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In the following lines the author wants to give an explicit representa-
tion for generalized principal ideal theorems of S.Iyanaga [1] and T.Tannaka
[2] for the case of rational ground field.

Let K be the “Strahlklassenkdrper” over k%, with “Geschlechtermodul”
& = F(K/k), then every ideal a of 2 which is unramified in K, becomes
principal ideal belonging to the principal class modulo § (Iyanaga [1]).

Tannaka [2] obtained, suggested by a conjecture of Prof. Deuring, a
more precise form of the principal ideal theorem, he gave namely those
bases #(a) of a (unramified ideals in &), for which the units

6(a) 6%y

&@,0) = =535

lie in the ground field There o(a) = (K/k,a) means the Artin-automor-

phism of a.
Let now 7n,m be two natural numbers which are relatively prime to each

other, ¢, = exp (%;E) and &, the “Geschlechtermodul” of Q(¢,)/Q (Q: rational
number field), then we can find a unit E(m) in Q(¢,) explicitly, for which
m = E(m) (mod §)

and

Em)E@m)y™ _
E(mm’)

hold.

1. Calculation of the “Geschlechtermodul”. Let n = pp,2. .. p,* = nn,
«++n, be a natural number, where p,, p,, - - -, p, are different prime numbers
and py =2, e, =0 or ¢ =2, and §, the “Geschlechtermodul” of Q(¢.)/Q.
We have then
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B)=1 = &)™ =1 — &), (€Y)

in Q(¢.,) and Q(&,,), where p,, = (1 — &) and p, = (1 — &,) are prime ideals
in Q(&»,) and Q(&,,) respectively, and @( ) means Euler’s function. We can
see also easily that p, is unramified in Q(¢,)/Q(&,,) for each i.

We now introduce the following notations:

G: Galois group of Q(¢,)/Q.
g+ Subgroup of G corresponding to Q(¢.,)
in the sense of Galois theory.

G Hilbert’s ramification groups of order
(G;)= Nj; for a prime ideal p in Q(&,),
which divides p., that is G; consists
of all Galois substitutions with

A =A(mod ¥) (A in Q).
We put also g; = G;Ng and denote its order (g;) by ;.
LEMMA. p-component of & is equal to that of Fn.

PROOF. According to a formula in [4] (See the formula (4.4) in [4]),
p-exponents of &, and F, are

>>1  (number of G; which are #1) (2)
and

2. (99 GLg ®

respectively. But, as p is unramified in Q(£,)/Q(), 9; = G; N g = {1}, acc-
ordingly (2) and (3) are identical. g.e.d.

From the above lemma, we have

%n = %m%n,' * '8:”:’

so that we have only to decide .

Now we apply the formula (2) to the case » = p*. Then the p-exponent
of §, is the maximum number I, for which there exists a Galois
automorphism 7 (# 1) of Q(¢,e)/Q, which satisfies
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¢ = ¢(mod ') 4)
where ¢ means ¢, and

p=1-20.
But ¢ can be expressed as

g (], )= 1),
the condition (4) turns out

r=¢ (mod p"), ®)
with additional condition

k=1 (mod p°). (6)

It is well known that if

k=1 (mod £,
then

gh=¢ (mod p™),

hence maximum number of / is p*~! and

e-1

Spe =P =0, =)
from which we have the following theorem:
THEOREM. If n = pope++ p,% = nn, - - - n,, we have
Fn = TnSn* En = FoSn ** T

2. Explicit representation for the case of Iyanaga’s principal ideal
theorem. We first assume that

n=p% P pl =2, ¢=2) @

and set
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n =A4ppsc-- Py,

then we have by §1, &, = &w, accordingly it is enough to give an explicit

representation for the case Q(¢n).
Let m be a natural number relatively prime to z# and put

Et=1+§m+€§‘+"'+§m~l,
(i:l’z,---,t)

Eu =1+ &8, + (Cmgp))Z oot (CP.CPJ)m_l
(i ¢J? i!] = 1’2’ R t)

EU---l =1+ gmz:m' * ';w + (é‘mé‘m' * 'gmy

Foeee+ (gmé’m b '§p¢)m_l
(Z,j,+++, 1 are k different numbers {from 1,2,+--,¢)

E,....=1+ Eolme v Cn + (CMCp-"'Cpg)Z
+oee +(§m§p.' ° gzu)m_l,

ooooooooo

E, = Il[ E,
E; = I[ Eu
()

((G,j,» + -,0): all combinations of k different numbers from 1,2,- « .z)

Et =E12...g.

Then E,, E;;»++, Ey5...., E, Ey, ¢+ « +, E, are units in Q(&n).
For fixed i = 1,2, - -, ¢ we defineEQ,E® as follows

— ) I G —
E,=EP Ef, EP=EF,

E,=EpP EP, EP=1IIE,
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Ek = EkmEkm, Ek(z) = ]Il) Eu...z
Urees

Et = El2"'t = Et(t).

Since we have

=1 (mod &p,)

it holds
E® =m (mod $y,), ®
E =E{®, (mod ,), ©))

(B =2,3,++,12).
I t =25, we have

A= mE2E4- . 'Egs - E1E3‘ * 'Ezs—l
= mE,® E2(i) E}”Eﬂ) e Eé?-zEg)-zE;?
- El(i)El(i)Es(i)Es(i)' * 'Eé?—_l g)—l
=0 (mod &)

(i = 1, 2’0 LN t)’
hence

ElEa' * 'Ezs—x
M= g Eo K, E. - -E. (mod &).

i

In this case we put the right-hand side by E(m), we have namely
m = E(m) (mod %) 10).
If =25+ 1 an odd number, we have likewise

A=mE,E, - -E,,— EE;---E,_E,,,,
= mE,WE,PEOE,®. « \E, ®F, ®

nl (6 i
- El(i)El(i). ° 'Eg)—l él)—l E2(¢)+1
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0 (mod &),

f

i = 1,2,- LN t’
hence we have (10), by putting

ElEs' * ‘Ezs+1

E(m) - E2E4' ¢ 'E2s

Thus we have proved Iyanaga’s principal ideal theorem for cyclotomic
field, under the assumption (7).

The case ¢, = 0 can be treated similarly.

3. Explicit representation for the case of Deuring-Tannaka’s principal
ideal theorem. Let m, m’ be two natural numbers relatively prime to 7,and
a(m) be Artin-symbol corresponding to m in Q(¢,)/Q. Then it holds

EmE(m)y™
E(m;’;,) =1 (11)

We have in fact
E5Y =148 Lot Colos + E)' e o+ (Clnr o L))"
oo * En)"™ = ol + )™,
(EG2)7™ =1+ ol * )" + Ealns = -En)™™
RIRIE ol (77 SRR 8 RN

ER. (EG2)"™

1 _(gmé‘m' ° 'Cm)m 1 _(Cp.gm‘ * 'Cm mm’
1-— Cp«z:m' * ‘é‘p; 1 _(é‘mgm’ * 'gm)m

= Eu (fnf"./ )z

hence by the definition of E(m) we have (11), which proves Deuring-
Tannaka’s form of principal ideal theorem.
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