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0. Introduction. Let f be an isometric immersion of an n-dimen-
sional conformally flat Riemannian manifold M, with » = 4, into the
(» + p)-dimensional Euclidean space E"t*. We shall investigate the
character of isometric immersions f for which all sectional curvatures
of M are positive. In this paper we generalize results due to O’Neill
[4]. In Theorem 1, we give a fairly complete description of the second
fundamental form tensor of f when p < n — 8, which shows that each
tangent space T,(M), x € M, contains an umbilic space %, of dimension
r = n — p (that is, all directions in %/, have the same normal curvature).
Theorem 2 asserts that the umbilic distribution %/ in some open set may
be integrated to give submanifolds umbilic in M and in E*+°.

The author would like to express his sincere gratitude to Professors
Y. Ogawa, S. Tachibana and H. Wakakuwa for their valuable advice
and encouragement.

1. Notation and some formulas of Riemannian geometry. Let
f: M — E"? be an isometric immersion of an #n-dimensional conformally
flat Riemannian manifold M, with » = 4, into the (n + p)-dimensional
Euclidean space E"t?. For all local formulas and computation we may
consider f as an imbedding and thus identify xe M with f(x)e E***.
The tangent space T.(M) is identified with a subspace of T, (E"t?). The
normal space Tj is the subspace of T',(E"+?) consisting of all X e T (E**?)
which are orthogonal to T,(M) with respect to the Euclidean metric
{+, ->. Let V (respectively j7) denote the covariant differentiation in M
(respectively E**?) and let /* denote the covariant differentiation in the
normal bundle. We will refer to / as the tangential connection and to
V+ as the normal connection.

The second fundamental form «a is defined by

7XY=VXY+ a(X, Y)y

where X and Y are vector fields tangent to M. Let R be the Rieman-
nian curvature tensor of M. We then have the Gauss equation:
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(G LY, 2), a(X, W)) — (X, Z), (Y, W)) = (R(X, Y)Z, W)
for all X, Y, Z, WeT,(M). Let Q and k be the Ricci tensor of type
(1, 1) and the scalar curvature of M, respectively, and +r the tensor de-
fined by
(X, Y) = 1/(n — 2){{QX, Y) — (k/2(n — 1))}<X, Y)}
for X, Ye T, (M). Since M is a conformally flat Riemannian manifold,
the Gauss equation may be written as
(G2) (Y, Z), a(X, W)y — {a(X, 2), a(Y, W))
= WY, ZXX, W) — ¢(X, Z)Y, W)
+ <Y, Z)p(X, W) — (X, Z)4(Y, W)
for X, Y, Z, WeT,(M). We define the difference function 4 of a by
4X,Y) = Ax) = a(X, X), a(Y, Y)) — |la(X, V)Y X AT},

where X and Y are linearly independent vectors in a plane 7 tangent
to M at z, and || X A Y|| is the area of the parallelogram spanned by
X and Y. The difference funection is given by the Gauss equation:

(G3) HXAY[PAX, V) = (a(X, X), a(Y, YV)) — ||a(X, Y)|f
= P(X, XY + 4(Y, VI X[ — 29:(X, YXX, Y,
where X and Y span a plane tangent to M at .
For the second fundamental form a we define the covariant deriv-

ative, denoted by Fia, to be

Vi)Y, Z) =Vi(a(Y, Z)) — aWxY, Z) — (Y, V:Z),
where X, Y, Z are vector fields of M. Then the Codazzi equation is
(C1) Via)Y, Z) = Fya)(X, Z)

for all X, Y, Ze T, (M). Let &, ---, &, be orthonormal normal vectors at
2. Extend ¢&’s (1 <k < p) to orthonormal normal vector fields defined
in a neighborhood of z and define —A,X to be the tangential component
of Fx&, for Xe T, (M). A,X depends only on & at x and X. We call
the A,’s the second fundamental forms associated with &, ---,§&,. If
&, -+, &, are orthonormal normal vector fields in a neighborhood of x,
they determine normal connection forms s,(1 <k, ! < p), in a neighbor-
hood of z, by

Vi, = é‘; su(X)&

for X tangent to M. s,’s are skew-symmetric with respect to indices k



UMBILICS OF CONFORMALLY FLAT SUBMANIFOLDS 101

and {. The Codazzi equation (Cl) is also expressed as
(C2) (FxA)Y — ; su(X)4,Y = (V;A)X — Ez: su(YVAX A=2k=p)

for X and Y tangent to M.

