ON THE MULTIPLIERS OF HANKEL TRANSFORM

Dedicated to Professor Gen-Ichirô Sunouchi on his 60th birthday

Satoru Igari

(Received Sept. 21, 1970)

The Jacobi polynomial of degree n, order $(\alpha, \beta), a, \beta>-1$, is defined by

$$
(1-x)^{\alpha}(1+x)^{\beta} P_{n}^{(\alpha, \beta)}(x)=\frac{(-1)^{n}}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left[(1-x)^{n+\alpha}(1+x)^{n+\beta}\right] .
$$

$\left\{P_{n}^{(\alpha, \theta)}(\cos \theta)\right\}_{n=0}^{\infty}$ is an orthogonal system on $(0, \pi)$ with respect to the measure $(\sin \theta / 2)^{2 \alpha+1}(\cos \theta / 2)^{2 \beta+1} d \theta$.

For a function $f(\theta)$ integrable on $(0, \pi)$ with respect to such a measure define

$$
\widehat{f}(n)=\int_{0}^{\pi} f(\theta) P_{n}^{(\alpha, \beta)}(\cos \theta)\left(\sin \frac{\theta}{2}\right)^{2 \alpha+1}\left(\cos \frac{\theta}{2}\right)^{2 \beta+1} d \theta
$$

Put

$$
\frac{1}{h_{n}^{(\alpha, \beta)}}=\int_{0}^{\pi}\left[P_{n}^{(\alpha, \beta)}(\cos \theta)\right]^{2}\left(\sin \frac{\theta}{2}\right)^{2 \alpha+1}\left(\cos \frac{\theta}{2}\right)^{2 \beta+1} d \theta .
$$

Then we have formally

$$
f(\theta)=\sum_{n=0}^{\infty} \hat{f}(n) h_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \theta) .
$$

For a sequence $\phi(n)$ on the non negative integers define a transformation T_{ϕ} by

$$
T_{\phi} f(\theta)=\sum_{n=0}^{\infty} \phi(n) \widehat{f}(n) h_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \theta) .
$$

For $p \geqq 1$ and the function f on $(0, \pi)$ we define a norm

$$
\|f\|_{p}=\left(\int_{0}^{\pi}|f(\theta)|^{p}\left(\sin \frac{\theta}{2}\right)^{2 \alpha+1}\left(\cos \frac{\theta}{2}\right)^{2 \beta+1} d \theta\right)^{1 / p}
$$

and denote by $L_{\langle\alpha, \beta)}^{p}(0, \pi)$ the set of all measurable functions such that $\|f\|_{p}<\infty$. The operator norm of T_{ϕ} of $L_{(\alpha, \beta)}^{p}(0, \pi)$ to $L_{(\alpha, \beta)}^{p}(0, \pi)$ will be denoted by $\left\|T_{\phi}\right\|_{p}$ or $\|\phi(n)\|_{p}$.

Let $J_{\alpha}(x)$ be the Bessel function of the first kind. For a function $g(x)$ on $(0, \infty)$ the (modified) Hankel transform of order α is defined by

$$
\widehat{g}(y)=\int_{0}^{\infty} g(x) \frac{J_{\alpha}(x y)}{(x y)^{\alpha}} x^{2 \alpha+1} d x
$$

and the multiplier transformation associated with $\phi(y)$ is defined formally by

$$
U_{\phi} g(x)=\int_{0}^{\infty} \phi(y) \hat{g}(y) \frac{J_{\alpha}(x y)}{(x y)^{\alpha}} y^{2 \alpha+1} d y .
$$

$L_{\alpha}^{p}(0, \infty)$ will denote the space of all measurable function g such that

$$
|g|_{p}=\left(\int_{0}^{\infty}|g(x)|^{p} x^{2 \alpha+1} d x\right)^{1 / p}<\infty .
$$

The operator norm of U_{ϕ} of $L_{\alpha}^{p}(0, \infty)$ to $L_{\alpha}^{p}(0, \infty)$ will be denoted by $\left|U_{\phi}\right|_{p}$ or $|\phi(y)|_{p}$.

The object of this paper is to study the relation of the multiplier transformations between Jacobi polynomial expansions and Hankel transformations.

