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Introduction. An odd-dimensional differentiable manifold is said to
have an almost contact structure or to be an almost contact manifold if
the structural group of its tangent bundle is reducible to the product of a
unitary group with the 1-dimensional identity group. The study of almost
contact manifolds, at the first time, has been developed by W. M. Boothby
and H. C. Wang [1]” and J. W. Gray [2] using a topological method. Recently,
S. Sasaki [7] found a differential geometric method of investigation into the
almost contact manifold and using this method Y. Tashiro [12] proved that in
any orientable differentiable hypersurface in an almost complex manifold we
can naturally define an almost contact structure. Hereafter, the almost contact
structure of the hypersurface is studied by M. Kurita [4], Y. Tashiro and S.
Tachibana [13] and the present author [5].

The purpose of the paper is to discuss normal almost contact hypersurfaces
in a Kaehlerian manifold of constant holomorphic sectional curvature and to
prove some fundamental properties of the hypersurfaces.

In §1, we give first of all some preliminaries of almost contact manifold and
prove a certain condition for a Riemannian manifold to be a normal contact
manifold for the later use. In §2, we consider hypersurfaces in a Kaehlerian
manifold and give a condition for the induced almost contact structure of a
hypersurface in a Kaehlerian manifold to be normal. After proving a lemma
in §3, we show in §4 that, in a normal almost contact hypersurface of a
Kaehlerian manifold of constant holomorphic sectional curvature, the second
fundamental tensor can admit at most three distinct characteristic roots and
that they are all constants. The distributions corresponding these characteristic
roots are studied in §5 and integrability of these distributions is discussed.

_In §6, the integral submanifolds of certain distributions are considered and
using the theorem in §1, we prove that the integral submanifolds admit
normal contact metric structures.-

1. Almost contact structure and contact metric structure. On a (2n—
1)-dimensional real differentiable manifold M?"~! with local coordinate systems

1) The numbers in the brackets refer to the bibliography at the end of the paper.
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{z}, if there exist a tensor field ¢, contravariant and covariant vector fields
& and 7, satisfying the relations

1. 1) En=1,

1. 2 rank (pf) =2n— 2,
1.3 $/E=0, ¢/n=0,
(1. 4 ¢’ = =8 + Eme,

then the set (¢, &, 7;) is called an almost contact structure and the manifold
with such a structure is called an almost contact manifold. It has been
proved by S. Sasaki [7] that this definition of the almost contact manifold is
equivalent to that used in J. W. Gray’s paper [2]. It is known?® that an almost
contact manifold always admits a positive definite Riemannian metric tensor
g5 satisfying

(1' 5) gjigj =M,
(1. 6) 95D’ B’ = Gnk — mame -

The metric with above properties is called an associated metric to the almost

contact structure and the almost contact manifold with such a Riemannian

metric is called an almost contact metric manifold. In this paper, we always

treat such a Riemannian metric tensor, so we use a notation 7' in stead of &.
The tensor N,* defined by the following is fundamental:

1. 7) N =¢/(V: 9" — Vi) — $/(V:¢* — V;8,.") + Vin" 3 — Vi ;.

Where and throughout the paper Vv; denotes the operator of covariant dif-
ferentiation with respect to the Christoffel symbols formed from the associated
metric and put V' = ¢’ v,.

An almost contact structure with vanishing N, is called a normal almost
contact structure. Totally geodesic hypersurfaces in a Kaehlerian manifold
are examples of normal almost contact manifolds®.

A differentiable manifold M?®"! is said to have a contact structure or to
be a contact manifold if there exists a 1-form 5 over the manifold such that

n—1

ﬂ/\d’ﬂ/\""/\d’? ;ﬁO’

where operator A in the last equation means exterior multiplication. In an

2) Sasaki, S. [7], Hatakeyama, Y. [3].
3) Okumura, M. [5].
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almost contact metric manifold if there is a relation for a constant c,

1. 8) by = 5m — Oimy,

then the rank of the matrix (¢;) being 2n—2, the structure is regarded as
the one formed from a contact structure. So, we call such an almost contact
structure a contact metric structure. A contact metric structure is called a
normal contact metric structure if in the structure the tensor N, vanishes
identically.