2. The second fundamental form at one point. The following
useful result is due to Chern and Kuiper [1].

LEMMA 1. Let .4 be the subspace {Xe T, M)|a(X, Y)=0 for all
YeT. M)} of T,(M). If 4=0, then there exists a vector Ze _4,*+ such
that a(Z, ) is one-to-one from _4,+ to Tr. Hence dim. 4, = n — p.

We now define a subspace 7/, of T, (M) to be umbilic relative to «
provided dim %, = 2 and a(X, X) is constant for all unit vectors X in
% ,. If the whole space T,(M) is umbilic relative to «, we say that
the point = is umbilic. It is easy to see that if %/, is an umbilic sub-
space, then a(X, Y) =0 for any two orthogonal vectors X, Y in %,
and thus the difference function 4 is constant and non-negative on
planes in %/,. Recall that a non-zero vector Xe T. (M) is asymptotic
provided a(X, X) = 0. As is well known, if all sectional curvatures of
M are positive, then a has no asymptotic vector.

Denote by h the real-valued funection

h: X - fla(X, X)|IF — 24(X, X)
on the unit sphere in T.(M).
LEMMA 2. If U is a critical point of the function h, then we have
{a(U, U), a(U, X)) — (U, X) =0
for all vectors Xe T (M) orthogonal to U.

PrROOF. Let Y be the curve in the unit sphere in T,(M) such that
Y(t) = costU + sintX. Then we have (d/dt)r(Y(¢))],-, = 4K a(U, U),
a(U, X)) — (U, X)). Since U is a critical point of h, our assertion is
proved.

LemMA 3. If U is ¢ minimam point of h, and X 1s a unit vector
orthogonal to U. Then we have
3lla(U, X)II =z 1(U) .
ProOF. For the curve Y as above, we have (d*/dt)h(Y(t))|,—, =

43| a(U, X)||* — m(U)) by using (G3). Now U is a minimum point of &,
hence we have the desired inequality.

LEMMA 4. Let U be a critical point of h. Suppose that the sub-



102 M. SEKIZAWA

space & = Ker a(U, - )NU* of T.(M) has dimension at least two. Let
be the (umbilic) symmetric bilinear function such that v(X, X) = a(U,U)
for all unit vectors X in T,(M). Then

(1) the symmetric bilinear fumnction a* = a — v on & has its values
in a(U, P)-CTL, where F = UN&*, and

(2) the difference function 4* of a* on & has the constant value h(U).

ProoF. (1) It suffices to prove that if X and Y are two orthogonal
unit vectors in &, and Ze.Z?, then a(U, Z) is orthogonal to both
a*(X, X) and a*(X, Y). By (G2) and Lemma 2, we have {(a*(X, X),
a(U, Z)y = 0. Since « is umbilic relative to v, we have a*(X, Y)=
a(X, Y). Then {a*(X, Y), a(U, Z)) = 0 follows from (G2).

(2) For X and Y as above, a(U, X) = a(U, Y) =0. Making use of
(G3), we have

(X, Y) = {a*(X, X), a®(Y, Y)) — |la*(X, Y)|I! = 4(X, Y) — 4(U, X)
— AU, Y) + |le(U, O)|FF = ||la(U, U)|I* — 24U, U) = W(U) .
LEMMA 5. Let U be a minimum point of the function h. Then
(1) we have (U, U) = (X, X) for any wunit vector Xe T, (M) such
that |la(U, U)|| = ||a(X, X)|l, and
(2) of p=n—3, we have (U, U) = (X, X) for any wunit wvector
Xe & such that a(U, U) = a(X, X).

