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FOLIATED COBORDISMS OF SUSPENDED FOLIATIONS
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Introduction. Let (Mn, ^) be a codimension q foliation on a closed
oriented ^-manifold Mn. Then the suspended foliation Σf(Mn, ^~) is
obtained from (Mn, J O x [0, 1] by the identification of (Mn, ^) x {0}
with (Mn, a?") x {1} by means of a foliation preserving diffeomorphism
/. There are interesting examples of foliations of this type. For example,
let &~ be a codimension 1 foliation on Tn+1 whose leaves are transverse
to the fibers of the canonical fibration S1 -> Tn+ί = S1 x Tn -> Tn. Then
we can construct JF' from mutually commuting automorphisms fl9 •••,/»
of S1 (cf. Herman [5]). We denote (Γn+1, ^) by &~{fl9 ••-,/,). Then
it is easy to see that ^~(fu , fn) is a suspended foliation of ̂ (fu ,
fu ''' * fn) by A, where the "hat" means that the term is left out.

Recently, Herman [5] and Morita-Tsuboi [22] proved that the Godbillon-
Vey class of ^~(fu •••,/») is zero. Considering the conjecture that the
map GV: ^Ωffi) —> R given by the Godbillon-Vey number is injective,
we may ask if ^~(flf •••,/») is foliated null-cobordant. However, this
seems to be very difficult even for the case ^{f, g) on T3 (see Tsuboi
[23]). Moreover, Σf(M, ά^) may not be null-cobordant in general even
if (M, &~) is null-cobordant and f eLΌ(M, J^), where LD(Λf, ̂ ) is the
group of all leaf preserving diffeomorphisms of (M, ά?~). We will give
such an example in § 6. But it seems to be natural to conjecture that
Σf(M, J H is null-cobordant for / e FD(M, ̂ )09 where FD(ikί, ̂ \ is the
identity component of the group of all foliation preserving diffeomorphisms
of (M, &~), because the elements in FD(ikί, ̂ \ are considerably restricted
(see Lemma 10 in §4).

In this paper we consider this problem and verify the above con-
jecture for some codimension 1 foliations, i.e., in §3 for the Reeb foli-
ation (S3, ̂ Q and a modified Reeb foliation (S\ J^B)9 in §4 for the
foliation (S3, ̂ Q with the Godbillon-Vey number of (S3, ̂ ) = a Φ 0
constructed by Thurston [20], and in §2 for the foliation defined by a
non-vanishing smooth closed 1-form. Concerning the last foliation, we
will show that Σf(M, J*~) is null-cobordant for / 6 FD(ikί, ̂ ) Π Diff+(M)Q.
These results give some information on the relation between Σf(M\
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and Σg(s(M*), β«(^)), where (s(Jlf3), sa(J^)) is obtained from (Jlf3, jF") by
a foliated surgery (cf. Oshikiri [14]). These results also enable us to
consider the problem for the foliation (Jlf3, ^s) obtained from a spinnable
structure (cf. Fukui [2]). These are considered in §5. In §6, we will
give some remarks on ̂ ~(flf •••,/»).

The author wishes to thank Professors H. Sato, T. Mizutani and T.
Nishimori for helpful comments during the preparation of this paper.

1. Notations and results. In this paper we consider only C°° folia-
tions and maps.

Let (Jiff, ^7) and (Λfj, ^) be codimension q foliations on oriented
closed ^-manifolds Jiff and Jlf2\ Then (Jiff, J^x) and (Jiff, ^ Q are said to
be foliated cobordant or simply cobordant and denoted by (Jiff, ^7) ~
(Jiff, ^), if there exists a codimension q foliation (Nn+1, ^~) of a compact
oriented (n + l)-manifold Nn+1 transverse to the boundary such that dN =
Jlfi U (-Af2), (Mlf JHM λ) = (Mlf J^) and ( —ikΓ2, jr\ -M2) = -(M2, ^ ) ,
where α —" means that the orientation of the manifold is reversed.

Let ^~Ώq(n) be the set of cobordism classes of codimension q folia-
tions on closed oriented ^-manifolds. Then ^Ωq{n) becomes an abelian
group under disjoint union (cf. Lawson [9]).

Let (Jlfn, J^) be a codimension q foliation on a closed oriented n-
manifold Jlf*. We consider the following groups: FD(Jlf, &~) is the group
of all diffeomorphisms of Jlf which preserve the orientation of Jlf and
the foliation J^7 LD(Jlf, ^~) is the subgroup of FD(Jlf, &~) consisting
of those which leave each leaf of ^ invariant. We also denote FD(Jlf, ά^)
(resp. LD(Jlf, J^)) by FD (resp. LD) if there is no danger of confusion.
We denote the identity component of FD(Jlf, ^) (resp. LD(Jlf, ^)) by
FD(Jlf, ^ \ (resp. LD(Jlf,

REMARK, (i) When we refer to the topologies of FD(Jlf, ^~) and
LD(Jlf, ^~)f we always consider the C°°-topologies induced by that of
Diff°°(Jlf).

(ii) We may assume a path in FD(Jlf, &~) or LD(Jlf, ά^) to be smooth
(cf. Leslie [10]).

DEFINITION. For each (Jlf*, \^q) and /GFD(Jlf, &~) we define a
foliated (n + l)-manifold Σf(M, &~) as follows: The (n + l)-manifold is
defined by Jlf x [0, l]/(x, 1) - (/(x), 0) = ΣfM and the foliation is defined

[0, l]/(s, 1) - (/(α), 0), i.e.,

U fm{L) x [0, !]/(/"(»), 1) - (fm+1(x), 0) , xeL
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is a leaf for each L e JK We call this codimension q foliation a suspended
foliation of (Λf, J H by /. We also denote Σf(M, ^) by Σ(f) if there
is no danger of confusion.

Define a map S: FD(Λf % J ^ ) -> ̂ Ωq{n + 1) by

S(f) = [2V(Λf, J O ] - the cobordism class of 2V(Λf, ̂ ) .