The following theorem on normal contact structure is necessary for the
later section.

THEOREM 1. 1.2  Let M*"~! be a Riemannian manifold. If M**~' admits
a Killing vector v, of constant length satisfying

1.9 EV;Viv, = Vidin — UnGii»
then, M*"~' is a normal contact metric manifold such that the given Rieman-

nian metric g; is the associated one.

PROOF. Let ¢, be the length of v, and put 9, = %vi. Then, we have
1

(1. 10) VsV = g — M Gsu»
and 7'n,=1. Transvecting (1. 10) with 2", we get
EVin" Vi = g5 — mn;,

because of %" V;7,=0. If we put ¢; = cV;n, the above equation changes
its form as (1.4). By the construction we easily see that (1. 1), (1. 3) are
satisfied and that the existence of the solutions of (1.3) and (1.4) shows that
the rank of (¢;}) is 22—2. Furthermore by definition

1. 11) b = % ©@sm — 2umy) = cVmi,

which implies that the structure is the one induced from a contact structure.
Substituting (1. 11) into (1. 10), we have

1. 12) cVidbin =1 Gin — s>

from which, together with (1. 7), we get N,;*=0. This completes the proof.

4) Okumura, M.and Y. Ogawa [6].
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2. Induced almost contact structure of a hypersurface in a Kaehlerian
manifold. Let us consider a real analytic 27-dimensional almost Hermitian
manifold M?" with local coordinate systems {X*} and (F.*,  G,.) be the almost
Hermitian structure, that is, F,* be the almost complex structure defined on
M?" and G, be the Riemannian metric tensor satisfying Ga = G,F!Fy. A
hypersurface M?*"~! of M?" may be represented parametrically by the equation
X = X*(x). In this paper, we assume that the function X%x) be real
analytic, because we discuss a complete integrability making use of the
Frobenius’ existence theorem for analytic differential equations. Furthermore,
in the following, we assume that the hypersurface be orientable.

Let B = 9, X", (0; = 9/9x"), then they span the tangent plane of M?"~!

at each point and induced Riemannian metric g, in M*""! is given by
2.1 95 = GaB#B!.

Choosing the unit normal vector C* to the hypersurface, we put
2. 2 ¢/ = B} F\*B',,
2. 3) n; = BfF}C = B Fa.C,

where we have put B, = Gi.B/'¢g", C. = GnC and F, = G.Fy. Then
the aggregate (¢!, ¢ 9., 1, g;;) defines an almost contact metric structure in
the hypersurface®. In the following we call an orientable hypersurface with
the induced almost contact structure an almost contact hypersurface and if
the structure is normal a normal almost contact hypersurface.

Assuming that M?" be a Kaehlerian manifold we consider an almost
contact hypersurface in M?",

Making use of Gauss and Weingarten equations

(2. 4) VjBiK - HjiC",
2. 5) v,C.= —H;B,,

where Hj, is the second fundamental tensor of the hypersurface, we see that
the following identities are always valid.

(2- 6) Vin = —¢17er,
2.7 Vit = miHn — mu Hy,
Consequently the tensor N, can be rewritten as

2. 8) Nyt = 9,0’ H' + ¢ Hyi) — mie (7 H + ¢'"H,,).

5) Tashiro, Y. [12].
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Contraction with respect to 7 and % in (2. 8) gives
(2. 9) NTjT = —’lf HTS¢J‘T N
because Of Hﬂ = H“' and ¢ji = _¢”.

Let M®*~' be a normal almost contact hypersurface, then, transvecting
(2.9) with ¢/, we have

2. 10 H,ny =oan, (a=Hyq"),

that is, @ is a characteristic root of the second fundamental tensor H, and 7’
is a corresponding eigenvector of a. Furthermore, transvecting (2.8) with
7’ and making use of (2. 10), we get

(2. 11) ¢kTH7-t + ¢irHrk =0 .
This implies, together with (2. 6), that
(2. 12) Vj?h + Vi”j = 0,

which means that the vector 7, is a Killing vector. Since 7, is a unit vector
we have from the above equation

(2. 13) Vimn' =0, Vg =0.

