constant large enough.
At first we consider $H_{1}(\alpha)$. We have

$$
\begin{align*}
H_{1}(\alpha) & =\sum_{|k-q| \leqq r^{\prime} \bar{q}}\left|s_{k}-s_{n}\right| c_{p k} \tag{5.10}\\
& =\sum_{r=-N}^{N-1} \sum_{k \in E(r, \alpha)}\left|s_{k}-s_{n}\right| c_{p k} \\
& \leqq \sum_{r=-N}^{N-1} f_{r}(\alpha) \sum_{k \in E(r, \alpha)} c_{p k},
\end{align*}
$$

where $E(r, \alpha)$ is the set of nonnegative integer k for which

$$
\begin{equation*}
q+r \frac{T}{N} \sqrt{q} \leqq k \leqq q+(r+1) \frac{T}{N} \sqrt{q} \tag{5.11}
\end{equation*}
$$

and

$$
\begin{align*}
f_{r}(\alpha) & =\max _{k \in E(r, \alpha)}\left|s_{k}-s_{n}\right| \tag{5.12}\\
& =\max _{\left.\left(r \frac{T}{N}-w\right) \sqrt{q} \leqq k-n \leqq(r+1) \frac{T}{N}-w\right) \sqrt{q}}\left|s_{k}-s_{n}\right| .
\end{align*}
$$

Appliying Lemma 5.1 to $f_{r}(\alpha)$ in (5.10) we find that there is a number α_{0} such that for each integer r satisfying $-N \leqq r \leqq N-1$ and for each $\varepsilon>0$,

$$
\begin{equation*}
f_{r}(\alpha) \leqq L \cdot X(r, \alpha)+\varepsilon, \quad \alpha>\alpha_{0} \tag{5.13}
\end{equation*}
$$

where

$$
\begin{equation*}
X(r, \alpha)=\max \left(\left|r \frac{T}{N}-w\right|, \left.(r+1) \frac{T}{N}-w \right\rvert\,\right) \tag{5.14}
\end{equation*}
$$

Then we have

$$
\begin{align*}
H_{1}(\alpha) & \leqq \sum_{r=-N}^{N-1}\left(L \cdot X(r, \alpha)+\sum_{k \in E(r, \alpha)} c_{p k}\right. \tag{5.15}\\
& \leqq \varepsilon+o(1)+L \sum_{r=-N}^{N-1} X(r, \alpha) \sum_{k \in E(r, \alpha)} c_{p k} .
\end{align*}
$$

Since the summability matrix $\left[c_{p k}\right]$ belongs to $B(a, q)$ we get for sufficiently large α

$$
\begin{align*}
& \sum_{k \in E(r, \alpha)} c_{p k}=\sum_{r T / N \leqq(k-q) / \sqrt{q} \leqq(r+1) T / N} c_{p k} \tag{5.16}\\
& =\sqrt{\frac{a}{\pi q}} \sum_{r T / / \bar{N} \leq(k-q) / \sqrt{\bar{q}} \leq(r+1) r / N}^{q} \exp \left(\frac{\left(-a(k-q)^{2}\right.}{q}\right)\left(1+O\left(\frac{|k-q|+1}{\sqrt{q}}\right)+O\left(\frac{|k-q|^{3}}{q^{2}}\right)\right) \\
& =\sqrt{\frac{a}{\pi}} \int_{r T / N}^{(r+1) r / N} \exp \left(-a x^{2}\right)\left(1+O\left(\frac{|x|+1}{\sqrt{ } \bar{q}}\right)+O\left(\frac{|x|^{3}}{\sqrt{q}}\right)\right) d x+o(1) \\
& =\sqrt{\frac{a}{\pi}} \int_{r T / N}^{(r+1) r / N} \exp \left(-a x^{2}\right) d x+o(1) .
\end{align*}
$$

Applying Lemma 5.2 to (5.15) we have
(5.17) $\quad \lim \sup _{\alpha \rightarrow \infty} H_{1}(\alpha)=L \cdot \lim \sup _{\alpha \rightarrow \infty} \sum_{r=-N}^{N-1} X(r, \alpha) \sqrt{\frac{a}{\pi}} \int_{r T / N}^{r+1) r / N^{N}} \exp \left(-a x^{2}\right) d x$

$$
=L \cdot \sqrt{\frac{a}{\pi}} \lim _{\alpha \rightarrow \infty} H_{1}^{\prime}(\alpha),
$$

where

$$
\begin{equation*}
H_{1}^{\prime}(\alpha)=\sum_{r=-N}^{N-1} X(r, \alpha) \int_{r T / N}^{(r+1) T / N} \exp \left(-a x^{2}\right) d x \tag{5.18}
\end{equation*}
$$