PrROOF. (1) Since U is a minimum point of %, we have

la(U, U)IIF — 2¢(U, U) = [|a(X, X)|* — 29(X, X) for XeT,(M). Thus
(U, U) =z y(X, X) follows from ||a(U, U)|| = ||a(X, X)||.
(2) Let X be a unit vector in &2 The condition »p < » — 3 implies
dim Ker (X, -) = 3. Hence there exists a unit vector Y eKera(X, -)
orthogonal to both U and X. Using the assumption a(U, U) = a(X, X)
and (G3), we have ¥(X, X) + (Y, Y) = (a(X, X), a(Y, Y)) = (a(U, U),
a(Y, Y)) = [la(U, Y)I! + (U, U) + y(Y, Y). Hence 0= [la(U, Y)|'=
(X, X) —4(U, U). But (X, X) — (U, U) =0 by (1) above. Thus
(X, X) = (U, U).

LEMMA 6. Suppose that M has positive sectional curvatures and
that p<n — 3. If U is a minimum point of h, then h(U) =0. Fur-
thermore, a(U, -) is zero on the orthogonal complement of U in T, (M).

PROOF. Since all sectional curvatures of M are positive, @ has no
asymptotic vector. The condition p < n — 8 implies dim Ker a(U, ) = 3.
Hence we have dim &2 = 2 and there exists a unit vector X orthogonal
to U and such that «a(U, X) =0. Using Lemma 3 we find that
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hU) <£0. Hence, by Lemma 4, a* on & has 4* < 0. Now by Lemma
4 again, the values of a* on & lie in a(U, &) c T:. Since a(U, -) is
one-to-one on & and T, (M) = & + [U] + &, we have n* = dim & > p—
dim (U, &) = dim a(U, &)* = p*. We may now apply the last asser-
tion in Lemma 3 of O’Neill [4] to a*, concluding that a* has an asy-
mptotic vector Ye &. Thus a(Y, Y) = a(U, U), and since a(U, Y) = 0,
the equation (G3) implies ||a(U, U)|* — 4(U, U) — (Y, Y) = 0. But we
have (Y, Y) = 4(U, U) by (2) of Lemma 5. Hence h(U) = 0.

We now show that a(U, U*) = 0, or equivalently that & = U*N &+
is zero. Assume that there is a unit vector Z in &, we shall derive a
contradiction by a dimension argument. Let & = {Ee & |a*(X, ) = 0}.
Note that 4* = h(U) =0 on &£.

Case 1. & # «. Then there exists, by Lemma 1, a unit vector
W in £N&* such that a*(W,-) is one-to-one on £N¥E*. Let &
consist of the vectors in & orthogonal to W and to &. Since W is
orthogonal to & + &, we have a(W, -) = a*(W, ) on & + % . Hence
a(W, -) is one-to-one on # , and a(W, &) = 0. We have expressed T,(M)
now as a sum of mutually orthogonal subspaces, thus: T,(M) = [U] +
P+ (E +F +[W]). Since a(U, & + F)=0 and a(W, &) =0, we
see from (G2) that subspaces a(U, &), a(W, F), a(Z, &) of T+ are
mutually orthogonal. Thus, counting dimensions, we find p = dim a(U,
P)+dima(W, &) +dima(Z, &) = dim & + dimF + dima(Z, &),
since a(U, -) is one-to-one on .&° and a(W, -) is one-to-one on & . By
the decomposition of 7T,(M) given above, and the fact that p < n — 3,
we conclude that dima(Z, &) < dim%. Let Ee ¥ be a unit vector
such that a(Z, E) = 0. Using (G3) and a(¥®, E) = a(U, U) which follows
from a*(E, E) =0, we have (¥, E)+ (Z, Z) = {a(E, KE), a(Z, Z))=
(U, U), a(Z, Z)) = ||la(U, Z)||* + v(U, U) + 4(Z, Z). Hence we have
(U, Z)|F = y(E, E) — 4(U, U). Since y(E, E) — (U, U) = 0 by (2) of
Lemma 5, we have a(U, Z) = 0. This is a contradiction.

