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SOME REMARKS ON WIENER'S QUASI TAUBERIAN THEOREMS

AND THE SUMMABILITY OF FOURIER SERIES

Kozό YABUTA

(Received September 11, 1969)

In [5] N. Wiener gave the so-called quasi-tauberian theorems and their
applications to the problem on the summability of Fourier series and integrals
by Cesaro sum of some order, which was discussed completely by L. Bosanquet
[1] and R. Paley [3]. But we have found that Wiener's discussion on kernels
vanishing for positive arguments is not correct, and that his Theorem 22' is not
stated correctly. In his Theorem 22' the phrase — £ < R e w < λ + £ must be
replaced by — λ — £ < R e w < £ . The result of Bosanquet-Paley reads as follows;

THEOREM. Let f(x) be an integrable function of period 2τr and let

Φ(χ) = \ <J(χ+y)+f{y-χ)-2s).

Then if we write Bm for the proposition

and Cm for the proposition

Iim4- ( &&dx ί (±-zTcos~^dz=0,

Bm implies Cm + e /or ra^O, while Cm implies Bm+1+ε for m ^ O and any £>0.

If we apply Theorem 22' of Wiener [5], we can obtain only that Bm implies
Cm+e when rag^l and that Cm implies Bm+2+ε when m ^ O . But applying
Levinson's variant of Theorem 22' of Wiener [2] and another quasi-tauberian
theorem for some unbounded kernel, we can reprove the Bosanquet-Paley's result
completely by Wiener's method. By his method we have also reproved F.T.Wang's
results on the summability of Fourier series by Riesz's logarithmic means [4].

To prove Theorem we need two quasi-tauberian theorems.
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LEMMA 1. (Wiener-Levinson) Let

1 Γ 1

( 0 ) lim — / NA*-

where

( 1 ) [ IΦ<
J o

and

(2) | iV 1(^)|<A<oo.

If R(x) is a function such that

( 3 )

and

( 4 )

and

( 5 )

then

( 6 )

we have

i Γ1

l i m —— /
ε->0 θ JQ

[ \R(x)\dx<

= 0

LEMMA 2. Lemma 1 remains valid if (2) and (3) are replaced by

( 7 ) f |iV1(a:)

( 8 ) ί/ier<? ê :z5ί K > 0 and A>0 such that

|JV,(a;)| < A /or 0

( 9 )



ON WIENER'S QUASI-TAUBERIAN THEOREMS

and

(10) R(x) = O(l/x1+a) as x->oo for some ct>0

i.e., there exists C > 0 such that \R(x)\ <C/x1+a.

PROOF OF LEMMA 2. By simple calculation, the following repeated

integral is absolutely convergent, so we can interchange the order of integration,

giving

(11)

- i jf R {f) N,

Since

J~ \N

for every δ > 0 , by (7), (8), (9), (10), it follows that

IX

+

« 1. \[^-)φ{x)dx

\Nx{x)\dx.
J n

Since for sufficiently small δ the first term on the right is arbitrarily small

independently of £, and any fixed δ, the second term and the third are arbitrarily

small, we have the conclusion considering (11).
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Now we shall first prove that Bm implies Cm+e for ragrO. It is clearly

sufficient to prove for m > 0, because Bn implies Bn+β for every β > 0 and

n^O. Let n>m>0 and

(12) i V 1 ( ^ ) ^ ( 1 ~ ^ ) 0<^<l (m>0)
1 \ΎΠ)

= 0 l ^ x

and

(13) M(^) - nV£n + 1 ) / (1-g)" cos zx ̂  ( * ^ 0 ) .

Their Mellin transforms are given by

(14) „,(«,)

Set r(zί ) = -4—^ . Then r(w) is holomorphic in the half plane Re w<m-\-l.
ΐlι\W)

And by Stirling's formula

(16) I r(w) I - - ^ = I Im ti; I - R ~ - / 2

as Im τe;—>ztoo? uniformly in — n — l < R e τχj<m-fl. Hence r(w) is uniformly

L2 in — — - — ^ Re zv ̂  1+ -^— and via Paley-Wiener theorem we have

\ \R(x)\dx<oo and

l fίA

where R(x) = 1. i. m——— / /-(tί;)α:ϊί7 ^ze;. This function R(x) satisfies the
A-^oo Δ7tl J _ίA

integral equation (5). Thus, since Nχ(x) is bounded for m ^ l , Lemma 1 shows

that Bm implies Cm+e in this case. For the case 1 > m > 0 we apply Lemma 2.

