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MULTIPLICITY OF HELICES OF A SPECIAL FLOW
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0. The purpose of this note is to show that the multiplicity of
helices of a special flow is equal to that of helices of the basic auto-
morphism.

1. Throughout this note (2, %, P) denotes a complete and separable
probability space. An automorphism T of 2 is a one-to-one transforma-
tion of 2 onto itself which is bimeasurable and measure-preserving. A
flow {T,, —o0 <t < 4+ >} on £ is a one-parameter group of automor-
phisms of 2; T\T, = T,,,, —c0 <t,8 < +co.

As a special type of flows, which we deal with later, we define the
following: Let 6 be an integrable function on 2, bounded below by some
positive constant. Define a new probability space (2, .7, P) by

O={@=(u;0we,0=u<w),

dP(@) = —El(a—)dudP(a)) ,

& = the completion of & x Z'|;

where <Z* is the o-field of Lebesgue measurable sets of <#' and du is
the Lebesgue measure. It is also a complete and separable probability
space. For an automorphism T of 2, a flow {S;, —oco<t< 4} on 2 is
defined by

(w,w +1t) for 0t <O(w)—u
(Tw, 0) for t=0(w) —u

and for other value of ¢, the automorphism S, is defined by the group
property. The flow {S,} is called a special flow with the ceiling function
0, the basic space £ and the basic automorphism 7.

In this note, we deal with a pair ({T\}, .#;) of a flow {T,} on 2 and
a complete sub-o-field &, of # which satisfies

(a) F,cT.#, foral t>0,

(b) v—oo<t<+oo Tt% = Z.
The pair is called a system on 2. If &, is a proper sub-o-field, the
system is said to be non-trivial. It is well-known that there is always

Sy, u) =
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a proper sub-o-field &, with (a) and (b) for a flow with a positive entropy
(cf. [1], [2]).

Also for an automorphism T of 2, a system (T, .%,) is similarly
defined.

Let (T, #,) be a non-trivial system and {S,} a special flow with the
basic automorphism 7T and the ceiling function # which is measurable
with respect to .#,. Let 9;; denote the completion of &, x <Z'3. Then
(S}, 7,) is obviously a non-trivial system. We denote it by ({S.}, .+,
T, ., 60) and call it a special system and (T, &#,) the basic system.

2. Let ({T\}, #,) be a non-trivial system on 2. Let us denote by
&7 = LY2) a Hilbert space of all squarely integrable real random
variables with zero-expectations. For each f, —o <t < +, let o5&
be the subspace of 5# consisting of all elements measurable with respect
to T,#, We assume that the unitary operators of 52 defined by
x—xo T7' for x € 57 are strongly continuous.

DerINITION 2.1 ([3]). A process X = (x,), —o <t < + oo, is called
a helix with orthogonal increments, or simply an HOI, if the following
conditions are satisfied:

(a) =z, =0 and trajectories are right-continuous,

(b) =z, —x, €57 for any s,t, —o0 <s <t < +co,

(e¢) z, —x,e 7 forany s, t, —oo < s <t < +c where 1 indicates
the orthogonal complement in 57

(d) (x, —x,)o T = 2,1, — x,., for any s, ¢, u, —oo <8, ¢, u < +co.

Note that any HOI X = (x,) has the property of a martingale, namely,
(Teps — Ty T4r0Fs), t =0, is a squarely integrable martingale for fixed
s, — <8< +o. Thus by Doob-Meyer decomposition theorem for
martingales, there is a unique adapted process (X) = ((X),), — <t <
+ oo, so that ((X),), t=0, is previsible with respect to (7.%,), ¢=0, and
(x2 — (XD, T F,), t =0, is a martingale. We call {(X) an tncreasing
helix of X. It has the following properties:

(a) (X)), =0 and trajectories are right-continuous and increasing,

(b) <(X), —(X), is measurable with respect to T.#, for any s, ¢,
—o0 <8<t < +0c0, and integrable,

(e) KX), —(XD)oT,' = XDpyu — (XDsyu for any s,tu, —o <
8, t, u < + oo,

For HOI’s X and X', we put

(X, X'y, = %«X + X7, — (XD, — (X))
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If X = X', we have clearly (X, X) = (XD.