Case 2. & = «. Here the proof by contradiction is a simplifica-
tion of the argument above, based on the orthogonal decomposition
[Ul+ L +& of T,(M), and the mutually orthonormal subspaces
a(U, P), a(Z, &) in Tt

Reduction to the flat case is completed by

LEMMA 7. Suppose that M has positive sectional curvatures and
p=n—3. Let Ube a minimum point of h, with v defined as in
Lemma 4. Then the symmetric bilinear function a* from T, (M)x T, (M)
to T+ has 4* = 0.



104 M. SEKIZAWA

PrROOF. By the preceding lemma, T,(M) is spanned by U and the
nullspace & of a(U, ). Furthermore, U is non-zero and orthogonal to
. Since h(U) = 0, assertion (2) of Lemma 4 implies that 4* is zero
on planes in . Since a*(U, U) =0 and a*(U, &) =0, it follows
easily that 4* = 0 on all planes in T,(M).

We can now give the main result of this section.

THEOREM 1. For n =4, let f be an isometric immersion of an
n-dimensional conformally flat Riemannian manifold M of positive
sectional curvatures into the (n + p)-dimensional Euclidean space, and
p=<n—3. Let a be the second fundamental form of the immersion f,
and Z, xcM, be the set of all wectors U in T, (M), such that
la(U, O)|* — 2||U|M4(U, U) = 0. Then Z/, is the largest umbilic sub-
space of T (M) relative to a, and has dimension r =n — p. Further-
more, if V 1s a vector in Z,, then

a(V, X) =<V, X>a(U, U) for any XeT, (M),

where U 18 a unit vector in Z, (a(U, U) 1is independent of the choice
of U in Z,).

PrROOF. By Lemma 6, the set of unit vectors in %/, is precisely the
set A7%(0) at which the function 4 takes its minimum value. For one
such unit vector U, let _#;* be the subspace of T,(M) consisting of all
XeT, (M) such that a*(X,-) =0, where as usual, a* = a — v. Since
4* = 0, it follows from Lemma 1 that dim. #;* = n — p. We shall show
that 7, = #.*. If X is a unit vector in .#; %, then 0 = a*(X, X) =
a(X, X) — a(U, U), so _+4;* is umbilic relative to a. Since (X, X) =
(U, U) by the assertion (2) of Lemma 5, [|a(X, X)|[®— 2¢(X, X) =
la(U, O)|F — 24(U, U) =0. Hence X is in %,. Thus +#.*C Z%,.

Now assume that there exists a unit vector V in %/, which is not
in _#;*. Without loss of generality we may suppose that V is orthog-
onal to U. (In fact, we can write V = cU + sX, where X is a unit
vector orthogonal to U, and ¢*+s*=1. Since a(U, X)=0 and
¥(U, X) =0, we have 0=|a(V, V)[}—2y(V,V)=_cal, U +
sla(X, X)||* — ¢*s*h(X) — 2(c*y(U, U) + sp(X, X)) = s'h(X). This shows
that X is in %,. But U is evidently in .#;*, hence V¢ ._4;* implies
X¢. 4.*). Thus V is in & which implies (U, V) = 0. By this and
(G3), Schwartz’s inequality <{a(U, U), a(V, V))* < ||a(U, U)|}|la(V, V)|
is reduced (WU, U) — 4(V, V))*< 0. Hence, 4(U, U) = 4(V, V). Since
U and V are unit vectors in %/, the vectors a(U, U) and «a(V, V)
have the same norm. Now a*(V,:) # 0 since V¢.4;*. Then 4* =0
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implies a*(V, V) # 0, that is, (U, U) # a(V, V). Thus <{a(U, U) —
a(V, V), a(U, U)) 20. But, by (G3), (U, V) =0 and U, U) =
o(V, V), we see that |a(U, U)|* — <{a(U, U), a(V, V)) =0. Thus we
reach a contradiction. This completes the proof that %, = .#;*. So,
by the remark above, 7/, is an umbilic subspace relative to a« and has
dimension » = n — p.

