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1. In [6] N. Wiener has introduced the quasi-Tauberian method to prove
some problems concerning the summability of Fourier series and integrals by
Cesaro sums, which had been proposed and solved partially by Hardy and
Littlewood and completely by L.S.Bosanquet and R.Paley [1], [2]. He gave
there some problems to which it is desirable to apply the quasi-Tauberian
method. G. Sunouchi has given some applications to the summability of the
conjugate or derived Fourier series etc. We show in this note that Wiener’s
method is also applicable to the summability of Fourier series by Riesz’s
logarithmic means, though F.T.Wang has solved this problem by another
method.

Now let f{#) be a summable and periodic function with period 27, and let

1) FE)~as/2 + " (ancos nt + bysin nt) .

n=1

The Fourier series (1,1) is said to be summable (R, a), for £=x, to sum s,

provided

P/ T S CR) i
R® = 5t (logw)“nZQ (log . ) (ancos nx + bysin nx)

tends to a limit s, when w— oo,

Let
P(w) =%(f(x+u)+f(x—u)—23).

We write
&)—0 (R a)

as t—0, provided



118 K. YABUTA

=il o 2] o)

as t—0.

F.T. Wang has proved the following theorems.

THEOREM 1. If a>0 and

1,2 Y. (f) =0 ((10g “%—)R) ,

when t—0, then the Fourier series (1,1) is summable (R, a+8) (8§>0), for
t=ux, to sum s.

THEOREM 2. If a>0 and the Fourier series (1,1) is summable (R, at),
for t =x, to sum s, then

1 a+1+ 4
“1’a+1+ 6(t) =0 ((log ‘T) ) ’
when t—0, for every §>0.

2. We shall prove Theorem 1 and Theorem 2 by the quasi-Tauberian
method. To prove the theorems we may assume clearly that f(¢) is even and
s=0, £=0, a,=0. Thus if a>0, we have

Re = ”(log oy f L (ot)(t)dt

where

1 a
L) = f (log i) cos ut du.
. u
By simple calculation one can see that if a=1

R: = o(l) + 22— f L(wb§t)dt ,

n(log ®)

and that if 1>aq>0
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R: =0+ —i—— = (Iog o) f La(mt)cﬁ(t)dt

as @ — oo,
One can see easily that

}.,Lw’,,(—l(z,wT)a { L(ot)p(t)dt = 0
implies
}.,Lwn(lo o) f Ly(wt)p(t)dt =

for every 8>a>0. (For instance, we can show it in the same way as in the
proof of the following Theorem 3 quite easily.)
Now there is a lemma which was obtained by M. Riesz [3],

LEMMA 1. If 0<a<PB and if'
=0(1) and RS =o0()
for @— oo, then Ri*’ = o0(l) for e—co and for every §>0.

Combining this lemma with the above considerations, we have the following
proposition,

PROPOSITION 1. If a>0, qs(t) as in the Theorem 1, and if

lim ”(lij“’) f L,,(cot)¢(t)dt =0

then we have

limRE =0

w—a0

for every B>«.

This proposition reduces Theorem 1 and Theorem 2 to the following
Theorem 3 and Theorem 4, respectively.

THEOREM 3. Let >0 and ¢(t) € L'(0,1). Then
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li _1_1.1 log £~ a—lid,( Ydz =0
- &(log 1/€) j %8 ¢ z AT =
implies
. 1 ! ! 1\’ xz _
lim = flog 1/e)ﬂf° ‘W)dxfo (1°g 7) cos 5= dz =0

Sor every B>a.

THEOREM 4. Let 8>0 and ¢(x)< L'(0,1). Then for every a>RB+1
lim—l-——f1 ¢(x)da:f1 log — ’ cos X2 dz =0
o &(log 1/€y J, L 82 &
implies
. 1 ' z\"7 e B
lim = og 1/&)"_[ <l°g ?) - Hodz=0.

3. Proof of Theorem ‘3. Let

Ki(x) = (log )y 'x7!, x>1
=0, o<zx=1,

and
1 1 B
Ki(x) = f <log 7) cos xz dz .
0

Then their asymptotic properties are as follows;

3.1 Ki(z)=0Q1) B> -1,

3,2) Kiz) = O(log 2f-1z~")  (8>0, z22),
3,3) Ki(x) = OQ1) (a=1),

3, 4) [ 1K@l zdz<o  (@>0).

0

We shall first find the solution R(x) of the following integral equation by
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Mellin transform,

3.5) K@) = fR(y)K“( )dyy

The Mellin transforms of K{(x) and K%(x) are given as follows;

ki(w) = fm " K{(x)dx = Na@)w™,
0

k(w) = f 2 "Kf(x)dx = —D(B+1)w I (—w) sin%w.
Let

Rw)  T(B+1)
") =tew)= = Ia)

w*PI'(—w) sin —;L w .

