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ON OCR OPERATORS
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We may call an operator acting on a Hubert space a GCR-operator if it
generates a GCR-algebra. The purpose of this paper is to examine GCR-
operators. Two results are shown. One of them asserts that the product of
two GCR-operators which commute doubly is also a GCR-operator and the
other that any von Neumann algebra of type I acting on a separable Hubert
space is generated by a GCR-operator. The latter is extremely connected with
the result of C. Pearcy [10].

1. Definitions and Theorem 1. Throughout this paper, we mean by an
operator a bounded linear operator on a Hubert space and by a representation
of a "^-algebra a ~x~-representation as an algebra of operators. Given families
F, G, of operators on a Hubert space H, A(F, G, ) means the smallest
C*-algebra of operators on H containing F, G, and the identity operator /
on H; and R(F, G, ) the smallest von Neumann algebra on H containing
F, G, and, automatically, /. A C*-algebra A on H is said to be generated
by F, G, if A(F, G, )=A and a von Neumann algebra R on H is said
to be generated as a von Neumann algebra, or simply to be generated
unless we are thrown into confusion, by F, G, if R(F,G, )=R.

We call a Cx~-algebra A a GCR-alg$bra if any representation of A is of
type I, in other words, if for any representation 7t of A the von Neumann
algebra R(τr(A)) is of type I ([3], [6], [7], and [12]). On the other hand, by
an jVGCR-algebra we mean a C^-algebra in which there are no non-zero closed
two-sided ideals which are GCR-algebras ([3], [6]). It is known that several
Cx~-algebras of interest are GCR-algebras and Glimm's uniformly hyperfinite
algebras are jVGCR-algebras ([5]).

Now we define a notion of GCR-operators together with that of NGCR-
operators : An operator T on a Hubert space is said to be a GCR-operator,
an ΛΓGCR-operator, if the C*-algebra A(T) generated by T is a GCί?-algebra,
an Λ/GCΛ-algebra, respectively. When we say, following some authors, that
an operator T is of type I, of type II, of type III if the von Neumann algebra
R(T) generated by T is of type I, of type II, of type III, respectively, we can
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assert that all GC7?-operators are of type I and, as Prof. J. Tomiyama kindly
remarked to the author, that operators of type II and of type III are NGCR-
operators. The reason of the latter is as following. If R(T) has no portions
of type I and if a non-zero closed two-sided ideal J in A(T) is a GCR-algebra,

then the weak closure J of J in JR(T) becomes a weakly closed two-sided ideal
in R(T) which produces a portion of type I contradicting the assumption.

Normal operators, compact operators and isometries are GCR- opera tors (for
isometries, [141 f°r instance), and there are NGCR- opera tors since operators of
type II and of type III exist ([15], [20]). Moreover, it must be remarked that
there is an Λ/GCR-operator of type I. This fact is known immediately from D.
Topping's result which says that there is an operator T such that A(T) is
uniformly hyper finite (see [18]).

Hereafter we see

THEOREM 1. If S and T are GCR- operators on a Hubert space such
that ST=TS and S*T=TS*9 then ST is a GCR-operator.

The proof is easy from the following lemma, because in general any sub-
C*-algebra of a GCΛ-algebra is a GCR-algebra (4.3.5 in [3]).

LEMMA 1. Let A and B be C*- algebras on a Hubert space which
commute elementwise. Then, A (A, E) is a GCR-algebra if and only if A
and B are GCR-algebras.

In the proof, some parts of arguments of tensor products of Cx~-algebras
are employed, so we recall here them. The #-norm in the algebraic tensor
product AQB of A and B is defined by

\\X\\a= IIS^GS*)® τr2(TΛ)H for X = ΣΛ<8)T* in AQB ,

using arbitrarily chosen faithful representations τrly τr2 of A, B, respectively, and
the z/-norm in AQB by

— sup{||τr(X)|| : π taken over all representations π of AQB such that

(cf. [9]). The following are known : The #-norm coincides with the z/-norm

if A is a GC7?-algebra ([16]); and the ^-product A ® „ B of A and B, the
completion of AQB with respect to the Λ-norm in AQB, is a GCJR-algebra
jf and only if A and B are GC/ί-algebras ([17]).
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PROOF. Suppose that A and B are GCR-algebras in which we may
assume the identity operator is contained. Since the α-norm in AQB coincides
with the ι>-norm, the ~*-homomorphism

of AQB to the smallest ~x~~algebra containing A and B can be extended to a
/\

-homomorphism <p of the ^-product A® aB of A and B to A(A, B). When
a representation πr of A(A, B) is given, the composition π ° φ of ^> and TT is a

s\

representation of a GCR-algebra A®aB, then it is of type I and also, so is π.
Therefore A(A, B) is a GCR-algebra. The converse is trivial and the proof
is completed.

Here remark that an analogous argument shows that A(A, B) is a CCR-
algebra (see [3], [6]) if and only if A and B are CCR-algebras.