PROPOSITION. S is a homomorphism, i.e., S(fog) == S(f) + S(g). In
particular, the kernel Ker(S) of S contains the commutator subgroup.
Moreover, we have Ker(S) z> LDO.

PROOF. Consider a foliated manifold (Λf, ^) x [0, 1] x [0, 1] with a
corner. Identify (x, s, 1) with (f°g(x), s, 0) for each se [0,1/4], and
identify O, β, 1) with (g(x), s, 0) for each s e [3/4, 1]. By "straightening
the angle", we have the desired foliated cobordism. The second part of
Proposition follows from the result stated in Remark (ii) above, because
we can construct smooth concordance between Σf(M, J^) and Σ ̂ M, ά?")
for /eLD 0 . q.e.d.

Here are some examples of Σf(M, ά^).

EXAMPLE 1. We consider the trivial foliation of Mn, i.e., J^~ = {x}xeM.
Then we have

(a) If / e LD0, then Σ(f) ~ 0. This follows from Proposition and
the fact that FD0 = Diff^(M)0 and Diflf?(ilf)0 is perfect (cf. Mather [12]).

(b) There is a non-trivial example (cf. §6). Let M = CP2 and
/ : CP2 —• CP2 be defined by f([z0, zlf z2]) = [z09 zlf z2] in homogeneous coor-
dinates. Then ΣfCP2 is a generator of Ωδ~Z2. Hence we have Σf(CP2,

0 in

EXAMPLE 2. Let (Λf, J?") be obtained from orbits of an Anosov flow
with an integral invariant (see Leslie [11]). If / e FD0, then Σf(M, a?*) ~
0. This follows from Proposition and the fact that PD0 = LD0 (Leslie
[11]).

Now we state our results. In the following we consider only codimen-
sion 1 foliations.

THEOREM 1. Let (Λf, J?~) be a foliation defined by a nonvanishing
smooth closed l-form. If f e FD Π Diff+(Λf)0, then S(f) = 0. In particular,
S(FD0) = 0.

Let (S3, ,^Q be a Reeb foliation (cf. Lawson [9]). Replace the unique
toral leaf T2eJ?"B by toral leaves T2 x {ί}, t e [0, 1]. Then we have a
modified Reeb foliation (S3,
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THEOREM 2. // / is in FD(S3, J Q O or in FD(S3, J^R\, then S(f) = 0.

THEOREM 3. Let (S3, ^ Q δβ the foliation with gv(Jr

a) — a Φ 0 cow-
structed by Thurston [20]. Tften S(/) = 0 for / e F D 0 .

THEOREM 4. Lei (s(M3), sa{^)) be the foliation obtained from (M3,
by a surgery (cf. Oshikiri [14]). // we use (S3, J?l), (S3, J ^ ) or (S3, ^ Q
i n £ / m s u r g e r y , £ Λ e w / o r e α c f e / 6 F D ( s ( M ) , s α ( ^ " ) ) 0 ί / ^ e r e e x i s t s a g e
FΌ(M, ̂ \ such that Σf(s(M), sa(^)) - Σa(M, J?").

COROLLARY. // we have FD(M3, ^ \ = LΌ(M\ J^X, then for any
(s(ikί3), 8a{^r)) in Theorem 4 and any f eFD(s(ilf3), sa(^))0 we have
Σf(s(M), sa{^)) ~ 0. In particular, let (M3, ά?~) be an Anosov foliation
(cf Rosenberg-Thurston [16], Part II). Then Σf(s(M*), sa{^)) ~ 0 for

Now we generalize Theorem 2 as follows:

THEOREM 5. Let (ikP, J^"s) be a foliation obtained from a spinnable
structure (cf Fukui [2]). Then S(f) = 0 for / e F D 0 .

2. Proof of Theorem 1. Let Bn cJ^Ωx(ri) be the subgroup generated
by foliations defined by non-vanishing closed 1-forms. Then we have the
following theorem by Thurston [21] and Koschorke [2] (see also Reinhart
[15]).

THEOREM B. If n ^ I(mod4), then

Bn = Ωn^ Ker(sign: Ωn-+Z),

where sign(Λί) means the signature of M, and

In particular, for [(M, ̂ )\ e Bn, we have (M, ̂ ) ~ Q if and only if
either dim M = n Φ 4Jc + 1 and M ~ 0 in Ωn, or dim M = 4fc + 1 and
χ(W) is even, where W gives M ~ 0 in Ωik+ι.

If (M, J^) is defined by a non-vanishing smooth closed 1-form, then
the following two cases occur (see Imanishi [6]):

( i ) All leaves of ^~ are dense in M.
(ii) ^ is induced from a fibration p: ikf —> S1, i.e., ^ is a bundle

foliation.
First we consider the case (i).

LEMMA 1. Let / e F D and f be homotopic to idM. // ^~ is defined
by a closed 1-form ω, then f*a) = ω.
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PROOF. / = id^ implies [/*α>] = [ω] e H£B(M), i.e.,

(1) f*ω = ω + dh, for some h e C°°(M) .

For each x e M and v 6 Tx^, f e FD implies f*v e Tf{x)^. Thus we have
/*α)(v) = α)(Λv) = 0. From (1) follows f*ω(v) = ω(v) + dh(v) = v(h), i.e.,
v(h) = 0 for each a e f and ve Tx^. This means that h\L is constant
for each L e ά^. On the other hand, we have L = Λf by the hypothesis.
Thus it is seen that h is a constant function and (1) becomes f*ω = α>.

q.e.d.

PROOF OF THEOREM 1: The case (i). Let π: M x [0, 1] —• Λί be the
projection to the first factor. Then (M, ̂ ) x [0, 1] is defined by the
closed 1-form τr*ft>, and by Lemma 1, π*α> is preserved by the identifi-
cation (a?, 1) ~ (/(&), 0). Thus Σf(Mf^) is also defined by a closed
1-form. By the hypothesis / = iάM, ΣfM is diffeomorphic to Mx S1 and
d(M x D2) = Mx S1 with χ(M x D2) = χ(M) = 0. Hence we have 27(M,

0 by Theorem B above, regardless of the dimension of M. q.e.d.