Now, we prove the following

THEOREM 2.1. Let M?*" be a Kaehlerian manifold. In order that the
induced almost contact structure of a hypersurface in M*"~' be normal, it is
necessary and sufficient that the vector n, is a Killing vector.

PROOF. We have only to prove the sufficiency of the condition. By
means of (2. 6) if 5, is a Killing vector we have the relation (2.11). Sub-
stituting (2. 11) into (2. 8), we get N, = 0. This proves the sufficiency of
the condition. Q.E.D.

3. Normal almost contact hypersurfaces in a Kaehlerian manifold of
constant holomorphic sectional curvature. A Kaehlerian manifold M?" is
called a manifold of constant holomorphic sectional curvature if the holomor-
phic sectional curvature at every point is independent of two dimensional
directions at the point, and its curvature tensor is given by

(3 1) R,,,_L;\,, = k(G,,,‘ Gul —_ G,,,:G,,A + F.,,CF,M - Fﬂ,‘FM — ZF,,,,FM) ,

k being a constant.
In this section we consider an orientable hypersurface in a Kaehlerian
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manifold of constant holomorphic sectional curvature.

Substituting (3. 1) into the Gauss and Codazzi equations®

3. 2) Risn = B Bf*B}By* Ryne + Hin Hy — Hy H,
(3.3 viH; — v;Hy, = Bk”Bj"Bth“Rm; ,
we have

(. 4) Ruijn=k(gsugen—grigintPrnPs— Pinbri— 2¢r;0u) + Hyn Hy— Hyp Hyy

and

3. 5) VieHy — Vi Hio = ki s — 0,00 — 20571,
from which we get

(3. 6) (VeHjy — V;Hi) ' = —keuy,

and

3.7 (ViHyu — V;Hi)n' = —2key;.

For a normal almost contact hypersurface in a Kaehlerian manifold of
constant holomorphic sectional curvature it follows that

3. 8) Rijinn* = mulkgs + aHy) — ni(kgin + aHy),

because of (2. 10) and (3. 4).
On the other hand, in §2 we have seen that 7' is a Killing vector and
consequently an infinitesimal affine transformation. Therefore it follows that

3. 9) é{]’.‘.}zvjvithuzzkﬂhqk:o,

where £ means the operator of Lie derivation with respect to the vector '
Comparﬂing (3. 8) and (3. 9), we have
—V; Vi = mu(k g5 + aHy) — plkgon + aHjn) .
Transvecting the above equation with 3" and making use of (2. 13), we get
Vin" Vimn = kg + aH; — (k+ a®)pn;,
which implies that
(3. 10) H, H = aH; + k(g — n;m)

6) For example, Schouten, J. A. [10].



276 M. OKUMURA

by virtue of (2. 6) and (2. 10).

LEMMA 3.1. Let M**~! be an analytic normal almost contact hyper-
surface in a Kaehlerian manifold of constant holomorphic sectional curvature
M?", then one of the following two relations must be satisfied.

1) a in (2. 10) is a constant ;
2) The Kaehlerian manifold in consideration is a locally Euclidean manifold.

PROOF. Suppose that the scalar a is not constant. Applying the operator
V; to (2. 10) and making use of (2. 6) we have

Vijr"?r + (ﬁjsHkTHsr = Vjank - ad)kTHrj >
from which
(3. 11) ViHin" + ke = Vi,

because of (3.10) and (2. 11). Making similar equation to (3.11) by inter-
changing of the indices j and %, we get

(VsHyr — Ve Hy) " + 2kdy = Vi, — Vi,
which implies, together with (3.7), that
Vi&ne = Vi dn;,
from which
(3. 12) via =By, B=79gV,2),
and therefore
ViViad = BVin + ViB7y;.

Since V;a is a gradient vector and 5; is a unit Killing vector, we get
by contraction with Vv*7’,

(8. 13) BV Vg =0.

The Riemannian metric being positive definite, from our assumption we
have v,;n, =0 or from (2. 6)

3. 14 H; ¢ =0,

which implies that H;, = asy;n; because of (1. 4).
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Differentiating the last equation covariantly and taking account of (3. 12),
we get V.H,;=8nn;n. From which we have £=0 because of (3.6). This
means that M?" is a locally Euclidean manifold.