Theorem. Let $1 \leqq p<\infty$ and $\alpha, \beta>-1$. Assume that ϕ is a function on $(0, \infty)$ continuous except on a null set and $\underline{\lim }_{\varepsilon \rightarrow+0}\|\phi(\varepsilon n)\|_{p}$ is finite, then $|\phi(x)|_{p}$ is finite and $|\phi(x)|_{p} \leqq \underline{\lim }_{\epsilon \rightarrow+0}\|\phi(\varepsilon n)\|_{p}$.

Proof. Let g be an infinitely differentiable function with compact support in a finite interval $(0, M)$ and put $g_{\lambda}(\theta)=g(\lambda \theta)$ where $\lambda>0$ is so large that the support of $g_{\lambda}(\theta)$ is contained in $(0, \pi)$. Then we have by the assumption

$$
\begin{equation*}
\left\|\sum_{n=0}^{\infty} \phi\left(\frac{n}{\lambda}\right) \widehat{g}(n) h_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}(\cos \theta)\right\|_{p} \leqq\left\|\phi\left(\frac{n}{\lambda}\right)\right\|_{p}\|g\|_{p} \tag{1}
\end{equation*}
$$

Changing variable we get

$$
\lambda^{(2 \alpha+2) / p}\left\|g_{\lambda}\right\|_{p}=\left(\int_{0}^{M}|g(\tau)|^{p}\left(\lambda \sin \frac{\tau}{2 \lambda}\right)^{2 \alpha+1}\left(\cos \frac{\tau}{2 \lambda}\right)^{2 \beta+1} d \tau\right)^{1 / p}
$$

which tends to

$$
\left(\frac{1}{2^{2 \alpha+1}} \int_{0}^{\infty}|g(\tau)|^{p} \tau^{2 \alpha+1} d \tau\right)^{1 / p}
$$

as $\lambda \rightarrow \infty$. Apply the similar argument to the left hand side of (1). Then we get by Fatou's lemma

$$
\begin{align*}
& \left(\frac{1}{2^{2 \alpha+1}} \int_{0}^{\infty} \lim _{\lambda \rightarrow \infty}\left|\sum_{n=0}^{\infty} \phi\left(\frac{n}{\lambda}\right) \widehat{g}_{\lambda}(n) h_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}\left(\cos \frac{\tau}{\lambda}\right)\right|^{p} \tau^{2 \alpha+1} d \tau\right)^{1 / p} \tag{2}\\
& \quad \leqq \lim _{\lambda \rightarrow \infty}\left\|\phi\left(\frac{n}{\lambda}\right)\right\|_{p}\left(\frac{1}{2^{2 \alpha+1}} \int_{0}^{\infty}|g(\tau)|^{p} \tau^{2 \alpha+1} d \tau\right)^{1 / p} .
\end{align*}
$$

Now we proceed to the computation of the left hand side of (2).
First we remark that (2) holds for $p=2$ and

$$
\left\|\phi\left(\frac{n}{\lambda}\right)\right\|_{2} \leqq\left\|\phi\left(\frac{n}{\lambda}\right)\right\|_{p} .
$$

Thus for a sequence $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{j} \rightarrow \infty$

$$
G(\tau, \lambda)=\sum_{n=0}^{\infty} \phi\left(\frac{n}{\lambda}\right) \hat{g}_{\lambda}(n) h_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}\left(\cos \frac{\tau}{\lambda}\right)
$$

converges weakly to a function $G(\tau)$ in $L_{\alpha}^{2}(0, K)$ for every $K>0$ and $G(\tau)$ satisfies the inequality

$$
\begin{align*}
& \left(\int_{0}^{\infty}|G(\tau)|^{p} \tau^{2 \alpha+1} d \tau\right)^{1 / p} \tag{3}\\
\leqq & \lim _{\lambda \rightarrow \infty}\left\|\phi\left(\frac{n}{\lambda}\right)\right\|_{p}\left(\int_{0}^{\infty}|g(\tau)|^{p} \tau^{2 \alpha+1} d \tau\right)^{1 / p} .
\end{align*}
$$

