HELSON-SZEGÖ-SARASON THEOREM FOR DIRICHLET ALGEBRAS

Yoshiki Ohno

(Received November 28, 1977, revised February 25, 1978)

Two linear subspaces in a Hilbert space are said to be at positive angle if

$$\sup |(f,g)| < 1$$

where f and g range over the elements of the respective linear subspaces with norm at most 1. Let μ be a finite positive Borel measure on the unit circle T in the complex plane. Let χ be the function on T defined by $\chi(e^{ix}) = e^{ix}$. For each integer n, we form in the Hilbert space $L^2(d\mu)$ the linear subspace \mathscr{F}_n spanned by the functions $\chi^n, \chi^{n+1}, \cdots$. For any set S of complex-valued functions, write $\overline{S} = \{\overline{f} \mid f \in S\}$.

Helson and Szegö [6] and Helson and Sarason [5] have proved the following result.

THEOREM 1. Let n be a natural number. In order for \mathscr{F}_0 and \mathscr{F}_n to be at positive angle in $L^2(d\mu)$ it is necessary and sufficient that $d\mu$ is absolutely continuous with respect to the Lebesgue measure $d\theta$ on T, strictly so that $d\mu = wd\theta$, $w \in L^1(d\theta)$, and w has the form

 $w = |P|^2 e^{r+Cs}$,

where P is a polynomial of degree less than n, r is a real bounded function, and Cs is the conjugate of a real function s with bound smaller than $\pi/2$.

For n = 1, Devinatz [1, 2] and Ohno [9] extended this result to a Dirichlet algebra setting. See also Merrill [7] as regards another result of this prediction type. The main object of this note is to show that the result is valid for a general natural number n.

Let X be a compact Hausdorff space and let A be a Dirichlet algebra on X, i.e., A is a uniform algebra on X such that the real parts of the functions in A are uniformly dense in the real continuous functions on X. Let m be the unique representing measure on X for a complex homomorphism of A. We assume that the Gleason part of m contains more than one point. If $0 , <math>H^p$ shall be the closure of A in $L^p(dm)$ and H^∞ shall be the weak*-closure of A in $L^\infty(dm)$. We put $A_0 = \left\{ f \in A \left| \int f dm = 0 \right\} \right\}$ and $H_0^p = \left\{ f \in H^p \left| \int f dm = 0 \right\}$ ($1 \le p \le \infty$). We denote by $(H_0^\infty)^n$ (resp. A_0^n) the ideal generated by products of n elements in H_0^∞ (resp. A_0). We shall make use of the theory of the abstract Hardy spaces. We refer to Gamelin [4] in this connection.

Let ν be a positive finite measure on X and consider a condition for A and $\overline{A_0^n}$ to be at positive angle in $L^2(d\nu)$. For the sake of simplicity we shall, at the outset, assume that $d\nu$ is absolutely continuous with respect to dm, i.e., $d\nu = wdm$, where w is a non-negative function in $L^1(dm)$.

For $n = 1, 2, \cdots$, we define

$$ho_n = \sup \left| \int \!\! fgw dm \,
ight| \, ,$$

where f and g range over the elements of A and A_0^n , respectively, subject to the restriction

$$\int |f|^2 w dm \leq 1$$
 and $\int |g|^2 w dm \leq 1$.

Proposition 2. If $ho_n < 1$, then $\int \log w dm > -\infty$.

PROOF. We denote the norm in $L^p(wdm)$ by $||\cdot||_p$. Suppose that $\int \log w dm = -\infty$. By Szegö's theorem ([4], Theorem 8.2),

$$\inf\left\{\int |1-f|^p w dm \,|\, f \in A_{\scriptscriptstyle 0}\right\} = 0$$

for 0 . We consider the case <math>p = 4n and choose $f_k \in A_0$ such that $||f_k - 1||_{4n} \to 0 \ (k \to \infty)$. Then there exists a constant M such that $||f_k||_{4n} \le M \ (k = 1, 2, \cdots)$. By Hölder's inequality and Minkowski's inequality,