DEFINITION 2.2. Two HOI’s X and X’ are said to be strictly ortho-
gonal if (X, X') = ((X, X'),) vanishes.

Also for a non-trivial system (T, .%,) of discrete time, the HOI and
others are similarly defined. They are considerably simplified as follows.
Any HOI X = (x;,) can be written as

2, ::ZixoT"‘ (i > 0)
for some x ¢ 97 N 57 and the increasing helix of X is
(X)i =3 Bla*| )T (> 0).

Thus two HOI’s X and X’ for (T, #,) are strictly orthogonal if (X, X', =
(X + X", — (X), — {X")))/2 vanishes, where {X), = E[2*| F,].
For a special flow, the following result was obtained by J. de Sam

Lazaro. Any HOI X = (&) for a special system ({S,}, .., T, ., 6) can
be written in the form:

% (w, u) =k§ x(T_kw)lmkst)(w’ w) (t>0)
for some x ¢ 97N 57 in the basis, where
u (k= 0)

Ry(w,w) = 1, .
g,lﬁ(T—ja)) +u (k>0

We note that any HOI X corresponds uniquely to an HOI X for the
basic system, associated to x. When another HOI X’ is given similarly
with 2’ in the place of x, then X and X' are strictly orthogonal if and
only if E[x2’|.#;] = 0. Further, the increasing helix (X) of X is given
by

X)@, w) = 3 B[] FNT O pyea(@, w) (8> 0) .

3. We now define the multiplicity of helices for a system and show
that the multiplicity of a special system coincides with that of the basic
system.

Let ({T,}, ;) be a non-trivial system and &, a sub-o-field of .#,
consisting of all A e &, such that the process (1,0 T:'), t = 0, is previsi-
ble with respect to (T,.%,), t = 0.

DEeFINITION 3.1. For HOI’s X and X' for ({T.}, #,), let t«x,x» be a
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measure on (2, &,) such that
o) = B] | Lo TPdCX, X0, | for Ae,.
0

Clearly, fty x> is a finite measure. If X and X' are strictly orthogonal,
Wx.x»> 18 a null measure, that is, f«y,x3(A) =0 for any AeZ,.

LEMMA 3.1. For any positive number o and A€ <,, we have
o) = 2B |10 70, |
Proor. If we put
fla) = B| | 1o (X0, |,
then f(@) is an increasing function and for a, 8 > 0
fa+ ) =B | 1o Tra,]
- EDI T;1d<X>t} + EHZ” 1,0 T;‘d<X>t]

= fle) + f(B)
by the stationarity of the increments of (X). Thus we obtain
fla) = afd) .

For an HOI, we can define a concept similar to the stochastic integral
by the martingale.

DEFINITION 3.1. For any HOI X = (x,) for ({T,}, %,) and a squarely
integrable random variable v on (2, &, t«y>), wWe set a new HOI Y = (y,)

by
yo=\veTrde, ¢>0),
0
where this integral means the stochastic integral by the martingale.
Denote Y by v*X and call it a stochastic integral by an HOI X.
By the definition, for any HOI X',

WX, X, = | ve TdCX, X7, -
0

Thus we see easily that
dﬂ(;*x,x*) — vdﬂ(X,X’)

and
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A ftinyy = VA x>

on the sub-o-field Z,.
Conversely, applying a theorem of projection for martingales, we
have the following.

LEMMA 3.2. Let X be an HOI. For any HOI Y, there exists a
squarely integrable random variable v on (2, &, x>) such that

<Y’X> = <”*X1 X> y
and so we have

d#(y‘,x) = IJd#@f) .

Thus for HOI’s X and Y, the measure [y x> 18 absolutely continuous
with respect to iy and v is the Radon-Nikodym derivative.