To show that $G(\tau)$ is the Hankel transform of $\phi \hat{g}$ put

$$
\begin{aligned}
G(\tau, \lambda) & =\left(\sum_{n=0}^{N[\lambda]}+\sum_{n=N[\lambda]+1}^{\infty}\right) \phi\left(\frac{n}{\lambda}\right) \widehat{g}_{\lambda}(n) h_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}\left(\cos \frac{\tau}{\lambda}\right) \\
& =G^{N}(\tau, \lambda)+H^{N}(\tau, \lambda), \text { say },
\end{aligned}
$$

for $N=1,2, \cdots$.
Since

$$
\begin{array}{r}
\frac{d}{d \theta}\left[\left(\sin \frac{\theta}{2}\right)^{2 \alpha+2}\left(\cos \frac{\theta}{2}\right)^{2 \beta+2} P_{n-1}^{(\alpha+1, \beta+1)}(\cos \theta)\right] \\
=n\left(\sin \frac{\theta}{2}\right)^{2 \alpha+1}\left(\cos \frac{\theta}{2}\right)^{2 \beta+1} P_{n}^{(\alpha, \beta)}(\cos \theta)
\end{array}
$$

(cf. [5, p. 97]), integrating by parts we get

$$
\widehat{g}_{\lambda}(n)=-\frac{\lambda}{n} \int_{0}^{\pi} \frac{g^{\prime}(\lambda \theta)}{\sin \theta / 2 \cos \theta / 2} P_{n-1}^{(\alpha+1, \beta+1)}(\cos \theta)\left(\sin \frac{\theta}{2}\right)^{2 \alpha+3}\left(\cos \frac{\theta}{2}\right)^{2 \beta+3} d \theta
$$

This, if $K>0$ is any fixed number and $\pi \lambda>K$, then

$$
\begin{aligned}
& \int_{0}^{K}\left|H^{N}(\tau, \lambda)\right|^{2}\left(\lambda \sin \frac{\tau}{2 \lambda}\right)^{2 \alpha+1}\left(\cos \frac{\tau}{2 \lambda}\right)^{2 \beta+1} d \tau \\
& \quad \leqq \int_{0}^{\pi}\left|H^{N}(\tau, \lambda)\right|^{2}\left(\lambda \sin \frac{\tau}{2 \lambda}\right)^{2 \alpha+1}\left(\cos \frac{\tau}{2 \lambda}\right)^{2 \beta+1} d \tau \\
& \quad=\lambda^{2 \alpha+2} \int_{0}^{\pi}\left|H^{N}(\lambda \tau, \lambda)\right|^{2}\left(\sin \frac{\tau}{2}\right)^{2 \alpha+1}\left(\cos \frac{\tau}{2}\right)^{2 \beta+1} d \tau
\end{aligned}
$$

By Parseval's relation the last term equals

$$
\lambda^{2 \alpha+2} \sum_{n=N[\lambda]+1}^{\infty}\left|\phi\left(\frac{n}{\lambda}\right)\right|^{2}\left|\hat{g}_{\lambda}(n)\right|^{2} h_{n}^{(\alpha, \beta)} .
$$

Since $h_{n}^{(\alpha, \beta)}=2 n+O(1)$ as $n \rightarrow \infty$ and ϕ is uniformly bounded, the above is dominated by

$$
A \lambda^{2 \alpha+2}\left(\frac{\lambda}{N \lambda}\right)^{2} \sum_{n=N[\lambda]+1}^{\infty}\left|\frac{n}{\lambda} \widehat{g}_{\lambda}(n)\right|^{2} h_{n-1}^{(\alpha+1, \beta+1)},
$$

where A is a constant independent on λ and N. By Bessel's inequality this is bounded by

$$
\begin{aligned}
& A \frac{\lambda^{2 \alpha+2}}{N^{2}} \int_{0}^{\pi}\left|\frac{g^{\prime}(\lambda \theta)}{\sin \theta / 2 \cos \theta / 2}\right|^{2}\left(\sin \frac{\theta}{2}\right)^{2 \alpha+3}\left(\cos \frac{\theta}{2}\right)^{2 \beta+3} d \theta \\
& \quad=\frac{A}{N^{2}} \int_{0}^{M}\left|g^{\prime}(\theta)\right|^{2}\left(\lambda \sin \frac{\theta}{2 \lambda}\right)^{2 \alpha+1}\left(\cos \frac{\theta}{2 \lambda}\right)^{2 \beta+1} d \theta \\
& \quad=O\left(\frac{1}{N^{2}}\right)
\end{aligned}
$$