By the definition of $X(r, \alpha)$, (5.14), when $r T / N \leqq x_{r} \leqq(r+1) T / N$ and when N is large enough, from (5.18) we have the following inequality

$$
\begin{align*}
H_{1}^{\prime}(\alpha) & \leqq \sum_{r=-N}^{N-1}\left(\frac{T}{N}+\left|x_{r}-w\right| \int_{r T / N}^{(r+1) T / N} \exp \left(-a x^{2}\right) d x\right) \tag{5.19}\\
& =\frac{T}{N} \int_{-T}^{T} \exp \left(-a x^{2}\right) d x+\int_{-T}^{T}|x-w| \exp \left(-a x^{2}\right) d x+\varepsilon
\end{align*}
$$

If we take T large enough and for this T we take N large enough such as

$$
\begin{equation*}
\int_{|x|>T}|x-w|^{-a x^{2}} d x<\varepsilon \text { and } \frac{T}{N} \int_{-T}^{T} e^{-a x^{2}} d x<\varepsilon \tag{5.20}
\end{equation*}
$$

then we get from (5.17), (5.19) and (5.20)

$$
\begin{equation*}
\limsup _{\alpha \rightarrow \infty} H_{1}(\alpha) \leqq 3 \varepsilon+L \sqrt{\frac{a}{\pi}} \int_{-\infty}^{+\infty}|x-M| e^{-a x^{2}} d x \tag{5.21}
\end{equation*}
$$

In the next place we shall estimate $H_{2}(\alpha)$ defined by (5.9). Since the sequence $\left\{s_{n}\right\}$ satisfies Schmidt condition (5.1) and from the fact that $|k-n|>\sqrt{n}$ for $T \sqrt{q}<|k-n| \leqq q^{8}$, we obtain

$$
\begin{equation*}
\left|s_{k}-s_{n}\right| \leqq c|\sqrt{k}-\sqrt{n}| \quad \text { for } \quad T \sqrt{ } \bar{q}<|k-n| \leqq q^{\delta} \tag{5.22}
\end{equation*}
$$

where c is a constant independent of k and n.
Then we have

$$
\begin{align*}
& H_{2}(\alpha)=\sum_{T_{\sqrt{ } \bar{q}<|k-q| \leqq q^{\delta}}\left|s_{k}-s_{n}\right| c_{p k} \leqq c \sum_{T_{N} \sqrt{q}<|k-q| \leqq q^{\delta}} \mid \sqrt{\bar{k}}-\sqrt{\bar{n} \mid} c_{p n} .{ }^{\prime} .} \tag{5.23}\\
& \leqq \frac{c}{\sqrt{n}} \sum_{T_{\sqrt{\bar{q}}<|k-q| \leqq q^{\delta}}|k-n| c_{p k} .} \\
& \leqq \frac{c}{\sqrt{n}} \sum_{T_{\sqrt{ } \bar{q}\langle | k-q \mid \leq q^{8}}}(|k-q|+|w| \sqrt{\bar{q}}) c_{p k} \\
& =\frac{c}{\sqrt{n}} \sum_{T_{\sqrt{ }}<|k-q| \leq q^{0}}|k-q| c_{p k}+\frac{c|w|}{\sqrt{n}} \sum_{T_{\sqrt{ }}<|k-q| \leq q^{q}} \sqrt{q} c_{p k} \\
& =H_{21}(\alpha)+H_{22}(\alpha) \text {, }
\end{align*}
$$

where
and

$$
H_{22}(\alpha)=\frac{c|w|}{\sqrt{ } n} \sum_{T_{N} \bar{q}<|k-q| \leq q^{8}} \sqrt{q} c_{p k} .
$$

Since the summability matrix $\left[c_{p k}\right]$ belongs to $B(a, q)$, we have for suffciently large α

$$
\begin{aligned}
H_{21}(\alpha)= & \frac{c}{\sqrt{n}} \sum_{T_{\sqrt{ } \bar{q}<|k-q| \leqq q^{8}}}|k| \sqrt{\frac{a}{\pi q}} \exp \left(\frac{-a(k-q)^{2}}{q}\right)\left(1+O\left(\frac{|k-q|+1}{q}\right)\right) \\
\leqq \frac{2 c}{\sqrt{n}} \sqrt{\frac{q a}{\pi}} \int_{T}^{\infty} x e^{-a x^{2}} d x & +O\left(\frac{1}{\sqrt{n}} \int_{T}^{\infty} x^{2} e^{-a x^{2}} d x\right) \\
& +O\left(\frac{1}{\sqrt{n}} \int_{T}^{\infty} x^{4} e^{-a x^{2}} d x\right)+o(1) .
\end{aligned}
$$