$$egin{aligned} &\int ert f_k^n - 1 ert^2 w dm \ &\leq \left\{ \int ert f_k - 1 ert^4 w dm
ight\}^{1/2} \left\{ \int ert f_k^{n-1} + f_k^{n-2} + \cdots + 1 ert^4 w dm
ight\}^{1/2} \ &\leq ert f_k - 1 ert ert^2 ert (ert f_k^{n-1} ert ert_k + ert ert f_k^{n-2} ert_k + \cdots + ert ert ert ert ert_k ert\}^2 \ &\leq ert ert f_k - 1 ert^2 ert (KM^{n-1} + K^2 M^{n-2} + \cdots + K^n)^2 \end{aligned}$$

where $K = \left\{ \int w dm \right\}^{1/4n}$. It follows that $||f_k^n - 1||_2 \to 0 (k \to \infty)$. This shows that 1, hence any constant function lies in the $L^2(w dm)$ -closure

of A_0^n . It follows that $\rho_n = 1$. This contradicts the hypothesis and we have $\int \log w dm > -\infty$.

Thus, in order to characterize w with $\rho_n < 1$, we may as well assume, from the outset, that $\int \log w dm > -\infty$. In this case, it is easy to see that

$$ho_n = \sup \Bigl | \int \!\! f g w dm \Bigr |$$

where f and g range over the elements of H^{∞} and $(H_0^{\infty})^n$, respectively, subject to the restriction

$$\int \lvert f
vert^2 w dm \leq 1 \quad ext{and} \quad \int \lvert g
vert^2 w dm \leq 1 \; .$$

We begin by following an idea of Helson and Szegö [6]. Such a function w is of the form $|h|^2$, h being an outer function in H^2 ([3], Theorem 6). Define the function $e^{-i\phi}$ by equation $w = h^2 e^{-i\phi}$. Then ρ_n is given by

(1)
$$\rho_n = \sup \left| \int (fh)(gh) e^{-i\phi} dm \right|$$

where the supremum is taken over all $f \in H^{\infty}$ and $g \in (H_0^{\infty})^n$ such that

$$\int \lvert fh
vert^2 dm \leq 1$$
 and $\int \lvert gh
vert^2 dm \leq 1$.

By Wermer's embedding theorem ([4], Theorem 7.2), there exists an inner function Z in H^{∞} such that $H_0^{\infty} = ZH^{\infty}$. Then $(H_0^{\infty})^n = Z^n H^{\infty}$ and we have

$$(2) \qquad \rho_n = \sup \left| \int (fh)(gh) Z^n e^{-i\phi} dm \right|$$

where f and g range over the elements of H^{∞} subject to the respective restriction

$$\int |fh|^2 dm \leq 1$$
 and $\int |gh|^2 dm \leq 1$.

Since h is outer in H^2 , $\{fh | f \in H^\infty\}$ is dense in H^2 and more specifically $\{fh | f \in H^\infty, \int |fh|^2 dm \leq 1\}$ is dense in the unit ball of H^2 . Thus $\{fgh^2 | f, g \in H^\infty, \int |fh|^2 dm \leq 1, \int |gh|^2 dm \leq 1\}$ is dense in the unit ball of H^1 (cf. [2], Lemma 6). Therefore (2) can be written in the form

(3)
$$\rho_n = \sup \left| \int f Z^n e^{-i\phi} dm \right|$$

where f ranges over the functions in H^1 such that $\int |f| dm \leq 1$. Evidently (3) expresses ρ_n as the norm of the linear functional on H^1 defined by

$$(4) \qquad \qquad \int f Z^n e^{-i\phi} dm$$

for $f \in H^1$. By the Hahn-Banach theorem, this linear functional has a norm-preserving extension to the whole $L^1(dm)$, Since $L^1(dm)^* = L^{\infty}(dm)$, we can identify the above extension with $Z^n e^{-i\phi} - g_0 \in L^{\infty}(dm)$. In this case $g_0 \in H_0^{\infty}$, because

$$\int f Z^n e^{-i\phi} dm = \int f (Z^n e^{-i\phi} - g_0) dm \quad (f \in A)$$

and so $\int fg_0 dm = 0$ $(f \in A)$, implying $g_0 \in H_0^{\infty}$. Furthermore, for every $g \in H_0^{\infty}$, $Z^n e^{-i\phi} - g$ gives an extension of the linear functional given by (4) to the whole $L^1(dm)$ and so