Next we consider the case (ii). Note that in this case Σf(M,
cannot always be defined by a closed 1-form.

Let (M,^~) be defined by a fibration piM^S1 with the fiber F.
Then M = F x [0, l]/(x, 1) - (?>(»), 0) for some φeΌif£+(F). We set
FD(ΛΓ, ̂ ) Π Diff?(M)0 = G and Diff̂ CS1) = Γ. As / e G is a bundle map,
we can define a homomorphism α: G —• Diflfoo(S1) so that the following
diagram commutes:

M f-—>M

a(f)

LEMMA 2. a(f) is orientation preserving, i.e., a(f)eΓ.

PROOF. AS a(f) is a diffeomorphism of S1, we have only to show
that [a(f)*dθ] = [dθ] in H^S1), where dθ is a volume element of S1. As
the above diagram commutes, we have p*a(f)*dθ = f*p*dθ. By the
hypothesis / = idM we have p*[a(f)*dθ] = p*[dθ] in Hh^M). On the
other hand, by considering a cross-section s: S1 —> M, we can show that
p* is injective. This completes the proof.

LEMMA 3. For each f e Ker(α), we have Σf(M, &~) — 0.

PROOF. By the hypothesis / ^ id3/ we have ΣfM = M x S1. Thus,
if we show that Σf(M, ^) is a bundle foliation, we can prove this lemma
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by the same argument as in the case (i). From the commutative diagram

M f-—>M

I9

-»s\
we have the following commutative diagram:

Mx [0, 1]-^-* M-^-*ί

I"
ΣfM - > S1 .

This diagram gives a fibration of ΣfM over S\ A leaf of Σf(M, ά?") is
of the form - U P~\a{fY\θ)) x [0, 1] U p~\θ) x [0, 1] U p-\a(f)(θ)) x
[0, 1] U •/- = p~\θ) x S1 = q~\θ), with θ e S1. Here we also use a(f) =
id^i. This completes the proof.

LEMMA 4. The map a is surjective. Further, let φ be the map
mentioned above and ψ be the diffeomorphism of M induced by φ x idz:
F x I-> F x /. I%ew we cαw define a homomorphism β: Γ -> G/(ψ) with
αo/3 = id ow .Γ, where (ψ) is the normal subgroup of G generated by ψ
and a is the map G/(ψ) —> Γ induced by a.

PROOF. We consider the universal covering p: iί —> S1 = R/Z of S1.
For g eΓ, we lift it onto g: R^> R. Then we have g(t + n) = g(t) + n,
for t e R and neZ. Consider M — F x R\ ~9 where (φn(x), t) ~ (x,t + n).

Define gf e G by flτ'(a?, ί) = (x, g(t)). The well-definedness follows from the
following diagram:

(φn(x), t) ~ (x, t + n)

4 I*
(φn(x), g(t)) ~ (x, g(t) + n) = (OJ, ̂ (ί + n)) .

It is easy to see that gf e G. The surjectivity of α follows from this.
Also it is easy to see that the above construction gives a homomorphism
β:Γ-+G up to <^>, i.e., β(g) = [g']. q.e.d.

PROOF OF THEOREM 1: The case (ii). Note that <̂ > cKer(α). Then
by the above lemmas we have a split exact sequence

G/(ψ) έ Γ -> 1 .



FOLIATED COBORDISMS 381

By Lemma 3, we have Σf(M, ^) ~ 0 for /eKer(α). Thus we have
only to show that Σf(M, &~) ~ 0 for each feβ(Γ). On the other hand,
we know that Γ is perfect, i.e., Γ = [Γ, Γ] (see Herman [4]), and that
Σ([g, h]) ~ 0, where [g, h] = gohog-^h-1. Hence β(Γ) = [β(Γ), β(Γ)]
implies Σf(M, ^) ~ 0 for feβ(Γ). This completes the proof.

3. Proof of Theorem 2. First recall some definitions (cf. Oshikiri
[14]).

Let (Mn+1, ^") be a codimension 1 foliation and φ: S1 —> Mn+1 be an
imbedding transverse to ^ 7 We assume that ^(S1) has the trivial tubular
neighborhood S1 x Dn. Then the σ-modίfication σφ{^~) of J?" along ψ
is defined as follows. Wind the leaves of ^ along S1 x dD(l/2)n c S1 x
Dn, where D(l/2)n is the ^-dimensional disk with radius 1/2 and is con-
centric with the unit disk Dn. Then we have a foliation on Mn+1 —
int(Sx x D(l/2)n) with S1 x 3Z)(1/2)W as a leaf. Consider a Reeb component
on S1 x D(l/2)n. These foliations give a foliation on Mn+\ We denote
this by σφ{^). It is clear that (Mn+1, &~) is concordant to (Mn+1,
σψ{^)). Moreover, if R is a rotation along the S^factor of this new
Reeb component (S1 x D(l/2)n, ^R), then R can be extended to this
concordance so that the extension gives no effect on (Mn+\ ^). The
inverse of the σ-modification is called the ^^-modification.