4. Principal curvatures of the hypersurface. In this section we con-
sider the principal curvatures of the hypersurface M?"~! and give some
fundamental formulas. In the following discussions we only consider the
normal almost contact hypersurfaces in non-Euclidean Kaehlerian manifold of
constant holomorphic sectional curvature, because we have already discussed
the normal almost contact hypersurfaces in Euclidean space [5].

By means of Lemma 3.1, the scalar function in (2. 10) being constant,
we have the following identity for the second fundamental tensor.

4. 1) H,H; = cH;; + k(g5 — nm.),

where c=H,,n’y'=const.. From (2.10) ¢ is a characteristic root of the second
fundamental tensor H;* and 7' is a corresponding eigenvector to the root c.

Let A be a characteristic root of the matrix (H,*) which is distinct to ¢
and v’ corresponding eigenvector to the root. Then transvecting (4.1) with
v’ and making use of the orthogonality of v/ and #’, we have

(7\42 —CcA —k)'vi :0,

by virtue of H,'v’=Av'. Thus, the principal curvatures of the hypersurface
must satisfy the following algebraic equation of the third order,

4. 2) W=\ —cNn—Fk)=0.

Furthermore, since %2 and ¢ are both constants, the characteristic roots are
all constants. Thus we have the

THEOREM 4.1. Let M**~' be a normal almost contact hypersurface in
a Kaehlerian manifold of constant holomorphic sectional curvature. Then
M?**~!' has at most three distinct principal curvatures and they are all
constants.

If the hypersurface M?"~! admits only one principal curvature A=c, then

with respect to a suitable frame, the second fundamental tensor has the form
€. 0

(HH = . =c("). So, M?*! is totally umbilical. However, we

c
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have known that there is no umbilical hypersurface in a non-Euclidean
Kaehlerian manifold of constant holomorphic sectional curvature”. Hence
we deduce that the hypersurface admits two or three distinct principal
curvatures.

LEMMA 4.2. There exists no other vector than n' which corresponds to
the characteristic root ¢ of the matrix (H;").

PROOF. Let v’ be an eigenvector corresponding to the characteristic
root ¢. Transvecting (4. 1) with v’ and making use of H,'v/=cv’, we have

k(v — (gv)m) =0,

which implies the lemma.

From Theorem 4.1 and Lemma 4. 2, it follows that the second fundamental
tensor H,;' and the Riemannian metric tensor g;; have the components of
the form

r+1 s
c
M O
. 0 1
o - 1 0
M .
(Hjt) = e . B (gji) = * s
hg 0 .
. 0 .
0 . 1
0 A
\

with respect to a suitable orthonormal frame which will be called in the
following an adapted frame, where A,, A, are given by

(4. 3) M =%(c+ VETIE), M =%(0—J—cz+4k ),

because of (4.2). Since the characteristic roots are constants and 7r+s=2n
—2, the multiplicities of the roots are also constants. From these facts,

, =const. The trace of a matrix being invariant under the change of the
frame, we have

7) Tashiro, Y. and S. Tachibana [13].
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THEOREM 4. 3. The mean curvature of the normal almost contact hyper-
surface M*"~' in a Kaehlerian manifold of constant holomorphic sectional
curvature is a constant.

Using (3.4) and (4.1), as a corollary of the theorem we get

COROLLARY 4.4. Let M**~! be a normal almost contact hypersurface in
a Kaehlerian manifold of constant holomorphic sectional curvature. Then
the scalar curvature of M® ' with respect to the associated Riemannian
metric is a constant.

Suppose that the hypersurface M?"~! admits two distinct principal
curvatures ¢ and M. Then with respect to the adapted frame, the second
fundamental tensor H;* has the components

c
A
. 0 .
“4. 4) (H") = T
0 .
A
from which we get
' 1 1
Lo O o
(HY) =» . + (c—») . ,
0 " o - .
1 0

that is
(4. 5) Hji = )\:8]‘ + (C - ):) ’171771 .