uniformly in λ.
Thus we get

$$
\int_{0}^{\pi}\left|H^{N}(\tau, \lambda)\right|^{2} \tau^{2 \alpha+1} d \tau=O\left(\frac{1}{N^{2}}\right)
$$

uniformly in λ.
Thus by the diagonal argument there exists a subsequence $\left\{\lambda_{k_{j}}\right\}$ of $\left\{\lambda_{j}\right\}$ such that $H^{N}\left(\tau, \lambda_{k_{j}}\right)$ converges weakly to a function $H^{N}(\tau)$ in $L_{\alpha}^{2}(0, K)$ for every $N=1,2, \cdots$ and

$$
\int_{0}^{K}\left|H^{N}(\tau)\right|^{2} \tau^{2 \alpha+1} d \tau=O\left(\frac{1}{N^{2}}\right)
$$

For a subsequence $\left\{N_{j}\right\}, H^{N_{j}}(\tau)$ converges to zero almost everywhere.
Since

$$
G^{N}(\tau, \lambda)=G(\tau, \lambda)-H^{N}(\tau, \lambda)
$$

$G^{N}\left(\tau, \lambda_{k_{j}}\right)$ converges weakly in $L_{\alpha}^{2}(0, K)$ to a limit $G^{N}(\tau)$ as $j \rightarrow \infty$ and $G(\tau)=G^{N}(\tau)+H^{N}(\tau)$ for $N=1,2, \cdots$. Thus $G^{N_{j}}(\tau)$ converges to $G(\tau)$ almost everywhere.

We prove that $G^{N}(\tau, \lambda)$ converges pointwise to a function as $\lambda \rightarrow \infty$. Then the limit function coincides with $G^{N}(\tau)$.

First we note that

$$
\left(\sin \frac{\theta}{2}\right)^{\alpha}\left(\cos \frac{\theta}{2}\right)^{\beta} P_{n}^{(\alpha, \beta)}(\cos \theta)
$$

$=\tilde{n}^{-\alpha} \frac{\Gamma(n+\alpha+1)}{n^{\alpha}}\left(\frac{\theta}{\sin \theta}\right)^{1 / 2} J_{\alpha}(\widetilde{n} \theta)+ \begin{cases}O\left(\theta^{1 / 2} n^{-3 / 2}\right) & \text { for } C n^{-1} \leqq \theta \leqq \pi-\varepsilon \\ O\left(\theta^{\alpha+2} n^{\alpha}\right) & \text { for } 0<\theta \leqq C n^{-1},\end{cases}$
where $\tilde{n}=n+(\alpha+\beta+1) / 2$, and ε and C are fixed positive numbers ([5, p. 197]).

Let K be a fixed number and $0<\tau \leqq K$. For $n, 0 \leqq n \leqq N[\lambda]$, we have