If 7, is any umbilic subspace, we have a(X, X) = a(Y, Y) and
a(X, Y) = 0 for any orthogonal unit vectors X and Y in ;. Then, by
(G3), ||la(X, X)|I? = (X, X) + (Y, Y). Since p < n — 3, as in the proof
of (2) of Lemma 5, there exists a unit vector Ze T,(M) such that
a(X,Z)=0. Hence (X, X) — (Y, Y) = ||la(Y, Z)|? =0. By the sym-
metry in X and Y, we have (X, X) =+4(Y, Y). Thus we see that
lla(X, X)||* — 24(X, X) = 0. Then, by the definition of %/, 7; is a sub-
space of Z7,.

It remains to prove the final assertion of the theorem. If Xe T,.(M)
is orthogonal to Ve %, the assertion follows immediately from Lemma
6. Let U, V be unit vectorsin 27, and X =aV (e € R). Then a(V, X) =
ac(V, V) =aa(U, U), and <V, X)a(U, U) =alV, Via(U, U) = acx(U,
U). Thus the assertion holds, and the proof is complete.

REMARK. The lower bound # — p of the largest umbilic space .,
was obtained independently by Moore [3].

COROLLARY. Under the assumptions of Theorem 1, we have
¥(V, X) = N2V, X5,

where V 18 a wvector in 7z/,, X is a vector in T, (M) and ) is the length
of a(U, U) for any unit vector in Z/,.

PROOF. In the case of X = Ve %/, and ||V| =1, we have
¥(V, V) = lla(V, V)IF/2 = N/2.

If X and V are orthogonal, then «a(V, X) =0. Hence, by Lemma 2,
Ww(V, X) = 0. These imply the assertion.

3. Local properties. We assume throughout that f: M — E**? is
an isometric immersion of an n-dimensional conformally flat Riemannian
manifold into an (» + p)-dimensional Euclidean space such that » = 4,
p <n — 3 and that the sectional curvatures of M are positive. Denote
by Z(x) the common value of the normal curvature vectors a(U, U) for
all unit vectors U in %Z,. We call Z the normal curvature vector field
of f. Let p(x) denote the dimension of %7, and call it the umbilic index
of f at x.
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By Corollary of Theorem 1, any vector in %/, is a proper vector of
the Ricci tensor @ corresponding to the proper value (n — 2)\Y2 + k/
2(n — 1) = p, say. Let &.(¢) be the proper space of the Ricci tensor
Q@ corresponding to this proper value gr. We denote by %77, the sub-
space of T} generated by the vectors a(X(x), Y(x)) for all vectors X(x),
Y(x) in &,(¢r). Let £ be an open set in M on which the umbilic index
takes a constant value and the multiplicity of each proper value of the
Ricci tensor is constant (in the argument below, we only need the con-
stancy of the multiplicity of the proper value ¢ of the Ricei tensor).
Furthermore we assume that the field of space %  has constant di-
mension on 2.

LeEMMA 8. The normal curvature vector field Z is differentiable on 2.