However, since (4.5) is a tensor equation, it does hold for any frame,
especially for natural frame. If we substitute (4.5) into (2.6) we have ¢y
=AV;m. As 5t is a Killing vector, this means that the almost contact
structure is a normal contact metric structure. Substituting (4.5) into Gauss
equation (3.4), we have the curvature tensor of the hypersurface as follows:

(4. 6) Rijin = (B+N) (Grn 95— gon 9xi) + k(Drnbsi—Psnbri—2 b bin)
+ Me=N) (Qenmsm—Finme i+ G5imemn—Ik1M570) +
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An almost contact manifold which has the curvature tensor of the above
form is called a locally C-Fubinian manifold®. Thus we have proved the

THEOREM 4.4. If a normal almost contact hypersurface in a Kaehlerian
manifold of constant holomorphic sectional curvature has only two distinct
principal curvatures, then the almost contact structure is a normal contact
metric structure and consequently the hypersurface M**~' is a locally C-
Fubinian manifold.

5. Hypersurfaces which admits three distinct principal curvatures. By
means of Theorem 4.1, a normal almost contact hypersurface M?"~! can
admit at most three distinct principal curvatures. In this section we discuss
the case that the hypersurface M?"~! admits three distinct principal curvatures.

Let us denote by D,, D, and D, the distributions spanned by the vectors
corresponding to ¢, N, and A, respectively. Then the tangent bundle T'(M?*"~")
satisfies

T(M“_l) =D, ® D, ® D, (Whitney Sum) ’

over M*"~!,
Let v* be a vector belonging to D,, that is v* satisfies H,'v’=N,v'. Then,
owing to (2.11) we have

Hjt¢kjvk = —¢i"ij7}k = _X1¢ik'vk = 7\,1¢ki'lik .

In exactly the same way, we get H, ¢’ w* = M ¢* w* for any w' belonging
to D,. This means that

6. 1) ¢D, cD,, ¢D,CD,.
Thus the following theorem is proved.

THEOREM 5.1. The distributions D, and D, are both invariant under
the mapping ¢.

Now, making use of the adapted frame we can easily see the following

LEMMA 5.2. Let
(5- 2) O:'i =7 ﬂi ’

8) Tashiro, Y. and S. Tachibana [13]. The definition of C-Fubinian manifold does not differ
from that given in [13] except for a constant factor.
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1

5. 3) Pi = —on (—H}'+ (c—A) 8 + Mntayy),
i 1

G. 9 Q) = o (~H[ + =) + han'ny),

then, at each point in M*"~', the tensors O;', P} and Q;* are projections from
T,(M*™ ) onto Dy(p), Di(p) and D.(p) respectively.

The tensors O/, P;* and Q' satisfy the following relations.

(5. 5) Of + P/ + Qf =8},
and
(5. 6) 0,0, = Oy, PP’ =P, Q! Q' = Qif,

O,P’S =P'Q =Q,/0,’=0.
Next we shall prove the

THEOREM 5.3. Let Dy, D, and D, be the distributions spanned by the
vectors corresponding to the characteristic roots ¢, A\, and N, of the second
fundamental tensor (F;') of the hypersurface respectively. Then distributions
D®D, and D,®D, are both integrable.

PROOF. Since another case can be proved quite analogously, we shall
only prove that D,® D, is integrable. Denoting by #‘ and v* two arbitrary
vectors belonging to D,, we shall calculate Q;[w«,v] .

By definition of Q% it follows that

, 1
Q) lu, vy = on (—Hj 4 (c—Ny) 8 + Nyl ) (W7 9,07 — 0" v, 4)

1
6—2):2

(v v (H,'w)) —w' v (Hv') + (v, H} — v, H,")u" v’
+ (c—N) (@ Vv =0V, ') + 2Ny 1 VT )

by virtue of (2.12) and v’y,=u’y;=0. Making use of (3.5), this can be
rewritten as

jS[u’ 'v]j = {(C - )“1 - 7\‘2) (ur VT 'vt - ‘UT Vrut)

1
c—2N\,
+ ke b — bt —2¢n) wv + 2N 9' ¢, Hyu" v},



282 M. OKUMURA

where we have used the relations H'w’ = M#' and Hjtv?! =\ v,
j j

Hence we get

Q' lu, vl = c—?‘Z)\ (=2k¢, 0t v’ + 2M My Pyen'e’ v%) =0,
2

by virtue of (4. 3).