$$ho_{\mathtt{n}} = || \, Z^{\mathtt{n}} e^{-i\phi} - g_{\scriptscriptstyle 0} || \leq || \, Z^{\mathtt{n}} e^{-i\phi} - g \, || \quad (g \in H^{\infty}_{\scriptscriptstyle 0})$$

where $||\cdot||$ denotes the norm in $L^{\infty}(dm)$. It follows that

(5)
$$\rho_n = \inf_{g \in H_0^{\infty}} ||Z^n e^{-i\phi} - g|| = \inf_{F \in H^{\infty}} ||1 - Z^{1-n} e^{i\phi} F||.$$

PROPOSITION 3. $ho_n < 1$ if and only if for some $\varepsilon > 0$ and $F \in H^{\infty}$, we have

$$(\ 6\) \qquad \qquad |F|>\varepsilon$$

$$(\ 7\) \qquad \qquad |\operatorname{Arg}\left(Fh^{2}Z^{1-n}
ight)| < \pi/2 - arepsilon$$

where $-\pi \leq \operatorname{Arg} z < \pi$.

PROOF. If $\rho_n < 1$, take $\varepsilon > 0$ such that $\rho_n \leq 1 - 2\varepsilon$. Then by (5), there exists an $F \in H^{\infty}$ such that $||1 - Z^{1-n}e^{i\phi}F|| < 1 - \varepsilon$. This implies $|F| > \varepsilon$, and then (7) is geometrically obvious, perhaps with a smaller value of ε .

Conversely if F satisfies (6) and (7), then it is easy to see that

$$||Z^{n-1}e^{-i\phi}-\lambda F||<1$$

for some $\lambda > 0$, and so $\rho_n < 1$.

PROPOSITION 4. If $F \in H^1$ and

$$(8) \qquad |\operatorname{Arg}(FZ^{-k})| < \pi/2 - \varepsilon$$

then there exist an integer $m(0 \le m \le k)$ and $B \in H^1$ such that $\int Bdm \ne 0$ and $F = Z^m B$.

PROOF. Since $H_0^1 = ZH^1$, it suffices to show that if $F = Z^k B$ and $B \in H^1$, then $\int Bdm \neq 0$. By (8),

$$|\operatorname{Arg} B| = |\operatorname{Arg} \left(FZ^{-k}
ight)| < \pi/2 - arepsilon$$

and we have $\operatorname{Re} B \geq 0$. Since $B \in H^1$, it follows from Theorem 12 of Devinatz [2] that B is outer in H^1 . Hence we have $\int Bdm \neq 0$.

We denote by \mathscr{H}^p the closure in $L^p(dm)$ of the set of polynomials in Z and denote by \mathscr{L}^p the closure in $L^p(dm)$ of the set of polynomials in Z and \overline{Z} (the norm closure for $1 \leq p < \infty$; the weak*-closure for $p = \infty$). For $1 \leq p \leq \infty$, we put

$$I^p = \left\{f \in H^p \middle| \int f ar{Z}^k dm = 0 \hspace{0.2cm} (k = 0, 1, 2, \cdots)
ight\}.$$

LEMMA 5. (Merrill and Lal [8], Lemma 5.) If $1 \leq p \leq \infty$, then

$$egin{array}{ll} H^p &= \mathscr{H}^p igoplus I^p \ L^p &= \mathscr{L}^p igoplus N^p \end{array}$$

where \bigoplus denotes the algebraic direct sum and N^p denotes the closure of $\overline{I^p} + I^p$ in $L^p(dm)$ (the norm closure for $1 \leq p < \infty$; the weak*-closure for $p = \infty$).

THEOREM 6. In order for A and $\overline{A_0^n}$ to be at positive angle in $L^2(wdm)$, it is necessary and sufficient that w has the form

$$(9) w = |P|^2 e^{r+Cs}$$

where P is a function in H^{∞} such that $P \perp A_0^n$ in $L^2(dm)$, $r, s \in L^{\infty}_{\mathbb{R}}(dm)$, $||s|| < \pi/2$ and Cs is the conjugate of s.

