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1. Introduction. Roughly speaking, the phenomenon of saturation
of approximation is that there exists an “optimal” order of approxima-
tion, called “saturation order,” such that better approximation occurs
only in trivial cases. This is exactly defined as follows (cf. P. L. Butzer
and R. J. Nessel [2]):

Let B be a Banach space with norm || - ||, and let (L,) be a net of
bounded linear operators of B into itself, converging strongly to the
identity operator, which will be called a strong approximation process
on B. Denote by T[B;(L;)] the closed linear subspace of B, consisting
of all fin B for which L,(f) = f for all v. Suppose that there exists
a net (¢;) of positive real numbers, converging to zero such that every
f in B for which ||L,(f) — fIl = o(¢;) belongs to T|[B;(L;)], and there
exists a g in B but not in T[B;(L;)] such that ||L,(9) — gl = O(:).
Then the strong approximation process (L;) is said to be saturated in B
with order (¢;,). The set T'[B; (L;)] and the net (¢,) are called the trivial
class of (L;) and the saturation order of (L), respectively. Further-
more, the set S[B; (L;)] consisting of all fin B for which || L,(f) — fl| =
O(¢,) is called the saturation class of (L,).

The saturation problem may actually consist of two different ques-
tions: firstly, the question of whether saturation holds, that is, the
establishment of the existence of the saturation order of a given strong
approximation process (L;) on B; secondly, the characterization of the
saturation class S[B; (L,)].

The purpose of this paper is to establish a result concerning the
first problem of saturation of positive linear operators on C(X), the
Banach space of all real-valued continuous functions on a compact
Hausdorff space X with sup-norm ||-||. The applications will be made
to the Bernstein-Schnabl functions constructed by M. W. Grossman [3].
The arguments of this paper can be based on the author [4].

Throughout this paper, .# will be a subset of C(X), separating
the points of X. 1 will denote the unit function on X.

2. A saturation theorem in C(X). The main result of this paper
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is the following:

THEOREM 1. Let (L;) be a met of positive linear operators of C(X)
wnto itself, and let M be a proper linear subspace of C(X), containing 1
and Z. Suppose that there exists a met (¢;) of positive real mumbers,
converging to zero and a positive projection L of C(X) onto M such
that L,oL = L and L/(f*) = f* + ¢(L(f?) — f?) for all © and for every
fin F. Then (L,) is saturated in C(X) with order (¢,) and T[C(X);
(L)] = M.

In order to prove the above theorem, we shall now begin with the
following.

PROPOSITION 1. Let (L,) be a met of positive linear operators of
C(X) into itself, and let L be a positive linear operator of C(X) into
itself, satisfying L(1) =1 and L(f) = f for all f in F. Suppose that
L,oL =L for all v and (L/(f*) converges to L(f?) for all f in F.
Then (L,) converges strongly to L.

PrROOF. Since X is compact and & separates the points of X, the
original topology on X is identical with the weak topology on X induced
by #. Without loss of generality we may assume & contains MF
for all x > 0. Let g in C(X) and € > 0 be given. Then there exists a
finite subset S of # such that

(1) lg(x) — 9(y)| = & + %(f(x) — f(y)y

for all z, ¥y in X. Since L is a positive linear operator with L(1) =1,
we can operate on the variable x in (1) and obtain

(2) [L(gXy) —9(¥) | = ¢ + g_.s L((f (=) — (), v)
for all ¥y in X, which yields
(3) IL(g)—g|§6+fZ€‘3(L(fz)—fz)

since L(1) =1 and L(h) = h whenever h in . By the positivity and
linearity of L, and L,o L = L (therefore, L,(1) =1 since L(1) = 1), we
obtain from (3) that

|L(9) — Li(g)| = ¢ + fZ}q (L(f?) — L(f?)
and so

(4) 1L(9) — L{@)[| = & + 3 I L(f*) — L)l

for all 4. Therefore, the hypothesis and (4) complete the proof.
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Note that Theorem 1 in Grossman [3] remains valid for a net of
positive linear operators of C(X) into itself (we omit the proof). That is,

PrOPOSITION 2 (cf. H. Bauer [1; Proposition 2.9]). Let (L;) be a
net of positive linear operators of C(X) into itself. Suppose that
(L:(1)) converges to 1 and (L,f*)) converges to f* for every f in F and
k=1, 2. Then (L;) converges strongly to the identity operator.

As an immediate consequence of Proposition 2, we have the
following.

COROLLARY. Let L be a positive linear operator of C(X) into
itself. If L(1)=1 and L(f*) = f* for k=1, 2 and for all f in F,
then L coincides with the identity operator.

‘ REMARK 1. Propositions 1 and 2 can be reformulated with respect
to pointwise convergence.

With the help of the previous results we can now prove Theorem 1.

Proor oF THEOREM 1. By the hypotheses, we have lim,; L,(f*) = f*
for k=0,1,2 and for all f in &, where f°= 1. Therefore, by Pro-
position 2, (L,) is a strong approximation process on C(X).

Suppose that || L,(g9) — g|| = o(¢;). Denote by D the directed set of
all elements ¢, and for each ¢ in D, set ¢;'||L,(9) — ¢9|| = a;. Since
lim; ¢, = 0 and lim; ¢, = 0, we can choose a countable subset {s,;n =
1,2, :---} of D so that lim,a,, =0 and lim, ¢, = 0. Note now that for
all 2 in D and for every positive integer k&

(5) ||Lf(g)_g|| =< ka9, ,
where L* denotes the k-th iteration of L,. We now choose a sequence
(k,) of positive integers so that

lim k,$,, = 4+ and lima, k.3, = 0.