$$
\begin{aligned}
& \frac{h_{n}^{(\alpha, \beta)}}{\lambda^{\alpha}} P_{n}^{(\alpha, \beta)}\left(\cos \frac{\tau}{\lambda}\right) \\
& \quad=h_{n}^{(\alpha, \beta)} \tilde{n}^{-\alpha} \frac{\Gamma(n+\alpha+1)}{n^{\alpha}}\left(\frac{\tau / \lambda}{\sin \tau / \lambda}\right)^{1 / 2} J_{\alpha}\left(\frac{\widetilde{n}}{\lambda} \tau\right) \frac{1}{(\lambda \sin \tau / 2 \lambda)^{\alpha}(\cos \tau / 2 \lambda)^{\beta}}+O\left(\frac{n^{\alpha+1}}{\lambda^{\alpha+2}}\right) \\
& \quad=h_{n}^{(\alpha, \beta)} J_{\alpha}\left(\frac{\widetilde{n}}{\lambda} \tau\right)\left(\frac{2}{\tau}\right)^{\alpha}+o(n) \\
& \quad=2 n J_{\alpha}\left(\frac{n}{\lambda} \tau\right)\left(\frac{2}{\tau}\right)^{\alpha}+o(n) .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\lambda^{\alpha} \widehat{g}_{\lambda}(n)= & \frac{1}{\lambda^{\alpha+2}} \int_{0}^{M} g(\theta) P_{n}^{(\alpha, \beta)}\left(\cos \frac{\theta}{\lambda}\right)\left(\sin \frac{\theta}{2 \lambda}\right)^{2 \alpha+1}\left(\cos \frac{\theta}{2 \lambda}\right)^{2 \beta+1} d \theta \\
= & \frac{1}{\lambda^{2}} \int_{0}^{M} g(\theta) \widetilde{n} \frac{\Gamma(n+\alpha+1)}{\alpha}\left(\frac{\theta / \lambda}{\sin \theta / \lambda}\right)^{1 / 2} J_{\alpha}\left(\frac{\widetilde{n}}{\lambda} \theta\right)\left(\lambda \sin \frac{\theta}{2 \lambda}\right)^{\alpha+1}\left(\cos \frac{\theta}{2 \lambda}\right)^{\beta+1} d \theta \\
& +o\left(\frac{1}{\lambda^{2}}\right) \\
= & \frac{1}{\lambda^{2}} \frac{1}{2^{\alpha+1}} \int_{0}^{\infty} g(\theta) J_{\alpha}\left(\frac{n}{\lambda} \theta\right) \theta^{\alpha+1} d \theta+o\left(\frac{1}{\lambda^{2}}\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \lim _{\lambda \rightarrow \infty} \sum_{n=0}^{N[\lambda]} \phi\left(\frac{n}{\lambda}\right) \hat{g}_{\lambda}(n) h_{n}^{(\alpha, \beta)} P_{n}^{(\alpha, \beta)}\left(\cos \frac{\tau}{\lambda}\right) \\
& \quad=\lim _{\lambda \rightarrow \infty}\left\{\sum_{n=0}^{N[\lambda]} \phi\left(\frac{n}{\lambda}\right) \int_{0}^{\infty} g(\theta) J_{\alpha}\left(\frac{n}{\lambda} \theta\right) \theta^{\alpha+1} d \theta J_{\alpha}\left(\frac{n}{\lambda} \tau\right) \frac{1}{\tau^{\alpha}} \frac{n}{\lambda} \frac{1}{\lambda}+o(1) \frac{n}{\lambda^{2}}\right\} \\
& \quad=\int_{0}^{N} \phi(v) \widehat{g}(v) \frac{J_{\alpha}(v \tau)}{(v \tau)^{\alpha}} v^{2 \alpha+1} d v
\end{aligned}
$$

Thus we get

$$
\begin{equation*}
G(\tau)=\int_{0}^{\infty} \phi(v) \widehat{g}(v) \frac{J_{\alpha}(v \tau)}{(v \tau)^{\alpha}} v^{2 \alpha+1} d v \quad \text { a.e. } \tag{4}
\end{equation*}
$$

From (3) it follows that

$$
|\phi(x)|_{p} \leqq \lim _{\lambda \rightarrow \infty}\left\|\phi\left(\frac{n}{\lambda}\right)\right\|_{p}
$$

which proves the theorem.
Our theorem proves the mean convergence, mean Cesàro summability, the multiplier theorems of Marcinkiewicz' type and decomposition theorem for Hankel transform by the theorems in [4], [1] and [2].

We remark that our theorem is reduced to a theorem in [3] when $\alpha=\beta=-1 / 2$.

References

[1] R. Askey and I. I. Hirschman, Jr., Mean summability for ultraspherical polynomials, Math. Scand., 12 (1963), 167-177.
[2] R. Askey and S. Wainger, A transplantation theorem between ultraspherical series, Ill. J. Math., 10 (1966), 322-344.
[3] S. Igari, Functions of L^{p}-multipliers, Tôhoku Math. J., 21 (1969), 304-320.
[4] H. Pollard, The mean convergence of orthogonal series, III, Duke Math. J., 16 (1949), 189-191.
[5] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloquium, 1959.
Mathematical Institute
Tôhoku University
Sendai, Japan