PROOF. We assume $\rho_n < 1$. By Proposition 3, there exist $\varepsilon > 0$ and $F \in H^{\infty}$ such that $|F| > \varepsilon$ and

$$|\mathrm{Arg}\,(Fh^2Z^{1-n})|<\pi/2-arepsilon$$
 .

Let s be the function bounded by $\pi/2 - \varepsilon$ such that

(11)
$$s + \operatorname{Arg}(Fh^2 Z^{1-n}) = 0$$
.

We put

(12)
$$S = Fh^2 Z^{1-n} e^{-Cs+is},$$

then, by (11), $S \ge 0$. From Theorem 10 of [2], we conclude that $e^{-Cs+is} \in H^1$ is outer. By (10) and Proposition 4, we may write $Fh^2 = Z^m B$, where $B \in H^1$, $\int Bdm \neq 0$ and $0 \le m \le n-1$. Therefore

$$(13) S = BZ^{-k}e^{-Cs+is} \ge 0$$

and so

(14) $Z^k S = B e^{-Cs+is} \in H^{1/2}$

where k = n - m - 1. Furthermore, by Jensen's inequality,

$$egin{aligned} &\int \log |Z^kS| \, dm = \int \log |B| \, dm \, + \int \log |e^{-Cs+is}| \, dm \ &\geq \log \left| \int B dm
ight| \, + \log \left| \int e^{-Cs+is} dm
ight| > - \infty \end{aligned}$$

and so we have

(15)
$$\exp \int \log |Z^k S| \, dm > 0 \; .$$

Using Theorem 2 of [3], it follows from (14) and (15) that there exist an outer function P in H^1 and an inner function q in H^{∞} such that

Since S = |S| and $|S| = |P|^2$, we have from (16) that

(17)
$$qP^2 = Z^k |P|^2$$
.

Since P is outer, it follows that P is not zero. Thus we may divide (17) by P and we obtain

$$(18) qP = Z^k \overline{P} \,.$$

By Lemma 5, we may write

$$P=\sum\limits_{j=0}^{\infty}a_{j}Z^{j}+lpha_{I}\in\mathscr{H}^{_{1}}\bigoplus I^{_{1}}$$

where α_I belongs to I^1 . Now

(19)
$$Z^{k}\bar{P} = \bar{a}_{0}Z^{k} + \bar{a}_{1}Z^{k-1} + \cdots + \bar{a}_{k-1}Z + \bar{a}_{k} \\ + \bar{a}_{k+1}\bar{Z} + \bar{a}_{k+2}\bar{Z}^{2} + \cdots + Z^{k}\bar{\alpha}_{I}.$$

Because $a_{k+1}Z + a_{k+2}Z^2 + \cdots \in H_0^1$ and $\bar{Z}^k \alpha_I \in I^1 \subset H_0^1$, we have

$$g = a_{k+1}Z + a_{k+2}Z^2 + \cdots + \overline{Z}^k \alpha_I \in H^1_0$$

By (18), $Z^k \overline{P} \in H^1$ and we conclude $\overline{g} \in H^1$ by (19). Hence $g \in \overline{H^1} \cap H_0^1$. Since $\overline{A} + A_0$ is weak*-dense in $L^{\infty}(dm)$, we have g = 0 and

$$Z^kar{P} = ar{a}_{_0}Z^k + ar{a}_{_1}Z^{k-1} + \cdots + ar{a}_{k-1}Z + ar{a}_k$$
 .

Hence P has the form

$$P=a_{\scriptscriptstyle 0}+a_{\scriptscriptstyle 1}Z+\cdots+a_{\scriptscriptstyle k}Z^{\scriptscriptstyle k}$$

where $0 \leq k \leq n-1$. Therefore $P \in H^{\infty}$ and $P \perp A_0^n$ in $L^2(dm)$. Indeed, if $G \in A_0^n \subset (H_0^{\infty})^n$, then $G = Z^n K$ for some $K \in H^{\infty}$ and we have

$$egin{aligned} &(P,\,G) = \int \Bigl(\sum\limits_{j=0}^k a_j Z^j \Bigr) ar{Z}^n ar{K} dm \, = \, \sum\limits_{j=0}^k a_j \, \int ar{Z}^{n-j} ar{K} dm \ &= \, \sum\limits_{j=0}^k a_j \, \int ar{Z} dm \, \int ar{Z}^{n-j-1} ar{K} dm \, = \, 0 \, \, , \end{aligned}$$