If an operator T commutes with T*T, T is said to be nearly normal.
Since such T is written in the form T = SV with S a self-adjoint operator
and with V an isometry commutes with S ([!]), we know that a nearly normal
operator is a GCR-operator (cf. [21]), as an application of Theorem 1.

2. Theorem 2. In [10] C. Pearcy showed that any von Neumann algebra
of type I on a separable Hubert space is generated by an operator. On the
other hand, it is seen that any von Neumann algebra of type I contains a
weakly dense sub-C*-algebra which is a GCR-algebra, though itself is sometimes
not a GCR-algebra (cf. [13]). Then there arises a question whether we can
find on a separable Hubert space a GCR-operator by which a given von Neumann
algebra of type I is generated. In the following we answear this affirmatively.

The next lemma is a key to our discussion. Its proof is essentially same
as that of a lemma in [4].

LEMMA 2. Let {At} be a sequence of C^-algebras with identities. If
each AI is generated by an operator, then the C*-algebra obtained by
adjoining the identity to the C*(oz)-sum of A?s is generated by an operator.

The C*(oo)-Sum ΣΘσ*(ββ)Aβ of Aα's means the C*-algebra of all formal
sums Σ0Tα with Ta £ Aa and with all but finite number of l|Tα||'s less than
£ for any S > 0, in which algebraic operations are defined coordinatewise and
in which norm is defined by ||ΣφTα|| = sup||Tα||.

PROOF. We may prove only the case when the sequence {A*} is infinite
because an easy modification proves the other case.

We regard each A4 as a C*-algebra acting on some Hubert space HI on



576 T. OKAYASU

which identity operator always denoted by / coincides with the identity of Λ t.
Then, A=ΣΘσ*(ββ)Ai is a O-algebra on the direct sum H=Z®Ht of HJs.

For each z, let Tt be an operator such that A(Ti)=Ai. We can choose
sequences {λt} , {μ i} of complex numbers and [Ki] of closed discs in the complex
plane which satisfy the following conditions :

(a) λi Φ 0 for each i.
(b) Let us put St = \iTt + fal, then the spectrum <r(Si) of 5̂  is contained

in the interior of Kt for each z, and
(c) {5i} converges uniformly to O.
(d) X, 01^=0 if i Φj.
(e) Let 7i be the center of Kt and δf the radius, then each jt is positive

real, and
( f ) {ji} and {δί} converge monotone to 0.

Let z'o be any positive integer and put L — ΣΘi>t0//i and Q =
Then we know that

In fact, Theorem 1.6.17 in [11] teaches us that, for any neighborhood V of the
origin 0, there is a δ > 0 such that <r(Q) c σ(P) 4- V for any operator P
commutes with Q and satisfies HP— Q|| < δ, and we can choose Qn=Sϊo+l®
Θ Sn Θ O 0 O 0 as the above P when w is sufficiently large, then

<KQ) c α<Qn) + y c \J cKSOu {0} + y ,
i>io

therefore, together with the obvious inclusion, the desired identity is obtained.
Next choose a closed disc K with its center at 0, disjoint with Kt if z ̂  z"0

and containing Kt if z > z'0. Define a function f on M = \^J Kt(jK as
ί>ίo

0, if z£Kίo>,

, if *€AV

Then, from the theorem of Mergelyan (for instance [19]), there is a sequence
{pk} of polynomials which converges to f uniformly on M. Since

l^dz = p,(Sί} for i < iβ ,
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J

and

~2πΐ

we have

II ACS,)! ̂  IIA(Q)II ̂  SIIA-/H supHO^-Q)-|| for i > ί,,

where δ denotes the radius of K, and

Thus, we know that ίA(^)} converges as £—» c>o uniformly to O when i ^ i0

and to / when z == z'0, while these convergences are uniform with respect to z's.
*β

So that {Σ Θ pk(Si)} converges as k -> oo uniformly to £ΐo = 0 O 0 / 0 O
0 O 0 . Put here 5 = 2 0 5t. Since Σ 0 />4(5i) = />fc(5) is in A(S) for
each A, we have Eio € A(5) and also 0O05 ίo0O0O0 - - SEίo z A(S).
Therefore, 0 O 0 Aio 0 O 0 O 0 is contained in A(5). Since z*0 is
arbitrary, we have finally A=A(S) and the proof is completed.

LEMMA 3. Any homogeneous von Neumann algebra on a separable
Hilbert space is generated as a von Neumann algebra by a GCR-operator.

PROOF. We may regard a von Neumann algebra given in the lemma as
Z®β(L), where Z is an abelian von Neumann algebra on a separable Hilbert
space and L separable ([2]).