In exactly the same way, we can also prove that Q,[«#,7)’ =0 and
consequently, for two arbitrary vectors belonging to D, @ D,, their bracket
also belongs to D, ® D,. Hence D, ® D, is integrable. This completes the
proof.

6. Integral manifolds of D,® D, and D, P D,. As we have seen in
the previous section the distributions D,® D, and D,@® D, are both
integrable. Therefore through each point of the hypersurface there pass
integral manifolds of D@D, and D,®D,. In the following we study almost
contact strucatures of the integral manifolds of D, @ D, and D, ® D,.

First of all notice that the mapping ¢ restricted to the vector space which
spanned by vectors belonging to D,@®D, behaves just like an almost complex
structure and that the distribution D, and D, are both invariant under ¢.
Hence the dimensions of D, and D, must be even®. From this fact we have

LEMMA 6.1. The integral submanifolds of both of the distributions
D@D, and D,®D, are odd dimensional.

Denoting by » and s the dimensions of the distributions D, and D,
respectively, we take » mutually orthonormal contravariant vectors X% - - -,
X, in D, and s mutually orthonormal contravariant vectors Y,* (x=1,2,+- -,
s) in D,. Moreover we put X,,! =9'. Then 2n—1 vectors X,' (a=1,2,- -
<+, 7, r+1) and Y,' being linearly independent, we can construct the inverse
of the matrix (X, Y,") which we denote by (X%, Y*). Then we have the
identities

(6' 1) Xbi Xai = 815‘z ’ th Yzi = 0 > Yxt Xai = 0 > Ya:‘ Yyi = szy ’
(6. 2) X2 X + Y, Y2, =8,

from which we get X"*!; =9;.
If we put p.=X.'n;, ‘7. is a vector defined in the integral submanifold of
D, ® D,. The induced Riemannian metric of the submanifold is given by

9) Schouten, J. A. and K. Yano [11].
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6. 3) "Poa = 91 X’ X' .

Making use of the metric ‘g, and taking account of (6. 1), (6.2), we have
‘n° = X%n' from which we can easily see that 'z, is a unit vector.
Now, put

(6. 4.) Fbac = (ij Xck {jik } + ij 8} Xct) Xai s
then the covariant derivative of 7, along the integral submanifold of D, & D,
is given by
(6. 5) Vo ne = X4’ 95me — Tilenpa . '
From this definition, we can easily see that
(6. 6) Vo' e = Xt X' Vi s
which implies that 7, is a Killing vector.

Now, we prove the

THEOREM 6.2. Let M*"! be a normal almost contact hypersurface in
a Kaehlerian manifold of constant holomorphic sectional curvature and D,,
D, and D, be the distributions defined in the previous section. Then the
integral submanifolds of D,®D, and D,®D, are both normal contact metric
manifolds.

PROOF. By virtue of (2. 6) and (6. 6) we have
(6. 7) IVb I"Ia = _¢i'rerXaiij .

For any vector belonging to D, ® D,, the tensor Q,' defined by (5. 4)
behaves like a zero tensor and consequently it follows that

(6. 8) c—2M) QX = —H X+ MX+ Nyin; XS =0
by virtue of (4.3). From (6.7) and (6. 8) we get

(6. 9) ’Vblﬂa == —)q ¢” Xat ij .

Differentiating covariantly (6. 9) and taking account of Theorem 5.1, we have

10) Yano, K. and E. T. Davies [15].
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'Vc IVb l”’a = “hl(Vk ¢ij Xai ij Xck)

from which

'Vc 'Vb,ﬂa = ’_7\'1(”7£ij —n; Hik) Xai ij Xck )

because of (2. 7). Therefore we have from (6. 8)

’Vc 'Vb ,na = )\'12("71’ ijgki ){c’c Xa,i /I Xai Gkj Xck ij)

= 7\'12("'Tblgcor. - ,ﬂa Igcb) .

This implies that the vector ‘g, is a unit Killing vector satisfying (1. 9).

Hence, the integral submanifold of the distribution D, @ D, has a normal
contact metric structure by virtue of Theorem 1.1. Entirely the same
way we can also prove that the integral submanifold of the distribution
D, @ D, admits a normal contact metric structure. This completes the proof.
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