Then we have

r(w) = f ma:“"’R(Jc)dac

0

where

I(8+1) (1o 1\
R(x) m—) (lOg 2 ) cos xzdz .

If @< B, the unicity of Mellin trnsform shows that this function R(x) satisfies
(3,5), because there exists 1>b6>0, such that Ki(x)x™’, Kf(x)x™?, R(x)x™"
e LX0, o).

Considering the following Lemma 2, we have, for every ¢(x) € L'(0,1),

(3,7) 1 f qs(x)Kﬂ( )dx— /01 ¢($)dx./0m ( )Ka(y)d;]

o) g

LEMMA 2. Suppose that N(x) and R(x) satisfy the following four
conditions,

1) there exist N, 6 >0 such that |N(x)| <N for 0 <x<¥,

2) for every 8>0. there exists M(8)>0 such that |R(x)| <M(d) for
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0<x<<9,

3) there exists 1>0 such that f |R(x)| x'dx < o0,
n

[ IN@zdz< oo,

0

Then for every &, 0<8<~017, we have

me(%)N(%)i?ilg C.< o (0<z<1).

In fact we have

R (E) 2= () [ (%) 2 on [ |r(2) 2

= () [N B[ RN
xf 1/¢6

< oo,

Now we shall finish the proof. By the assumption, for any 7>>0, there
exists 8 >0 such that if 0<<y <8

1

1 ; x
y(log 1/y)_"'f0 KI(T) )| <n.

3.8) |

We may assume 26<C8. Let

o dy 1 x e 4 il
R(2)% [ (2 oorta= [o [ o[ =1t
f., /)yl y J#D o [ ' ?

Then, since R(x) is bounded as seen in (3,1) and
€ 1 a 1 a
lo, _) dy = O(&(log “) )
fo ( ®y &/,

as €0, we have
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2¢ l a 1 a
|1, = Cﬂfo (log —y—) dy = n-O(E(log ?) ) .

Since R(x) = O((logx)*~*"'z™"), x=2, we have

8 8 B—a-1 1 @
11| = Cnf 5 <log 38}*> (log y) dy
1 a 5 B—a—1
= Cne(log 28) f (log %) yidy
2¢
1 @ 8 B—a
=(Cné <log 28) (B—a)“‘[(log E) —(log 2)”“']
)
7:0 (E(IOg é) ) .
And since Kl() = 0 for y>1, we have
d 1
|1, <f [R( )| ;’” K‘{(ﬁ)q&(m)dx(
‘o
1 B—-a-1 1
=Cé¢ f (log %’) yidy f
8 0
gCle(logi) (log S ) f y
- C . 1 B—a—1 1 1 ’ . T ‘ o
=< C&s log—gff |p(x)|dx [Kl Ty y dy
0 5 5

1 B—a—1 pl /5
scafiog ) [ te@iax [ 1K) a

cobfm )

These estimations, combined with (3,7), complete the proof,

IA

Kr(—jé)! )

K1( %)) 191
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4. Proof of Theorem 4. We may assume 2>a—8>1, because evidently
ao | % —
lim & fog 1/8)“‘,[ K ( & )¢(x)dx =0
implies

1 o -
I‘LTW‘[ K1 (%—) ¢(x)dx =0

if ay=a,.

Now let

r(w)= zg&zg = — n?géc-?l) w? (1 + w)cos —12[— w,

then we have

r(w) = [ ) x"R(x)dx (O<Rew<1),

0

where

2I(xt) (log z) —A-3 2 de

R<x)=_7zI‘(/3+1){l‘(a B— 1)f Sy

1 sin — dz
x

F—_(ot B=2) f (log 2)*# 32

(log z) Lz
~ Na= /3 1)f sin p dz
1 1 [“(log z) —A-2 2 '
T Ta—B-1) z J, S dz,

- 82 | R@ ~ R~ R+ RG] , say

We first write down the properties of these functions, which are obtained by
simple calculation, considering the periodicity of trigonometric functions,
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4,1) Let Rfx) = f (log 2)* 272 sin ~;—dz, then we have
1

1) Ri(x)=0Q), &> -1,
2) Ri(x) = O((log x)***z7Y), z=2,86> —1,
3) Ryx) = O(x), £—0, =0,

= O(z*), 20, 0>8> —1.

4,2) Let Qix) = f (log 2)’z3 sini— dz, then we have the same estimationsas
1

for R,;(x).
4,3) Let Pyx)= f (log 2Y27% 2 —1) sin % dz, then we have
1

1) Pyx) = O((log x)}**z"Y), z=2, 8> —2,
9) Piz) = O(&**), 2—0, —1=8> —2,
= O(&**%), z—0, 0=8> —1,

= 0O(x), x—0, §>0.
(4, 4 Let Sfx)=x" f (log 2)’27% cos % dz, then we have
1

1) Si(x)=0(z™), =2, 8> —1,
2) Six)=0Q1), z—0, =0,

3) Six) =0, —0, 0>8> —1.