There is an invertible positive operator P in Z such that R(P) = Z by von
Neumann's generation theorem in [8], and it is easy to see that the operator

1,

s =

0
1 0

1

0

01

1 0

if dim L = 1

if 2^di
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0
1 0

1

0
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0

if dim L =

satisfies that R(S) = B(L).
Next let us put T = Pξζ> S, then this is a GCR-operator because P and S

are GCjR-operators. We want to see that JR(T) = R. When dim L = 1, it is
trivial. When 2 fg dim L < ^0> by direct computations we have

VΓ*T £ + I and -1 = 7® 5,

where £ = 0

0 O
and so is 7(8)5. Therefore,
we have

Since E is in R(T), we know that P®I is in 7i(7Y)

= R(P®I,I®S) = R. At last, when dim 7,= No,

and T(P®Γ)~l = 7® 5,

so R(T) = R as above. Now the proof is completed.

LEMMA 4. Anj; C*(oo)-sum of GCR-algebras is a GCR-algebra.

PROOF. Let {Aa} be an indexed family of GCR-algebras and A their
C*(oo)-sum. We may assume for our purpose that each Aa has an identity 7.

For each a put E« = Θ O 0 7 0 O Φ O 0 , then we can identify Aa

and AEa in a trivial way. If TT is a representation of A, then

τra(T) = π for

is a representation of Aα and τt(X) — Σ Θ τrα(XEα) for all X in A. Since τr(E«)
makes an orthogonal family of projections in the center of τr(A) and each
R(τra(Aa)) is of type I, R(τr(AJ) = Σ Θ #(τrα(Aα)) is of type I. Then the proof
is completed.

Now we show

THEOREM 2. Any von Neumann algebra of type I on a separable
Hilbert space is generated as a von Neumann algebra by a GCR-operator.
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PROOF. We can find a family {Rt} of von Neumann algebras indexed by
a suitable set of cardinals ^X 0 with each Rt /-homogeneous such that the von
Neumann algebra given in the theorem is identified with the direct sum Σ0^?i
of RJs ([2]). By Lemma 3, there is a GC^-operator Tt with R(Tt} = Rt. Let
A be the C*-algebra obtained by adjoining the identity to Σ®c*(oo)Ai9 where
Ai = A(Ti). Then, by Lemma 4, A is a GCR-algebra and weakly dense in R.
Finally by Lemma 2, there is a operator T such that A(T)=A. It is of course
a GCR-operator and the proof is completed.

REFERENCES

[ 1 ] A. BROWN, On a class of operators, Proc. Amer. Math. Soc., 4(1953), 723-728.
[ 2 ] J. DlXMIER, Les algebras d'operateurs dans Γespace hilbertien (Algebres de von Neumann),

Gauthier-Villars, Paris (1957).
f 3 1 J. DlXMIER, Les C*-algebres et leurs representations, Gauthier-Villars, Paris (1964).
[ 4 ] R. G. DOUGLAS AND C. PEARCY, von Neumann algebras with a single generator, to

appear.
[ 5 ] J. GLIMM, On a certain class of operator algebras, Trans. Amer. Math. Soc., 95(1960),

318-340.
[6] J. GLIMM, Type I C*-algebras, Ann. of Math., 73(1961), 571-611.
[ 7 ] I. KAPLANSKY, The structure of certain operator algebras, Trans. Amer. Math. Soc.,

70(1951), 219-255.
[ 8 ] J. VON NEUMANN, Zur Algebra der Funktional-Operationen und Theorie der normalen

Operatoren, Math. Ann., 102(1930), 307-427.
[ 9 ] T. OKAYASU, On the tensor products of C* algebras, Tohoku Math. J., 18(1966),

325-331.
[10] C. PEARCY, W*-algebras with a single generator, Proc. Amer. Math. Soc., 13(1962),

831-832.
[11] C. E. RlCKART, General theory of Banach algebras, D. van Nostrand, New York (1960).
[12] S. SAKAI, On a characterization of type I C*-algebras, Bull. Amer, Math. Soc., 72(1966),

508-512.
[13] S. SAKAI, On a problem of Calkin, Amer. J. Math., 88(1966), 935-941
[14] N. SUZUKI, Isometries on Hubert spaces, Proc. Japan Acad., 39(1963), 435-438.
[15] N. SUZUKI AND T. SAITO, On 'he operators which generate continuous von Neumann

algebras, Tohoku Math. J., 15(1963), 277-280.
[16] M. TAKESAKI, On the cross-norm of the tensor product of C*-algebras, Tohoku Math.

J., 16(1964), 111-122.
[17] J. TOMIYAMA, Applications of Fubini type theorem to the tensor product of C*-algebra,

Tohoku Math. J., 19(1967), 213-226.
[18] D. TOPPING, UHF algebras are singly generated, to appear.
[19] J. WERMER, Seminar uber Funktionen-Algebren, Lecture Notes in Math., Springer-Verlag,

Berlin (1964).
[20] W. WOGEN, On generators for von Neumann algebras, to appear.
[21] T. YOSHINO, Nearly normal operators, Tohoku Math. J., 20(1968), 1-4.

COLLEGE OF GENERAL EDUCATION
TOHOKU UNIVERSITY
SENDAI, JAPAN