Let ^l and ^ 7 be the foliations onS 1 x [0, 1] defined by the following
1-forms:

^l\ ω0 = (1 - 2r)dτ + h(r)dθ ,

^ 7 ; ω1 = dr + h(r)dθ ,

where (θ,r)eSι x [0, 1] and h is a smooth function of [0, 1] into R such
that h(0) = h(ΐ) = 0 and h(r) > 0 for 0 < r < 1. Here we choose h(r) so
that the holonomy groups of the leaves S1 x 3[0, 1] in ^ and S^x are
infinitely tangent to the identity map and that ^l and ^\ are invariant
under rotations along the S^factor. To perform the rt-surgery on (ΛfΛ+1,
^^) we assume that there exists an imbedding φ: S1 x Sn~1 x [0, 1] —>
Mn+1 satisfying ^\lmm = S"-1 x (S1 x [0, 1], ̂ ) , for t = 0 or 1. We
define r(Mn+1) to be the (n + l)-manifold obtained from (Mn+1 - int φ(Sι x
S^-1 x [0, 1])) U S1 x Dn x S° by the canonical identification of φiS1 x
S™-1 x S°) with S1 x dDn x S°. We consider foliations ^ \ Mn+1 -
int φ{Sx x S"-1 x [0, 1]) and (S1 x Dn, Reeb) x S°, where oriented circles of
two Reeb components coincide if t = 0 and are opposite if t — 1. This gives
a foliation on r(Mn+1). We denote this foliation by rt{^). We say that
the resulting foliated manifold (r(ikf), rt{^)) is obtained by the r rsurgery.
In the following, we also use the inverse of this surgery. We call it
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the r?-surgery.

LEMMA 5. (Mn+\ J^) ~ (r(Λf +1), r t ( ^ ) ) /or ί = 0, 1. Moreover, we
can extend rotations of Sn~1 x (S1 x [0, 1], J^t) along the S^factor to the
foliated cobordism between (M, ̂ ) and (r(M), rt(^)).

PROOF. See [14]. The second part is clear by the construction of
the foliated cobordism. q.e.d.

PROOF OF THEOREM 2: The case (S3, _^Q. The following theorem
of Fukui-Ushiki [3] is essential to our proof.

THEOREM (Fukui-Ushiki [3]). The sequence

1 -> LD (S3, J Q O -+ FD(S3, JTR\ ^ S 1 x S 1 -> 1
r

is spiiί exact, where we regard S1 x S1 as rotations of the Reeb component
(S1 x D\ Reeb) a£<m<7 S1 x {0} c S1 x Z>2.

REMARK. In the proof of [3, Theorem], the authors proved LD =
LD0. Thus [3, Lemma 1] can be stated as above.

Using this theorem and Proposition, we have only to show that
Σ^S1 x S1)) ~ 0. Note that even the rotations cannot be extended
to the foliated null-cobordism of (S3, «J*Q constructed by Mizutani and
Sergeraert [17]. We denote / GTGS1 X S1) by (α, b), where a and beS1.
By Proposition, we have Σ(f) = Σ(a, b) - Σ(a, 0) + Σ(0, 6). We will show
that ^(0, 6) - 0. The same proof gives Σ(a, 0) - 0. Let (S1 x [0, 2], &~')
be the foliation obtained from (S1 x [0, 1], ̂ ) U (S1 x [0, 1], ̂ 7 ) by the
canonical identification of S1 x {0} with S1 x {1}. We can regard (S1 x
[0, 2], J^-') as a foliation on S1 x [0, 1] by S1 x [0, 2] 9 (a?, 2ί) <-> (a?, ί) 6 S1 x
[0, 1]. We denote this foliation by ^ ^ .

LEMMA 6. (S1 x [0, 1], ^ ) x S1 is foliated cobordant to (S1 x [0, 1],
^7) x S1 relative to the boundary. Moreover, we can extend rotations
along the first S1-factor to this cobordism.

PROOF. By Lemma 5, we have only to show that the foliated
cobordism is obtained by r rsurgeries and σ-modifications. Proceed as
follows with attention to the orientations of Reeb components. First
note that (S1 x /, ^ ) x S 1 - (S1 x /, σφ(&l)) x S\ where / = [0, 1] and
φ: S1 -> S1 x / is given by φ(t) = {t} x {1/2}. Performing the ro-surgery
on the second foliation, we have (S1 x D2, σφ(Reeb)) U (S1 x D2, σ^(Reeb)),
where φ and ψ: S1 -+ S1 x D2 are given by φ(t) = {t} x {0}, f{t) = {t} x {0}
and (S1 x D2, Reeb) means a Reeb component. Consider a foliation (S1 x
S2, ^rf) = (S1 x D2, Reeb) U (S1 x D2, Reeb). This is clearly null-cobordant.
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Performing ^-modifications along two S1 x {0}'s, we have a foliation
(S1 x S\ ̂ r"). This foliation has two Reeb components. Take one of
them and perform the ro*-surgery using this Reeb component and that
of (S^xZ)2, σ^(Reeb)). Again perform the r*-surgery on the rest of Reeb
components. Then we have a foliation on S1 x / x S1, which is clearly
equivalent to σφ,(σφ(^)) x S1, where φ: S1 -> S1 x I is given by φ(t) =
{t} x {1/4} and φ'\ S1 -> S1 x / is given by φ'(t) = {t} x {3/4}. q.e.d.

Let &~ be a foliation on Tn+1 transverse to the fibers of the ca-
nonical fibration S1 -> Tn+1 = S1 x Tn -> Tn. Then we can construct ^
from mutually commuting diffeomorphisms f, ••-,/» of S1 (cf. Herman
[5]). Thus we may write (Tn+\ J ^ ) as &~(f19 •••,/,). Set supp(Λ) =
Si c S1, where supp (/) means the support of /. Then we have the
following

LEMMA 7 (see also [23]). // there is an ie{l, m",n} such that
int (s^ Π int (sy) = 0 for j Φ i and that the number of the connected
components of st is finite, then J^~(flf , fn) ~ 0.

PROOF. The case n = 1 was dealt with in Example l(a) in §1. If
n ^ 2, we may assume i = 1. If 81 = S1, then by the hypothesis we have
f2 = idsι, and ^(f19 iάsi9 •• ) ~ 0 is clear. Thus we may also assume
Si Φ S\ Further, we may assume that the number of the connected
components of sλ is one (repeat the following argument iV-times if sλ has
N components). Note that f on 3sx is infinitely tangent to the identity,
i.e > i°°(/i) = i°°(id) at ds^see Sergeraert [17]), so we can consider f\s}e
Diff̂ fO, 1] by regarding s, as [0, 1]. If we identify g 6DiffΞ[0, 1] =
DiffΞSi with its obvious extension §reDiff(S1), then by the hypothesis
we can construct ^(g, f2, •••,/*) for any g eDiff"[0, 1]. By the result
of Sergeraert [17], we can represent f = [gl9 hλ] [gk, hk] for some gt

and ΛyeDiίfΞ[Of 1]. Hence we have &~(flf - - -, fn) ~ Σ t i ^ b , , ΛJ,
f» •• , Λ ) ~ 0 . q.e.d.