We give here only the proof of (4,4), 3). The proofs of another propositions
are obtained in a similar way. Since (log 2)’2~? decreases monotonously as 2 — oo

z . . . . .
and cos — isa periodic function with period 27z, we have

1427
|S{(x)| = = f (log 2)’z7%dz,

1
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which shows (4, 4), 3).
a—B—1

Now, if we set b= s then considering (4, 1), (4,2), (4, 3) and (4, 4)

we have
Ki(x)x™?, K§(x)x™", R(x)x® < L(0, o0).
Hence K%, K§ and R(x) satisfy the following integral equation,

dy
y

4,5) ki@ = [ RoKE ()
By (4,1), (4,2) and (4, 3) we have
R(x)x™", Ryx)x™", Ry(x)x™' € L0, o).

Hence we have

(4,6) f ) <R ( g-) R, ( g)) &, f K3 ( )gb(x)dx
[ {2} (2ol

Next we shall show that (4,6) remains valid if R(x)—R,(x) is replaced by
Ry (x). Let 8>0 and k=a—B—2. Let

war= [ ) )

K 1 8
= & f dy (log t) 0s & dt[ (lo 1) cos % dz
y Yo z y

1

oo 1 k B =3
S f (log Y (log L) ds de f cos &¢/y cos z2/y 4
/o t 2 A y

1

Then I;(x) is bounded for 0 <8< oo, 0=x=1. In fact we have

(" cos &t/y cos xz/ Ve
Ji(x. t, 2) :_} e y;}; - f‘ydy :f cos &ty cos xzy dy
8 0
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1/6
= %— f {cos(&t + x2)y + cos(Et — x=2)y}dy
0

and thus we have |J)(x, ¢ 2)| =1 if & & {+x=2}. This shows that I(x) is
8
bounded for 0 <8 <<oo and 0=x=1, because (log ¢)* #* (log —i—) is summable

in (1, )% (0,1). Now applying Lebesgue’s dominated convergence theorem and
Fubini’s theorem, we have

4,7) fm( )dyf Kﬁ( )c])(x)dx
= lim f R4( %) ay f (—HJCT)gb(:c)dx
= lim fo 1 P f mR4(- g) K% (‘5;) = { | $@)da i: R, (36’)1{6 (%) &,

which, combined with (4,5) and (4, 6), shows that

4,9 [&(2)% [ &%) s

0

= f K:(i>¢(x)dx.
0 &
We finish now the proof. First note that

R(x) = O((log x)**'x7Y), z=2,

= O(x*#?), x—0.
By the assumption, for every 7 >0, there exists §>0 such that

sterr), K[ e <n 0o,

Let

wa(%’>“;yf Kﬁ( >¢(x)dx—{ +[ f_1+1+13, say.

0 0
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Then we have

11=| _/: ® (%) (l°g %)B dy|n=Cn fo ) (—~g—>a—ﬁ_2 (10g %)B dy

1 B
é C,’)82—a+ﬁo (ea—B—l (log ?) )
1 B

. 8
f <10g7> dy = O(E““(logi;) ) &—0, (a>—-1,8> —1).

because

For I, we have

6 R( >(log 1 A> dy|= Cre f (log 5 a>HH o <log —;—)B dy

2s
1 B a—B-1
=C (log g) f <10g %) y'dy

1 8\ 1
= Ce1og 55 ) {[1ox ) ~tom2r-*} (a-g)"

II2| =7

For I, since K5(x) is bounded and ¢(x) is summable, we have

00 a-B-1
Ll =cef (log %) y-dy

e/ 1 a—B-1 8 8 a—-B-1
= Cj; <log ?) dt=0 <T<log —8—-) ) .

These estimations, combined with (4, 8), show that

. 1 R _
1‘1_111 W-/; K; (?) (b(x)dx =0,
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which is the desired conclusion.

REMARK. In the case @ =8 in Theorem 3, R(x) is given by 51%1: Thus

in a similar way to the proof of Theorem 3, we can show that

f‘ 1 (log %)a—lx“qb(x)dx -0 ( (log %))

implies

%_’: ¢>(x)d.’chol (log %)acosxTz dz = O((log %)a+l> .

In the case @ =8+1 in Theorem 4, R(x) is given by % cos % By calculation

we can check that (4,5) and (4, 8) remain valid. However, we can not obtain
by our method the same result as in the above remark. We have not succeeded
in estimating the following integral,
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[31]

[4]
[5]

[61]

‘cos &/y -
j: o dy fo K’;‘(iﬁ) $(2)dz .
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