since m is multiplicative on H^{∞} and $n-1 \ge k$. Now by (16) and (12) we have

$$|P|^{\scriptscriptstyle 2} = S = |S| = |F| \, |h|^{\scriptscriptstyle 2} e^{-Cs}$$

and since $w = |h|^2$,

$$w = |P|^{\scriptscriptstyle 2} |F|^{\scriptscriptstyle -1} e^{{\scriptscriptstyle C}s} = |P|^{\scriptscriptstyle 2} e^{r+{\scriptscriptstyle C}s}$$

where $r = -\log |F|$. In this case $r, s \in L^{\infty}_{\mathbb{R}}(dm)$ and $||s|| < \pi/2$.

Conversely, suppose w has the form (9). We put $S = |P|^2$. Since $Z^{n-1}Pf \in (H_0^{\infty})^n$ for $f \in I^{\infty}$, we have

(20)
$$\int Z^{n-1}Sfdm = (Z^{n-1}Pf, P) = 0 \qquad (f \in I^{\infty}).$$

If $f \in I^{\infty}$, then it is easy to see that $\overline{Z}^{2(n-1)}f$ is also in I^{∞} . Therefore, by (20),

$$\int\!\! ar{Z}^{n-1}Sfdm = \int\!\! Z^{n-1}Sar{Z}^{2(n-1)}fdm = 0 \qquad (f\in I^\infty)$$
 .

Since $S = \overline{S}$,

(21)
$$\int Z^{n-1}S\bar{f}dm = 0 \qquad (f \in I^{\infty}).$$

It follows from (20) and (21) that

$$\int Z^{n-1}Sfdm = 0 \qquad (f \in \overline{I^{\infty}} \oplus I^{\infty}).$$

By Lemma 5, $Z^{n-1}S \in \mathscr{L}^1$. Furthermore, we have

$$\int Z^{n-1}S\bar{Z}^k dm = \begin{cases} (Z^{n-1-k}P, P) = 0 \ (n-1-k \ge n, \text{ i.e., } k = -1, -2, \cdots) \\ (P, Z^{k+1-n}P) = 0 \ (k+1-n \ge n, \text{ i.e., } k = 2n-1, 2n, \cdots) \end{cases}$$

We conclude that $Z^{n-1}S$ has the form

Y. OHNO

$$Z^{n-1}S = a_{\scriptscriptstyle 0} + a_{\scriptscriptstyle 1}Z + \cdots + a_{\scriptscriptstyle 2n-2}Z^{\scriptscriptstyle 2n-2}$$
 .

We put

$$k = \max \left\{ m \, | \, 0 \leq m \leq n-1, \, a_{m+n-1}
eq 0
ight\}$$
 .

Since $S \neq 0$ and $\overline{S} = S$, such k exists. Then $Z^k S \in H^{\infty}$ and $\int Z^k S dm \neq 0$, therefore by Theorem 2 of [3], $Z^k S$ has the factoring

$$Z^k S = q G^2$$

where q is inner and G is outer in H^{∞} . If we take an outer function F in H^{∞} such that $|F| = e^{-r}$, then

up to constant factors of modulus 1. Indeed, by Theorem 10 of [2], $e^{C_{s-is}}$ is outer in H^1 , and $Z^k \bar{q}S = G^2$ is also outer in H^{∞} , so that the left hand side of (22) is outer in H^1 . Furthermore, since F is outer in H^{∞} and h is outer in H^2 , the right hand side of (22) is also outer in H^1 . Now by the assumption on w

$$|\,Z^k ar q S e^{{}_{\mathcal{C}s} - is}\,|\,= S e^{{}_{\mathcal{C}s}}\,=\,|P|^{{}^2} e^{{}_{\mathcal{C}s}}\,=\,w e^{-r}\,=\,|\,h\,|^{{}^2}\,|\,F|\,=\,|Fh^{2}|$$
 .