PrOOF. Let A(X(x)) = a(X(x), X(x)) for all unit vectors X(x) in
T.M), xeM. By Theorem 1 and (G3), (A(X(x)), Z(x)> = N(x) for all
unit vectors X(z) in &,(w)cT. (M), xc”. Let # be the plane in
T+ cC E* through the end points of A(X(x)) for X(x)e &.(¢). Choose
unit vectors X (z), ---, X,(x) in &,(¢) such that the vectors A(X (x)), ---,
A(X,(x)) are affinely independent and determine .# . We assert that 7
does not contain the zero vector. In fact, if F(x) e &# , we can write
F(x) = 3 filx)A(X,(x)) with 3,f;=1. By Theorem 1 and (G3), {(Z(x),
F(x)) = G file)\(x) = AM(x) > 0, hence F(x) #0. Thus the vectors
A(X,(x)), - -+, A(X,(z)) are linearly independent. Furthermore, they are
a basis for the space 7%77,. For, %, is spanned by the set {A(X(x))|
X(x) e @,(1)} since a(X(x), Y(x)) is a linear combination of A(X(x)),
A(Y(x)) and A(X(x) + Y(x)).

By hypothesis the field of proper space & (¢t) of the Riceci tensor @
is differentiable on <. Thus we can extend X;(x)’s (1 < 7 < q) differenti-
ably to vector fields X;’s (1 =<1 =< q) on ¢ such that they are in & (y)
at each point of «~°. If ¢ is small enough, the vector fields A(X))’s
(1 £ 1 < q) remain affinely independent and linearly independent at each
point of ¢7. These vector fields are in 77  at each point of <. By
hypothesis we may suppose that dim 9%  is constant on <”. Thus the
vector fields A(X;)’s 1 £ ¢ < q) form a basis for %7 at each point of
. Since Z = a(U,U) (Ue Z C () is in 77  at each point of <7, we
have a unique expression Z = >, 2,A(X,) for Z on . Since (Z, A(X;))=
AN 1=£j5=<¢q), we obtain 3 z{AX,), A(X;)) =N for each index
j (1 £ 37 <4q). By hypothesis the proper value £ of the Ricei tensor Q is
differentiable on 7. So the function A\ = 2y — k/(n — 1))/(n — 2) is
differentiable on <°. Furthermore the ¢ x g matrix ((A(X),), A(X;))) is
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non-singular. Thus we may solve for z,s (1 <1 =< q) as differentiable
function on <. Hence Z is differentiable on ~.

LEMMA 9. The distribution Z/:x — %/, 18 differentiable on .

PrROOF. At each point of <~ we define a* to be a — v, where
v(X, X) = Z(x) for all unit vectors Xe T, (M), x€ . Then, by Lemma
8, a* is a differentiable tensor field on <, and by the proof of Theorem
1, 7, is the null space of the linear transformation X — a*(X, -). Since
o = dim Z is constant on ¢, it follows that %/ is differentiable on <.

LEMMA 10. The mormal curvature vector field Z on & satisfies
ViZ =0 for all Ue Z.

PROOF. Since p =7 — p = 3, we can take orthonormal vector fields
U, VeZ on <. Applying the last assertion of Theorem 1, we have

Vo)V, V) =Vs(V, V) — 220, V, V) =V;Z,
7ra)U, V) = ViU, V) — aWyU, V) —a(U, 7y V) =0.

But, by the Codazzi equation (Cl), we have V#Z = 0 for all Ue %.
LEMMA 11. The umbilic distribution ZZ s involutive on .

ProoF. Let U and V be non-zero vectors in %/. Then a(V, X)=
(V, X>Z for all vector field X tangent to <. Using Lemma 10, we
have Fia)V, X)=(ULV, X)) Z —aWV,V, X)— <V, V, X>Z={V,V, X>Z —
a(,V, X). Hence, by (Cl), we have «a(U, V], X) =T, V], X)Z,
which implies [U, V] is in % .

We consider now the configuration of aleaf L of % in 2.

LEMMA 12. FEach leaf L of Z in & is umbilic in M and in E"+?
relative to f.

