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The Jaeobi polynomial of degree n, order (a, β), a, β > — 1 , is defined

by

{Pia>β)(cos θ)}~=0 is an orthogonal system on (0, π) with respect to the meas-
ure (sin 0/2)2α+1(cos θ/2)2P+1dθ.

For a function f(θ) integrable on (0, π) with respect to such a measure
define

\2 α +V θ \2β+1,
j o --(cos^sinii;

Put

-L_ = ^[P^(coSθ)γ{sm^y+\coS±γ+1dθ .

Then we have formally

= iL?(n)h!?'β)Pi*'β)(coBθ) .

For a sequence φ(n) on the non negative integers define a transforma-
tion Tφ by

For p ^ 1 and the function / on (0, π) we define a norm

Q TΓ / f t \ ί α + l / ft \2)3+l \1/P

J/(ί)|^sin|.) (cos|) dθ)
and denote by L?βf/ί)(0, π) the set of all measurable functions such that
| | / U P < oo. The operator norm of T^ of Lfα,^(O, π) to L?βf/ί)(0, π) will be
denoted by | |Γ^| |P or ||^(w)||p.

Let Ja(x) be the Bessel function of the first kind. For a function
g(x) on (0, °o) the (modified) Hankel transform of order a is defined by
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and the multiplier transformation associated with φ(y) is defined formally by

Lp

a(0, oo) will denote the space of all measurable function g such that

The operator norm of Uφ of L£(0, oo) to L£(0, oo) will be denoted by | Uφ\p

or \Φ(y)\p.
The object of this paper is to study the relation of the multiplier

transformations between Jacobi polynomial expansions and Hankel trans-
formations.

THEOREM. Let 1 fg p < oo and a, β > — 1. Assume that φ is a func-

tion on (0, oo) continuous except on a null set and lim^+o \\Φ(εn) \\p is finite,

then \φ(x) \p is finite and \φ(x) \p <: lim e_+ 0 \\Φ(εn) \\p.

PROOF. Let g be an infinitely differentiate function with compact
support in a finite interval (0, M) and put gx(θ) = g(Xθ) where λ > 0 is so
large that the support of gλ(θ) is contained in (0, π). Then we have by
the assumption

(1) Us
Changing variable we get

λ(2α+2)/ί)||^|| ί, = ( J j

which tends to

\\g\\,.

l/ί>

as λ—>oo. Apply the similar argument to the left hand side of (1).
Then we get by Fatou's lemma

lim
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Now we proceed to the computation of the left hand side of (2).
First we remark that (2) holds for p = 2 and

(τ)\\AKτ)lφ

Thus for a sequence λx < λ2 < < X,•,

G(τ,λ) = ΣίH —

converges weakly to a function G(τ) in Ll(0, K) for every K > 0 and G(τ)
satisfies the inequality

( 3 )

^ lim

To show that G(z) is the Hankel transform of φg put

= G^(τ, λ) + HN(τ, λ), say,

for iV = 1, 2,
Since

d K Λ \2α+2/ β \ 2̂ 3+2 Π

sin|) (coβj) P-ί—(cos.)]
/ # Q \2β+l /

= ill s m — ) ( cos-
V 2 / V

\2α+l/ /a \ 2/8 + 1

) ( — )

(cf. [5, p. 97]), integrating by parts we get

n Jo si
— Piίί1^+1)(cos0)fsin —

sin 0/2 cos 0/2 V 2

2α+3 β \2β+3

— ) dθ .

This, if if > 0 is any fixed number and πλ > if, then
^2α+l/ ^ \ 2/3 + 1 ̂

S π / τ \2α+l/ —

|^(r,λ)| 2(λsin^) (cos^

= λ2α+2Γ|.ίF(λr, λ)|2('sin— Vα+Ycos—

By ParsevaΓs relation the last term equals
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Since h(

n

a>β) = 2n + 0(1) as n —> oo and φ is uniformly bounded, the above

is dominated by

ί—y n

where A is a constant independent on λ and JV. By BessePs inequality
this is bounded by

Nz Jo I sin θ/2 cos 0/2 V 2/ V 2/
2α+l/ Λ \2iS+l

( X )

N

uniformly in λ.
Thus we get

uniformly in λ.
Thus by the diagonal argument there exists a subsequence {\kj} of

{Xj} such that HN(τ, Xk.) converges weakly to a function HN(τ) in L«(0, K)
for every iV = 1, 2, and

For a subsequence {AT,}, HNί(τ) converges to zero almost everywhere.
Since

GN(τ, λ) = G(τ, λ) - ίίΛXr, λ) ,

GN{τ, Xkj) converges weakly in Z£(0, K) to a limit G^(τ) as i —• oo and
G(r) = GN{τ) + £T^(r) for N= 1,2, . . . . Thus G^(τ) converges to G(τ)
almost everywhere.

We prove that GN(τ, λ) converges pointwise to a function as λ —• oo.
Then the limit function coincides with GN(τ).

First we note that
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+ a + Viί Θ V2-r , x ίθ(01/2wr3/2) for Cn~ι < θ < π — ε

na \ sin θ J (O(θa+2na) for 0 < θ ̂  Cn~ι ,

where % = ^ + ( α + /5+ l)/2, and ε and C are fixed positive numbers
([5, p. 197]).

Let K be a fixed number and 0 < τ ^ K. For n, 0 ^ n ^ N[X], we
have

^ — p ? M cos—)

r/λ V ^ (n_ \ 1
"Vλ /(λsinr/2λ)α(cosτ/2λ)^

On the other hand

)

Thus

lim SV(—

i τ ) i ^ i . + 0(1)-$-}
λ / r λ λ λ J

Thus we get

(4) G(τ)=["φ(v)g(v)^&v2a+ιdv a.e.
v ' Jo (t;τ) α

From (3) it follows that
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which proves the theorem.

Our theorem proves the mean convergence, mean Cesaro summability,
the multiplier theorems of Marcinkiewicz' type and decomposition theorem
for Hankel transform by the theorems in [4], [1] and [2].

We remark that our theorem is reduced to a theorem in [3] when
a = β= -1/2.
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