Since an outer function is determined up to a constant factor by its modulus, (22) follows. By (22), $S = Fh^2 Z^{-k} q e^{-Cs+is}$ and $S \ge 0$, it follows that

 $\mathrm{Arg}\left(Fh^{2}Z^{-k}qe^{-Cs+is}
ight)=0$.

Hence for sufficiently small $\varepsilon > 0$,

$$|\operatorname{Arg}\left(Fh^{2}Z^{-k}q
ight)=|s|\leq ||s||<\pi/2-arepsilon$$

and

 $|F|=e^{-r}>arepsilon$.

If we put $B = FqZ^{n-1-k}$, then $B \in H^{\infty}$ and

$$egin{aligned} |\mathrm{Arg}\,(Bh^2Z^{{ extsf{1-n}}})| &= |\mathrm{Arg}\,(Fh^2Z^{-k}q)| < \pi/2 - arepsilon \ & |B| &= |F| > arepsilon \ . \end{aligned}$$

The assertion follows from Proposition 3.

COROLLARY. In order for A and $\overline{A_0^n}$ to be at positive angle in $L^2(wdm)$, it is necessary and sufficient that w has the form

$$w = |P|^2 e^{r+Cs}$$

where P is a polynomial in Z of degree less than n, r, $s \in L^{\infty}_{R}(dm)$, $||s|| < \pi/2$ and Cs is the conjugate of s.

78

EXAMPLE. Put $S = \{(k, l) \in \mathbb{Z}^2 | k > 0\} \cup \{(0, l) \in \mathbb{Z}^2 | l \ge 0\}$. Let $A = A(T^2)$ be the Dirichlet algebra of continuous functions on T^2 which are uniform limits of polynomials in $e^{ikx}e^{ily}$ where $(k, l) \in S$. Let m denote the normalized Haar measure on T^2 . Then the Gleason part of m can be identified with $\{(0, \alpha) \in \mathbb{C}^2 | |\alpha| < 1\}$ and is non-trivial. Wermer's embedding function Z is given by $Z(e^{ix}, e^{iy}) = e^{iy}$. In this case, A_0^n is the uniformly closed linear span of $\{e^{ikx}e^{i(l+n)y}|(k, l) \in S\}$ and the function P in Theorem 6 is a polynomial in e^{iy} of degree less than n.

REMARK. We used the setting such that A is a Dirichlet algebra and the Gleason part of the unique representing measure m is non-trivial since it is easier to work with. However, similar proofs will show that all results are valid for a setting such that A is a weak*-Dirichlet algebra on a given probability measure space (X, m) and there exists a non-zero weak*-continuous multiplicative linear functional on A which is different from dm (for the relevant definition, see, Srinivasan and Wang [10]).

References

- [1] A. DEVINATZ, Toeplitz operators on H², Trans. Amer. Math. Soc., 112 (1964), 304-317.
- [2] A. DEVINATZ, Conjugate function theorems for Dirichlet algebras, Rev. Un. Mat. Argentina, 23 (1966/67), 3-30.
- [3] T. W. GAMELIN, H^p spaces and extremal functions in H^1 , Trans. Amer. Math. Soc., 124 (1966), 158-167.
- [4] T. W. GAMELIN, Uniform Algebras, Prentice-Hall, Englewood Cliffs, New Jersey, 1969.
- [5] H. HELSON AND D. SARASON, Past and future, Math. Scand., 21 (1967), 5-16.
- [6] H. HELSON AND G. SZEGÖ, A problem in prediction theory, Ann. Mat. Pura Appl., 51 (1960), 107-138.
- [7] S. MERRILL, III, Gleason parts and a problem in prediction theory, Math. Z., 129 (1972), 321-329.
- [8] S. MERRILL, III AND N. LAL, Characterization of certain invariant subspaces of H^p and L^p spaces derived from logmodular algebras, Pacific J. Math., 30 (1969), 463-474.
- [9] Y. OHNO, Remarks on Helson-Szegö problems, Tôhoku Math. J., 18 (1966), 54-59.
- [10] T. P. SRINIVASAN AND J. WANG, Weak*-Dirichlet algebras, Function algebras (Tulane 1965), Scott Foresman, Chicago, 1966, 216-249.

College of General Education Tôhoku University Kawauchi, Sendai, 980 Japan.