LEMMA 8. Let R be a rotation of (S1 x [0, 1], ̂ 7) along the Sι-factor.
Then Σ(R) is equivalent to ^(id x /) for some f in DiffΞ[0, 1].

PROOF. We can construct (S1 x [0, 1], ̂ ) from a suitable g in
DiffΞ [0, 1]. By the assumption that ^\ is invariant under rotations along
the S^-factor, g can be imbedded into a 1-parameter family {gt} in
Diff̂ [0, 1], It is clear that the rotation R corresponds to some gu and
this gives the desired /. q.e.d.

LEMMA 9. Σ(0, 26) is foliated cobordant to the following foliation
on T = S1 x / x S1 x S1 U S1 x / x S1 x S1: We consider (S1 x /, ̂ T) x



384 G. OSHIKIRI

S1 x S1 on the first S1 x I x S1 x S1 and ΣtS1 x (I x S\ ^) on the second
S1 x I x S1 x S1, where b is a rotation of (I x S\ ^) along the S1-factor
and the last S^factor of the second S1 x I x S1 x Sι comes from the
identification of S1 x (I x S\ ^ ) x [0, 1] by b.

PROOF. By Proposition, we can regard 2X0, 26) as 2(0, 6) + Σ(Q, b).
First perform the ro*-surgery on (S1 x D\ Reeb) U (S1 x Ό\ Reeb) c (S3,
^ R ) U (S\ J^R), which are rotated by b in the construction of 2(0, δ)'s.
Next we perform the rf-surgery on the rest of (S1 x D\ Reeb)'s. By
Lemma 5, we can extend this foliated cobordisms to the foliated cobordism
between 2(0, 26) and the foliation on 214 stated in this lemma. q.e.d.

PROOF OF THEOREM 2: The case (S\ J^) continued. By Lemmas
6, 8 and 9, we have a foliated cobordism between 2(0, 26) and ^~(fu f2, Λ)
on T\ It is easy to see that this foliation ^(fl9 f, /8) satisfies the
assumption in Lemma 7. Hence we have 2T(0, 26) ^ 0. This completes
the proof.

PROOF OF THEOREM 2: The case (S3, J?^). The proof proceeds in
the same way, only Theorem (Fukui-Ushiki [3]) being replaced by the
following.

THEOREM (cf. [3]). The sequence

1 -> LD(S3, jPς)0 -> FD(S3, ^ ) 0 -> S1 x S1 x DiffΞ [0, 1] -> 1

is split exact.

Note that DiffΞ [0, 1] is perfect (see Sergeraert [17]). From these we
have the desired result. q.e.d.

4. Proof of Theorem 3. The following lemma shows that the ele-
ments in FD(ikf, &~\ are considerably restricted.

LEMMA 10. Let fu t e [0, 1], be a path in FD(M, ̂ \ connecting f
and idM. If there is a tf e [0, 1] such that f>(L) Φ L, then the holonomy
H{L) of L is trivial.

PROOF. This follows easily from the fact that H(ft(L)) = H(L) for
any t. q.e.d.

For the detailed construction of (S3, J^Z), we refer the reader to
Tamura [19, Chap. 8]. In the following we assume that the toral leaves
of Reeb components are discrete, since the same method gives the proof
in the case where some toral leaves of Reeb components are of the form
T2 x {t}, t 6 [0, 1]. Excepting this assumption, we use only the following
two properties of (S3, <JQ which seem to be well-known (cf. [20]).
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(P. 1) Set E - S3 - "all mt{Sι x Ό\ Reeb)'s". Then the union of
leaves L with H(L) Φ 0 is dense in E.

(P. 2) On the neighborhood U of dE in E, where U = U t i T2. x [0, 2),
there are smooth non-vanishing closed 1-forms ωlf •••, ωfc on T2, •••, Tf,
respectively, and a smooth function h(t) on [0, 2) with h(t) = 1 for ί ^ 1,
dh/dt > 0 on (0, 1), and hit) = exp(-l/£2) on a neighborhood of 0 in [0, 2),
such that J^a IU is equivalent to the foliation given by the 1-form h(t)ωt +
(1 — h(t))dt on T\ x [0, 2) for each ίe{l9 •••,&}, where we consider α)* to
be lifted canonically onto T\ x [0, 2).

LEMMA 11. For any / e F D 0 , ίΛe? e is αw / ' e F D 0 such that f'\E =
iάE and f'°f~ι e LD0.

PROOF. By Lemma 10 and (P. 1), we have f\Ee LD0 \E. By a result
of [2] and [3], f\{Sι x D\ Reeb) is isotopic in LD0 to a diffeomorphism
g satisfying g \ 3(SX x D2) = id. Define / ' by

id^ on E

g on M — int E .

Then / ' clearly satisfies the required conditions.

By Lemma 11 and Proposition, we may assume that / is the identity
map except on one Reeb component (S1 x D\ Reeb). On this (S1 x D2,
Reeb) we have f\ T2 = idr2, where T2 = S1 x 3D2. Now we fix one Reeb
component and consider / restricted to it. We also denote this restric-
tion of / by the same letter. Further, we fix a foliation-preserving
flow {φt; t e R} transverse to leaves in i n t ^ x D 2 ) and stational on T2 (cf.
Fukui [2]). We also assume that φt has a closed orbit S1 x {OJcS1 x D2

and that ^ J S 1 x {0} is a rotation by an angle t for each t, where we
identify S1 with R/Z.