Now we can state a representation theorem for HOI’s of a system.

THEOREM 3.1. For any non-trivial system ({T,}, #,), there exists a
finite or countable sequence of strictly orthogonal HOI’s .2z = (X™) such
that for any HOI X, there ewxist stochastic integrals v'™ « X™ with

X = i)y X
>
where

() = ; SQ VO Ay < + oo

and fymy > Uminy for all m, where > denotes the relation of absolute
continuity of measures. If another sequence 27 = (Y™) is also one
stated above, then kymy ~ thywy for all m, where ~ denotes the relation
of equivalence of measures.

DEFINITION 3.3. The length of such a sequence as in Theorem 3.1
is called the multiplicity of the system ({T.}, . %#,) and is denoted by
M{Ty}, Z,).

For an HOI X for a system (T, . %,), we can also define a helix-
transform v+ X of X, which corresponds to a martingale-transform, by
a random variable ve L2, #, &) and so a projection of HOI. A
theorem of the same type as Theorem 3.1 for (T, #,) was given in [4].
Theorem 3.1 can be proved by the same method as in [4].

Now we are in the position to state the main theorem in this note.

THEOREM 3.2. The multiplicity of a special system is equal to that
of the basic system.
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PrROOF. Let ({S)}, Z, T, F., 6) be a special system. We consider
the sets in .Z, of the following type:
A=A x #'; for some Aec. 7.

Since the process (1;°S:;), ¢t = 0, has left-continuous paths, we have
AeZ, Let X be an HOI for the special system

X(w, u) = g 2(T*O)L g <0(@, w) (¢ >0).
Then, for any A of the above type,
~ 1 0(w) a ~
pax@) = 1| ap@) |7 [ | 130570, wac, Jau
a Je 0 0

by Lemma 3.1. Let a be sufficiently small. If 0 <t < «, then

<X>t = E[x2|=7;]1(130§t)
and so

|[ 130870, W) (@, W) = 13 2 S7i(®, W(E[2*] F W ingse)@, 0)

= 130 S @, w)(E[2*| Fs Loxto,a)(@, %)
= 13(@, 0)(E[2"| Z J(@)loxp,«) (@, u)
= E[2*| F, (0)Lixp.a(@, ) -

Hence

ten(A) = % S,, P S:E’[xﬂ%]du - SA 2dP .

Thus, if we denote by X the corresponding HOI for the basic system
(T, #,) associated to x, we have
i A) = puaA)

Consequently, if X and X’ are HOI’s for the special system such
that fu«z > tG», then we have fuyy > «yy, Where X and X' are the cor-
responding HOI’s for the basic system.

Let &2 = (X)) be a sequence of HOI’'s for a special system
{S.}, Zo T, Fs, 0) in the Theorem 3.1 and _z° = (X"™) the corresponding
HOI’s for the basic system (T, .#,). We have seen that pizmy > ftizm+n)
for all n. By the result of Sam Lazaro stated in Section 2, .z is

maximal and so any HOI for the basic system is represented by .27
Thus we have

M({St}; %’ T’ %} 0) = M(T’ %) .
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4. We now apply the preceding result to a class of special flows.
Let (T,.%) be a B-system, i.e., (@) V. T' % =% and (b) {T';
—oo < 1< +eco} is an independent sequence. Putting & =V, T'.%
we obtain a K-system (T, .%%), t.e., (); T'.%4 = trivial.

Let ({S.}, %, T, o7, 60) be a special system constructed by the basic
system (T, &%) whose ceiling function 6 is measurable with respect to
S If 6 is not lattice-distributed, then the special system is a K-system,
i.e., M. S.o% = trivial ([5]).

In [4] we proved that the multiplicity of the system (T, .%) is
equal to the dimension of the subspace of 57 consisting of all elements
measurable with respect to .9 Thus the multiplicity of the special

K-system ({S,}, %, T, 5%, 0) is equal to the dimension of the subspace
of 57 mentioned above.

The author wishes to thank the referees for their help in revising
the manuseript.
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