Proor. Let &, ---,&, be orthonormal normal vector fields in
such that A&, (A = || Z]|) is the normal curvature vector field Z. Denote
by X(L) (resp. X(M)) the algebra of vector fields on L (resp. M).
Let U and V denote vector fields in X(L), and let X denote a vector
field in %(M). The second fundamental forms A,’s (1 <k < p) satisfy
AU=\U,AU=0 2=<k<=p). By Lemma 10, we have Ux = 0, that
is, \ is constant on L. Hence we have s,(U)=0 (1 <k < p). Differ-
entiating both sides of A, U = AU by X and using (C2), we have

(%) VAN X=—AFV U + (X\NU + ;U .

By a similar computation for A,U = 0, we have
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VrAYX = N (X)U + lZpl su(UNAX + AV, U 2=k=p).

Let B be the second fundamental form of L in M, and let P denote
the orthogonal projection of X(M) to X(L). For any vector field &
which is orthogonal to L and tangent to M, we denote by B; the second
fundamental form associated to &, Then we have B.U=—PF £ Since
A X —\X is in ¥(L)*NX(M), we may compute B, y_,r as follows:

_BALX—IX( U)=PV,A)X + AV, X — W X)
= P(—AF U+ (XU + W, U+ AP X — MW, X)
= P(A[U, X]+ (X\MU — \[U, X))
= AP[U, X] + (XNU — \P[U, X] = (XMU,

where we have used the equation (*) and the fact that X(L) is a
proper space of the symmetric operator A,. Hence we have {(B(U, V),
AX —ANX)=—XNU, V). Since A4, X’s @Q=k<p) are in XL)'nN
X(M), a similar computation shows that B, ;U = \s(X)U 2=k <p).
Hence we have (B(U, V), 4. X) = Ms,(X)U, V) 25k < p).

Let B* be the symmetric bilinear function on X(L) defined by

where W is a fixed unit vector field tangent to L. Then the above
two equations for @ imply <{B*(U, V), A X —AX)> =0 and {B8*(U, V),
AX>=02=k=p). Hence we have {a(g*(U, V), X), &> = MB*(U,
V), X> and {a(B*(U, V), X), &> =0 (2< k < p). These imply a(8*(U,
V), X) = (B*(U, V), X)Z, that is, 8*(U, V) is in X(L). But, by defini-
tion, g*(U, V) is in X(L)*. Thus we have B*(U, V) = 0. So we have
BU, V)=X<U, V)B(W, W) for all U, VeX(L) and a fixed unit vector
field WeX(L). This also implies B(W, W) is independent of the choice
of a unit vector field W in X(L). Hence L is umbilic in M. Let 6 be
the second fundamental form of L in E*t? relative to f|L. Then
0=a+ B on ¥L). Thus we have (U, V)= <U, VY Z + B(W, W)).
Hence L is umbilic in E"*7,

THEOREM 2. Let f: M — E™**, with p =<n — 3 and n = 4, be an iso-
metric immersion from an m-dimensional conformally flat Riemannian
manifold M with positive sectional curvatures to the (n + p)-dimensional
Euclidean space E™"*?. Let & be an open set on which the wmbilic
index takes constant value and the multiplicity of each proper value of
the Ricci temsor 18 comstant. Then the wmbilic distribution Z/ is im-
volutive on ¢ and each leaf L of Z in & is umbilic in M and in
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E™+? yelative to f. Furthermore, L is a Riemannian manifold of con-
stant curvature N + (f, where N\ (resp. () 1is the length of the mormal
curvature vector field of f (resp. f|L).

PrOOF. All except the final assertion were already proved. Let é
be the second fundamental form of f|L, and K, the sectional curvature
function on L. Then we have K, (U, V)= (U, U), oV, V)) — ||o(U,
MIE= | Z| + ||8(U, U)|? = N\ + & for all orthonormal vectors U and
V tangent to L. Since dim L = 8 by Theorem 1, L is a Riemannian
manifold of constant curvature \* + g~
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