First we show that / can be isotoped to φt for some t by elements
in LD(S1 x D2, Reeb)0, which are the identity on Γ2. In the following
we denote FΌiS1 x D2, Reeb)0 by PD(Λ)0, LDCS1 x D2, Reeb) by LΌ(R)
and so on. Set FD(3) = {g eFΌ(R)0: g\ T2 = idr2}. Then / belongs to
FD(3). Also set LD(d)0 = PD(3) Π LD(i2)0.

LEMMA 12. The following sequence is exact and the homomorphism
a defined by oί(f) = f\T2 is a locally trivial fibration:

1 — FD@) -> FΌ(R)0 ̂  Diffΐ (Γ2)0 -> 1 .

PROOF. The exactness follows at once from the definition and the
second statement is proved by the same argument as in [2] and [3].
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LEMMA 13. FD(3) is contractible, hence is connected.

PROOF. By Lemma 12, we have the homotopy exact sequence:

> TΓ^FDCKU > ^(Diff^Γ2),,) > ττo(FD(3)) • 0 .

I I

By [2] and [3], TΓ^FD^O) is isomorphic to Z 0 Z and it is easy to see
that the map # is an isomorphism. Thus we have ττo(FD(9)) = 0. The
contractibility easily follows from this and the fact that TΓ^FDCR),,) =
^(Diffϊ(Γ2)0) = 0 for i ^ 2. q.e.d.

We identify {^}cFD(a) with R, and {φn}neZ with Z.

LEMMA 14. The following diagram is commutative and exact for
horizontal lines, and β and y are locally trivial fibratίons:

0 > L > FD(3) — S1 > 1

0 >Z >R

where <=̂  means the canonical inclusion, β(f) is a rotation e SO(2) on the
leaf space of (S1 x int(Z)2), Reeb) which is diffeomorphic to S\ y is the
restriction of β to R and L = Ker(/3).

PROOF. Similar to that of Lemma 12 (cf. [2], [3]).

LEMMA 15. In Lemma 14, Z^L is a homotopy equivalence.

PROOF. We call a small neighborhood V of T2 in S1 x D2 nice if we
can identify V with Γ2 x [0, 1) by using flow ψt. Note that any g in
Diff+(Tr2)o can be lifted to a diffeomorphism of a nice neighborhood. Let
^ be the set of all / eL such that the restriction of / to some nice
neighborhood is a lifting of idΓ2. We know that £f ^ L is a homotopy
equivalence (see [2], [3]). Thus we have only to show that Z ^ ^ is a
homotopy equivalence. On the other hand, it is easy to show that £f
is homotopy equivalent to Z x LS(S\ D\)9 where Z/(S2, D+) is the smooth
loop space of Diff+(S2, D\), and we know that Diff+(S2, D\) is contractible
(see [2], [3]). Hence we have the desired conclusion.

Let /eFD(3). Take φt with β(f) = y(φt). Then φi'ofeL and L is
homotopy equivalent to Z. Hence we have φiλ°f = φn up to LD(3)0, i.e.,
f •= φt for some t up to LD(3)0. Thus we have proved
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LEMMA 16. For any /eFD(S 3, j ^ ) 0 we can choose f e FD(S3,
so that f = f in LD(S3, JK)o, /'!•# = id* and that f | (S1 x D\ Reeb)
is ^wew by some φt for each (S1 x D\ Reeb).

PROOF OF THEOREM 3. To prove Theorem 3, we have only to show
that Σ(f') ~ 0 for / ' in Lemma 16. Note that we may assume that / '
is the identity outside one Reeb component and that / ' is a φt on this
Reeb component. We denote / ' by φt or /.

First we cut off the Reeb component from (S3, ̂ 1 ) . For this purpose
we will define a foliation jF~' on S3. Set X = S3 - intCS1 x D\ Reeb).
Then, by hypothesis, f\X= idx. We fix a neighborhood V = T2 x [0, 6)
of dX = T2 in X. We may suppose that J^a \ V is given by the 1-form
k(t)ω + (1 — k(t))dt, where ω is the closed 1-form on T2 given in (P. 2),
and k(t) is the smooth function on [0, 6), which is the trivial extension of
h(t) in (P. 2), i.e., kit) = 1 for t e [1, 6). Hereafter we use the same letter
ω for the canonical lifting of ω onto T2 x [0, 6). We may assume that
the foliation on T2 given by ω is not the inverse images of the trivial
fibrations p^. T2 —> S1, where pt is the natural projection onto the i-th
factor for ΐ = 1, 2 (see Remark below). Now we define &~' on S3 =
S 1 xi) 2 UΓ 2 x[0,3]US 1 xS 1 x[3,4]UΓ 2 x[4,6)UX*, where X* = X-V,
as follows. On S1 x D2 we consider the Reeb component. On T2 x [0, 3]
we consider the foliation defined by the 1-f orm n(t)ω + (1 — n(t))dt,
where n{t) = h(t) on [0, 2] and nit) - h(S - t) on [2, 3] (see (P. 2) for hit)).
On S1 x S1 x [3, 4] ^ S1 x S1 x [0, 1], we consider S1 x (S1 x [0, 1], J ^ ) ,
where the Sx-factor of ^ is the same as that of S1 x D2. On T2 x
[4, 6) = T2 x [0, 2) we consider the foliation given by the 1-form h(t)ω +
(l-h(t))dt (see (P.2)). On X* we consider ^l\X*. These define a
foliation ^' on S\ It is easy to show that (S3, ^~a) is concordant to
(S3, ^~'). Now we can perform the ro-surgery on S1 x S1 x [3, 4], which
gives the foliated cobordism between (S\ J Q and (S'xS2, Jr*) + (S\ ^ ) ,
where (S1 x S2, <^*) is given as follows. Decompose S1 x S2 into S1 x
D2Ό S1 x S1 x [0, 3] U S1 x D2. On S1 x D2's we consider the corresponding
Reeb foliations, and on S1 x S1 x [0, 3] we consider the foliation given
by the above 1-form n(t)ω + (1 - n(t))dt. Then <pt acts on (S1 x S2, ^~*)
as a rotation on one of the Reeb components and acts trivially on (S3.
^ ) . Thus we have only to show that Σ<Pt(S1 x S2, ^ * ) - 0.