If we take T large enough, we get

$$
\begin{equation*}
H_{21}(\alpha) \leqq \varepsilon+o(1) \tag{5.24}
\end{equation*}
$$

At the same time we obtain for sufficiently large T

$$
\begin{align*}
H_{22}(\alpha) & =\frac{c|w|}{\sqrt{n}} \sum_{T_{\sqrt{ } \bar{q}<|k-q| \leq q^{\delta}} \sqrt{q} c_{p k}} \tag{5.25}\\
& =O\left(\sum_{T<|k-q|_{N} \bar{q}} c_{p k}\right)<\varepsilon .
\end{align*}
$$

From (5.23), (5.24) and (5.25) we consequently obtain

$$
\begin{equation*}
H_{2}(\alpha) \leqq 2 \varepsilon+o(1) . \tag{5.26}
\end{equation*}
$$

Finally we consider $H_{3}(\alpha)$ defined by (5.9). Since $n / q \rightarrow 1$ as $\alpha \rightarrow \infty$ and

$$
\begin{array}{ll}
|\sqrt{k}-\sqrt{n}| \leqq n & \text { for } k<q-q^{\delta}, \\
|\sqrt{k}-\sqrt{n}| \leqq k & \text { for } q+q^{\delta}<k,
\end{array}
$$

and from (5.22) and Lemma 2.2, we have

$$
\begin{equation*}
H_{3}(\alpha)=\sum_{|k-q|>\gamma^{8}}\left|s_{k}-s_{n}\right| c_{p k} \tag{5.27}
\end{equation*}
$$

$$
\begin{aligned}
& \leqq c \sum_{|k-q|>q^{8}}|\sqrt{k}-\sqrt{n}| c_{p k} \\
& \leqq c\left(\sum_{o \leqq k<q-q^{8}}+\sum_{q+q^{\delta}<k}\right)|\sqrt{k}-\sqrt{n}| c_{p k} \\
& \leqq c(n+1) \sum_{|k-q|>\phi^{8}} k c_{p k} \\
& =O\left(q \exp \left(-q^{\eta}\right)+\exp \left(-q^{\eta}\right)\right)=o(1) .
\end{aligned}
$$

From (5.9), (5.21), (5.26) and (5.27) we obtain

$$
\begin{align*}
\limsup _{\alpha \rightarrow \infty}|H(\alpha)| & \leqq \limsup _{\alpha \rightarrow \infty} H_{1}(\alpha)+\lim _{\alpha \rightarrow \infty} \sup _{2} H_{2}(\alpha)+\underset{\alpha \rightarrow \infty}{\lim \sup } H_{3}(\alpha) \tag{5.28}\\
& \leqq 5 \varepsilon+L \sqrt{\frac{a}{\pi}} \int_{-\infty}^{+\infty}|x-M| e^{-a x^{2}} d x
\end{align*}
$$

Since (5.28) holds for each $\varepsilon>0$, it implies that

$$
\limsup _{\alpha \rightarrow \infty}|H(\alpha)| \leqq L \sqrt{\frac{a}{\pi}} \int_{-\infty}^{+\infty}|x-M| e^{-a x^{2}} d x
$$

and therefore

$$
A^{\prime} \leqq \sqrt{\frac{a}{\pi}} \int_{-\infty}^{+\infty}|x-M| e^{-a x^{2}} d x=A
$$

Thus we get $A^{\prime}=A$ and prove Theorem 5.1, completely.

References

[1] R. P. AGNEW, Abel transforms of Tauberian series, Duke Math. Journ., 12(1945), 27-36.
[2] R. P. AgNEw, Abel transforms and partial sums of Tauberian series, Annals of Math., 50 (1949), 110-117.
[3] R.P.AGNEW, Integral transformations and Tauberian constants, Trans. Amer. Math. Soc., 72(1952), 501-518.
[4] R.P.Agnew, Borel transforms of Tauberian series, Math. Zeitschr., 67(1957), 51-62.
[5] H. HADWIGER, Über ein Distanztheorem bei der A-Limitierung, Comm. Math. Helvetici, 16(1944), 209-214.
[6] G. H. Hardy, Divergent Series, Oxford Press, 1949.
[7] A. MEIR, Tauberian constants for a family of transformations, Annals of Math., 78 (1963), 594-599.

Akita University.

[^0]: 2) If $p=p_{i}(i=1,2, \cdots)$, then the condition is replaced by $q\left(p_{i}\right)-q\left(p_{i-1}\right)=o\left(\sqrt{q\left(p_{i-1}\right)}\right)$.