We see easily that Nλ(x) satisfies (7), (8) and that R(x) satisfies (4). Hence we

have only to show that R(x) is bounded and Ol—^^-1 for some oc>0. The
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boundedness follows immediately from the fact r(l-hzV) <= L\ — oo, +oo)? easily
seen by (16). To see the order of growth, we need the following lemma which
follows from Stirling's formula.

LEMMA 3. Let α, b, c be three numbers such that a^c and —a^b.
Then

\\b-w)
^ l )

T(w + c) ~T(w+a)

and

Y(w+a) (

as Imw—>=too> uniformly in —a^

Set

(17) r1(z«;) = ( ~ l ) w ι ^ . } , /^~ = Γ χ-wRλ(x)dx
v 7 i\ / v / Γ(n—m-hl + t^)cos n/2w Jo

 v '

where

f l--)-mcos zx dz.

Applying Lemma 3 to r(w) and rx(w\ we have

(18) r{w)-rx(w) = O( | Im w \ -R θ ™+™-»~W) .

Hence r(w)—rλ(w) is uniformly L2 and L1 in τ " ^ R e w ^ — . Si

r(tc )—rλ(w) is holomorphic in — K R e w<ly there exists C > 0 such that

(19) |i?0r)-i^)

By simple calculation we have

(20) Rfc) = O(

where /Si = inf (1, n—m),
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which, combined with (19), shows that

where β2 = inf (/?!,—-) .
\ Δ

We have thus proved the first half of Theorem.

Next we shall show that Cm implies Bm+1+ε for m ^ O . In this case, if we

have (11) interchanging the rolls of Nλ(x) and N2(x), the proof goes in the

same way as in Lemma 1 (Levinson [2], p. 140), because N2(x) is bounded for

TZ^O. Let m—l>n^0 and

( v _ nx{w) _ Γ(l - w ) l \ n + 1 + ze;)cos τr/2τv
ΛW)~n2{w)~ iXm + 1-τe;)

and

, v _ (—1)W+1Γ(1 -w)Γ(l + ze;)cos τr/2w

where

= ί χ-wRx{x)dx
•'o

)»+j ( r1

—'Λ) - Λ
\\l/χ f (l-zycos

T{m-n)\ Jo

 v x

1 Λ 1

^ ( 1 —
x \

^ ( 1 2 ) c o s
x \ x

7

dz

We shall show that we have (11) if we replace R(x) by R(x)—Rι(x) or Rι(x)

and thus (11) follows for R(x). By Lemma 3, we have

r(w) - rjjxή = O( I Im | R e

Since r(w)—r1(w) is holomorphic in — l < R e w < 2 , via Paley-Wiener theorem

we have
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In the same way we have

Since N2(x) is bounded, we have (11) for R
For R2(x) we have by simple calculation

where β = inί(l,m-n-l). Thus R%(x)/x <zLιφ9oo\ which shows that (11)
remains valid for R2(x).

Now consider R^x). Let δ be an arbitrarily fixed positive number and
k = m—n—l. Let

= I \ / — ( I — 2) cos— dz\ I I (1—ί)wcos dt\

=εk Γ Γ ^ l -^-Ki-O"^^ Γ<χ*£*/y«***/y dy

Jo Jo Jδ y

The last term is equal to I cos Szy cos xty dy = —(r~ I {cos(& + xt)y+co$>(βz

—xt)y]dy. Clearly it is less than or equal to 1 unless Sz = ztxt. Hence Is(x)
is finite with respect to 0 < δ < o o and Oίg r ^ l . Hence applying Lebesgue's
dominated convergence theorem and Fubini's theorem, we have
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which shows that (11) holds for R*(x). Thus we have shown that (11) holds
for R(x\ which completes the proof.
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