Regarding ί as 2ί', we will show that Σ(φt>) + Σ(φt>) ~ 0. We per-
form the ro*-surgery on the Reeb components where φt, acts nontrivially.
Then by Lemma 5, we may only consider the suspended foliation of the
resulting foliation _^r** on S1 x S2, which is given as follows. Decompose
S1 x S2 into S1 x D2 U T2 x [0, 3] U T2 x [3, 4] U T2 x [4, 7] U S1 x D2. On
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S1 x D2's we consider the Reeb components, on T2 x [0, 3] the foliation
defined by n(t)ω + (1 - n(t))dt, on T2 x [4, 7] = T2 x [0, 3] we also con-
sider the same foliation and on T2 x [3, 4] = S1 x S1 x [0, 1] we consider
S1 x (S1 x [0, 1], ̂ ) , where the ^-factor of ^ is the same as that of
S1 x D2. Then ?v acts on (S1 x [0, 1], ̂ ) fixing the boundary. We
define a foliation &~" on S1 x S2 as follows. Decompose S1 x S2 into
S1 x D2 U T2 x [0, 7] U S1 x Z>2. On S1 x Z>2's we consider the Reeb com-
ponents, and on T2 x [0, 7] the foliation defined by the 1-form m(t)ω +
(1 - m(t))dt, where m(ί) = h(t) on [0, 2), m(ί) = Λ(7 - ί) on [6, 7] and
m(ί) = 1 on [2, 6]. It is easy to show that (S1 x S2, ^~**) is concordant
to (S1 x S2, ^~"). Indeed, let φ: T2 -> S] x S2 be an imbedding transverse
to &~"y whose image is T2 x {7/2} c f x [0, 7] c S ι x S2. Then the same
technique as the (/-modification gives the desired concordance (cf. §3).
As φv fixes the boundary of S ^ ^ x J Ό , 1], _ ^ ) , we can naturally extend
9V to the foliated manifold which gives the concordance between (S1 x
S2, ^**) and (S1 x S2, ^n), so that φv acts trivially on (S1 x S2, ^^")
(cf. §3). Hence we have Σ(φt) - Σ(φt.) + ^(^O — 0. q.e.d.

REMARK. In case ω — pfdθ, where dθ is a volume element of S1,
we must consider the following two situations. The first is as in (S3, ^B)
and this case is reduced to Theorem 2. The second is as in (S1 x S2 =
S1 x D2 U S1 x D2, two Reeb components). This foliation is concordant
to (S1 x S2, {{x} x S2}ice,si) and φt can be extended to the concordance
with the trivial action on the last foliation. Thus these cases give no
exceptions.

5. Proof of Theorems 4 and 5 and Corollary. First recall the con-
struction of (s(M3), sa{jT)) from {M\ ^~) (cf. Oshikiri [14]). Let S1 be
a closed curve in M3, which is transverse to _^7 with a trivial tubular
neighborhood S1 x D2. Along S1 x dD(l/2)2, where D(l/2)2 is the 2-dimen-
sional disk with radius 1/2, we wind the leaves of «J*C Then we have
a foliation on ikP - int(S] x D(l/2)2). On S1 x Z>(l/2)2 we consider the
foliation (S1 x D(l/2)2, ̂ a) = (S3, ̂ ^*) - intίS1 x D2, Reeb), where ^ ^ *
is one of ^~B, ^ R and ^~a. Thus we have a foliation sa{^) on s(ilί3) =
(ikf3 - ^ ( S 1 x D(l/2)2)) U (S1 x D(l/2)2), where we identify d(M3 - int(Sx x
D(l/2)2)) - S1 x 3D(l/2)2 with ai)(l/2)2 x S1 canonically.

PROOF OF THEOREM 4. We give only a sketch of the proof, because
all the techniques involved are found in [2], [3] or in the preceding proofs.

Set E = S1 x D2 - inttS1 x Z>(l/2)2), where S1 x D2 is the tubular
neighborhood of the closed curve S1 along which the surgery is performed
(see the above construction). Then we can regard E as a subset of both
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ikΓ and s(M3). Note that E ̂  S1 x [1/2, 1] x S1 and ββ(jr) \E=(S1x [1/2, 1],
βέf) x S1, where 3έf is the half part of i ^ on S1 x [0, 1]. Set FD(£) =
{/e FD(s(ikf3), 8a(^~)\: f(E) = E}. Then it is easy to show that the
inclusion FΏ(E) ̂  FD(s(ikf3), sa(^))0 is a weak homotopy equivalence.
Also set FD(gf) = {/ eFΌ(E): f\E is a rotation of # = (S1 x[1/2, I D X S 1

along the first Sx-factor}. Note that rotations of E along the last S1-
factor can be extended to elements in LD(s(ikf3), sa(^))Q.

Let FD(if )0 be the identity component of FD(ίf). Then the theorem
holds for elements in FD(gf )0. Indeed, let / e FD(gf)0. Then the following
construction gives the desired g e FD(M3, ^\\ As / | E is a rotation of
E, we can cut off new (S1 x D(l/2)2, j ^ ) from s(M3) along 3(5' x D2)adE
by the same method as in the proof of Theorem 3. Define g e FD(ilί3, J^)
by g\s(M3) - intiS1 x D2) = f\s(M3) - int(Sι x D2) and g\Sλ x D2 = the
rotation given by /. Obviously g is well-defined. It is also clear that
g e FD(M3, JHo Indeed, the isotopy /,: / = ids(Jf) belonging to FD(gf )0 can
easily be deformed to the isotopy gt: g ^ id^ in FD(ikf, &~\. The same
method also gives feGFD(S3,^)0. It is clear that Σf(s(M3), sa(^)) -
^(M 3 , ^ ) + i;,(S3, . ^ * ) . By Theorems 2 and 3, Σh(S\ J^*) - 0. Thus
the theorem follows.