Putting k¥ =k, and 72 = s, in (5), and letting »n tend to -, we obtain
(6) lim Li(g) =9 .

By induction on % and the hypotheses, we see that
(7) LieL =L and LiSf") = L(f*) + 1 — ¢)*(f* — L(f?))

for all ¢+ in D, f in &% and k. Putting k=%, and 7 =s, in (7), and
letting » tend to o, since lim, (1 — ¢, ) =0, we have lim, Li*(f?) =
L(f?) for every f in .#. Therefore, by Proposition 1, we have
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(8) liggl Li(9) = L(g) .

Therefore, (6) and (8) yield g = L(g), and so we have L.,(g) = L,(L(g9)) =
L(g) = g for all <.

We can choose an element f, in &% so that L(f?) # f2. Indeed, if
L(f*) = f* for all f in &, by Corollary, L must agree with the identity
operator, and so M = C(X), which contradicts that M is proper. Now,
set g, = f¢. Then g, is not in T[C(X); (L,)] and the equality || L,(g9,) —
9|l = 11 L(9,) — 90| ¢; holds for all i.

Finally, since L is a projection of C(X) onto M with L, L = L for
all ¢, M is contained in T[C(X); (L;)]. On the one hand, from the above
argument, it is seen that T[C(X); (L,)] is contained in M. Thus the
theorem is completely proved. ,

REMARK 2. Our results can be applied in the following situation:
X = compact subset of a locally convex Hausdorff space F over the
field of real numbers.

7 ={f1X;,fe F*}, where F* denotes the dual space of F and
f1X the restriction of f to X. If X is a compact convex subset of F,
then # can be taken as the space of all real-valued continuous affine
functions on X.

3. Saturation and limit of the iterations of the Bernstein-Schnabl
functions. In the first place, let us introduce the Bernstein-Schnabl
functions, which have been constructed by Grossman [3]. Let F be a
locally convex Hausdorff space over the field of real numbers, and let
K be a compact convex subset of F. Denote by A(K) the space of
all real-valued continuous affine functions on K. For a point 2 in K,
an A(K)-representing measure for x is a probability measure g, on K

such that f(x) = S fdp, for all f in A(K). Let E be a closed subset
K

of K, containing the extreme points of K, and let ZZ (&) = {¢t.}..x be a
selection of A(K)-representing measures supported by FE. Let P =
(Pui)n. iz, e alower triangular stochastic matrix, that is, an infinite real
matrix satisfying: »,;, =0 for all » =1 and 7=1, p,; =0 whenever
jg>mn, and >zp.,; =1 for each n=1. Let a g in C(K) be given.
Then the m-th Bernstein-Schnabl function of g with respect to the
matrix P and the selection Z/(F) is defined by:

BZ(g9)(x) = SK gdr, (") for each z in K,

where 7, »: E"— K is defined by 7, s(x,, +--, 2,) = Dliz: 0.i%;, Q denotes
tensor product and 7, (%) is the induced measure on K.
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We suppose now that S gdp, belongs to A(K) for every g in C(K),
K
and for brevity, we write BYY = B,. Then we have the following.

THEOREM 2. Let Bf be the k-th iteration of B,. Then we have:

(a) If m s fixed, then (BL),», converges strongly to B,.

(o) If k is fixed and lim, >, p%; =0, then (BY),», converges
strongly to the identity operator.

(¢) If lim, D5 0% =0, then (B,).». ts saturated in C(K) with
order (jzi Pridaz: and T[C(K); (B,)nz] = A(K).

ProorF. A(K) is the linear subspace of C(K), separating the points
of K and containing 1. It can now be verified that B, B, = B,
B.(f)=f and B,(f%) = f*+ Dz, 02i(B(f?) — f*) for all n =1 and f in
A(K). Furthermore, an induction argument reveals that B B, = B,
BX(f) = fand B;(f*) = B(S?) + (1 — iz 22)*(f* — B(f?)) forall k,n =1
and f in A(K) (cf. (7) in the proof of Theorem 1). Therefore, (a) and
(b) follow from Propositions 1 and 2, respectively. Since B, is a posi-
tive projection of C(K) onto A(K), (c) follows from Theorem 1.

REMARK 8. Let (k,) be a sequence of positive integers. Then,
from the proofs of Theorems 1 and 2, we see:

(d) lim, %k, D=, p2; =0 if and only if lim, || Bk(g) — g|] = 0 for all
g in C(K).

(e) lim,k, >z Ph; = +co if and only if lim, || Bi»(g) — B(g)|| = 0
for all ¢ in C(K).

Theorem 2 should also be compared with the results of the author
[4].

REFERENCES

[1] H. BAUER, Theorems of Korovkin type for adapted spaces, Ann. Inst. Fourier, 23,
4 (1973), 245-260.

[2] P. L. Burzer AND R. J. NESSEL, Fourier Analysis and Approximation, Vol. I,
Birkhduser Verlag, 1971.

[8] M. W. GrossMAN, Note on a generalized Bohman-Korovkin theorem, J. of Math. Anal.
and Appl., 45 (1974), 43-46.

[4] T. NISHISHIRAHO, A generalization of the Bernstein polynomials and limit of its itera-
tions, Sci. Rep. Kanazawa Univ., 19, 1 (1974), 1-7.

DEPARTMENT OF MATHEMATICS

COLLEGE OF EDUCATION

RYUKYU UNIVERSITY

ToNOKURA-CHO, NAHA, OKINAWA, JAPAN