Let / 6 FD(s(ikF), sa(^))0. Then it is easy to show that / can be
deformed into / ' e FΌ(E) by elements in LD(s(ikf3), sa{^)\. By Proposi-
tion, Σ(f) — Σ(f). Let {ft} be an isotopy between / ' = fx and ids(3f) = / 0 .
Then there is an isotopy {/̂ J in FD(J^) between / ' = hγ and ids(Jf) = h0,
because FD(JE') ^^ FD(s(M), sa(^~))Q is a weak homotopy equivalence.

Let ^eFD(J?). Then the same argument as in [2, Lemma 1.9] shows
that g\E is a rotation along the Sx-factor of S1 x [1/2, 1] up to LD(s(M3),
β«(^))o Thus, considering the motion of E by {/&J, we get a path {grj
in LD(s(ikP), sa{^)\ such that the path {gΐ^ht} belongs to FΌ(&)0, i.e.,
^eLD(s(M3), 8 β (^)) 0 and i/r 1 ^ = ̂ o / ' eFD(g^)0.

As we have proved Theorem 4 for FD(g?)0, we have a g e FD(ilί3, ^"*) 0

such that Σigϊ'of) ~ Σ(g). On the other hand, Σig^of) ~ Σ(f) -
Σ(g,) - Σ(f), because gγ e LD(s(ikf3), sa{^)\ and J(/') - Σ(f). This com-
pletes the proof.

REMARK. The same argument gives the proof of the following
statement (see §3 for σφ{^))\ For each / eFD(M"3, σψ{^)\, there exists
age FD(M3, ̂ \ such that Σf(M\ σψ{^)) - Σg{M\ ^).

PROOF OF COROLLARY. By Theorem 4 and Proposition, we have
Σf(s(M3), sα{^)) ~ Σ9{M\ ̂ T)~0 q.e.d.

PROOF OF THEOREM 5. As (ikf3, ^ s ) is obtained from some bundle
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foliation by performing surgeries with (S3, J^*) = (S3, , JQ (cf. [2], [14]),
we have Σf(M3, J Q ~ Σg(N\ Bundle foliation) - 0 for / e FD(M3, J Q O

by Theorems 1 and 4. q.e.d.

6. Concluding remarks. First we give the promised examples. Let
n = 4k + 2 with k ^ 2. Then there exist a codimension 1 foliation (Mn,
^ H , which is null-cobordant in ^Ω^ri), and an / eLΌ(Mn, ά^) such that
Σf(M, J H is of infinite order in J^Ω^n + 1). Indeed, let (S3, J Q be
the foliation with gv(^a) = a Φ 0 constructed by Thurston [20]. We use
the following theorem.

THEOREM (Neumann [13]). Let M be a closed oriented smooth manifold.
Then M is oriented cobordant to a manifold which is the total space of
a fiber bundle over S1 if and only if the signature of M is zero. More-
over, we can make the fiber null-cobordant.

For each k 7> 2, Ker(sign: Ω4k —• Z) contains elements of infinite order.
By the above theorem, we can represent such an element by Mik which
is the total space of a fiber bundle over S1 with null-cobordant fiber F.
Then M = F x [0, ΐ\/(x, 1) - (h(x), 0) for some h eΌifΐ+(F). It is clear
that F x (S3, ^ ) - 0 a n d I x (S3, J Q - Σhxiά(F x S\ F x J Q . We
show that Af x (S3, J^a) is an element of infinite order. Note that
i2* (BΓJ ®Q = H* (BΓi; Q) (x)<>(£* (x) Q) (see Stong [18]). If g: S3 -> BΓ,
classifies the foliation (S3, ^l), then the element on the right hand side
of the above formula, corresponding to I x (S3, *^Q, is of the form
• @g*[S3] (x) [M]Q@ , where " 0 " means the direct sum. As [M]Q =
[M] (x) 1 and g*[S3] are elements of infinite order, we have a desired
example.

Next we give some properties of J^~(fly •••,/*), whose proofs are
omitted because they are easily proved. In the following, we assume
that all the //s in *^~(fu •••,/«) commute with each other.

(a) &~(fu - , M , , Λ ) ~ ^ ( / i , •••,/„•• , Λ )

(b) ^ ( / , , •••,/„•• , Λ , , Λ ) - ~^{fu ••-,//,••
(c) ^ ( / , , ••-,/•) = ^{hofλoh~\ ., Λo/nofc-i) for fe
(d) -^(/x, •••,/*,•••,/•)- ^ ( / . , , /f l o Λ •,/•)•
(e) In particular, ^^(Λ, , /, , /, , fn) - 0. Note that (b)

means ^~(flf •••,/, ••*,/, , Λ) only to be of 2-torsion.
We also give some information on ^~(f, g) on Γ3 (cf. Tsuboi [23]).

PROPOSITION. Set N = {f eΌifί^iS1): J^if, g) ~ 0 for all gec(f)},
where c{f) = {g e Diff+ίS1): /o r̂ = βro/}. Γfê ^ ^β have:
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(1) feN implies f-1 eN.
( 2 ) gNg-1 = N for g e Diff^S1).
( 3 ) SO(2) c 3SΓ.
( 4 ) N contains an open dense set.

PROOF. (1) and (2) are clear. (3) follows at once from Theorem 2.
(4) follows from the property (e) above and the result of Kopell [7] to
the effect that the set {/ eDiff^S1): c(/) = {fm:meZ}} is open dense.

q.e.d.
Finally, we pose some questions.
(1) Do we have Σf(Mn, J^) ~ 0 for f e FD0?

In particular,
( 2 ) Do we have Σf(T\ ^) ~ 0 for f e FD(T2, J^)ol

This is related to [16, Question 3]. This is also related to:
( 3 ) Is ^~(f, g) null-cobordantΊ

In general,
( 4 ) Is J^(flf , fn) null-cobordanϊ!
( 5 ) If fe PD(Λf , J H ΓΊ Diff+(MW)O, then do we have Σf{M\ J H ~ 0?
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