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1. Introduction. Fefferman [3] has developed a theory of Fourier
analysis using the notion of entropy. He showed in particular that
entropy arguments are useful to investigate several problems in Fourier
analysis which occur near L'-space, e.g., the Zygmund class L log*L.

In this note we shall prove that if the entropy of f in [—=z, ] is
finite, then the partial sums of the Fourier series of f converge a.e.
Our proof depends essentially on Carleson’s famous theorem in [2]. On
the other hand, we shall give a function whose entropy is finite but
which does not belong to Llog™Llogtlog™L or the L'-Dini class. This
fact will be interesting if we recall Sjolin’s theorem which implies that
if feLlog*Llogtlog*L, then the Fourier series of f converges a.e.

Our result will be extended to the Riesz-Bochner means of the Fourier
series of a function of several variables. Let Q@ = {x = (&, - -+, )| —7 <
z; < w} be the fundamental cube in R’ For a set SC@Q the entropy
E(S) of S is defined by

ES) = inf Z |Q,|log|@, ],

where Q, are subcubes of Q, and the entropy J(f) of a nonnegative func-
tion f is defined by

1) = " Blze@| 5@ > Wir .

For these definitions and basic properties of E(S) and J(f) we refer to
Fefferman [3]. Furthermore we define the L'-Dini class as the class of
functions which have the finite L'-Dini norm || f|/,: defined by

170 = 11 s+ ALE =L gagy
@ |z —yl
Fefferman [3] has proved that if f belongs to the L'-Dini class, then
J(f) is finite, and if J(f) is finite, then f is in the class L log*L(Q).

2. Theorem. Let d =1 and let f be an integrable function on Q.
The spherical Riesz-Bochner mean of order o of f is defined by
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Si(z, f) = WE(:‘R (1 — |n[R*) a6 ,

where a, — (2n)—dg f@e*dz. If d=1, then Sy, f) coincides with
Q
the partial sum of the Fourier series of f.

THEOREM 1. Let a = (d — 1)/2 (d = 1) be the critical index. If J(f)
18 finite, then

(2.1 Lim Si(x, f) = f(x)
holds a.e.

To prove Theorem 1 we need the following lemmas which are given
in [2], [3], [4], [5], and [7].

LEMMA 1 (Fefferman [3]). If J(f) is finite, then f belongs to L log*L.
LEMMA 2. (1) If f is essentially bounded, then the relation in
(2.1) holds a.e.
(2) For f in LlogTI(Q) we have
lim | 1S3, /) — f@)ldz = 0.
R JQ

See Stein [4] when d = 2 and Carleson [2], Zygmund [7] when d = 1.
LEMMA 3 (Stein [5]). For f in Llog*L(Q), let g(x) = f(x) for x€@Q
and g(x) = 0 otherwise. Let
ox(x, 9) = (2m)™ SM Hy(y)9(@ — v)dy ,

where Hy(y) = ¢,RV*Jy_1n(Rly )y with ¢, = 297V2((d + 1)/2)(2m)*".
Then limg.., Si(x, f) — ox(x, 9) = 0, uniformly in x€G, where G is any
closed subset in the interior of Q.

PROOF OF THEOREM 1. We assume S fde =1 and f=0. By the
definition of entropy we can select cubes Q7 in such a way that

freQ|2" < flx) < 2"+1}CkLZJIQL' ,
and -
é Q7 |log| @7 £ E{r e Q2" < f(w) < 2} 4 27,

From this we have
(2.2) “2231 %2"@2]108’[@2]"1 = AJ(f) .
Set E;, = {reQ|limsup, .. |S%(x, f) — Si(x, f)| >A}. We shall show
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| E;| = 0 for any positive n. Let f¥x) = f(x) if f(x) = 2" and f¥(x) = 0
otherwise. Let fy = f — f¥. Then

Si(x, f) = Si(x, fy) + {Sk(x, ) — ox(x, gM)} + ox(x, g"),

where ¢g¥(x) = f¥(x) for x € @ and g"(x) = 0, otherwise. By (1) of Lemma
2, lim sups.. Si(x, fy) = liminf, .. S§(x, fy) a.e. Since f* belongs to
Llog"™L by Lemma 1, we also have limg.. {Si(z, f¥) — gz(x, g")} =0
a.e. by Lemma 3. Let Fy = U,:x Ui 8QF. Since we can make |Fly|
as small as we wish, it suffices to consider the measure of E, =
{xeQ — Fy|lim sup; z_..|0z(®, g¥) — 0,(x, g¥)| > A} for a large but fixed
N. By a basic property of Bessel functions, we have |H,(%)| < ¢/|y|*.
Therefore it follows that

sup |04z, 9)| < o| 3} 32— L .
R>0 n=N k=21 e — y|
Thus
S sup |o(x, g")|de < 3, 62"8 S _dady
@-Fy R nzN k=1 zeQ-Fy Jue@h |2 — Y|
<c¢3 3 2n§ S _dody
RZN kzl zeQt Jyco-sel |x — y|°

A

¢, > 2" Q¢ [log|@Qr|™ .
AZN k=1

Therefore |E,| < (¢/N) Say Sus: 2" Q2 |log|Qz*.  Thus we conclude
|E;| =0 by (2.2). This means the relation in (2.1) holds a.e. by Lemma
1 and (2) of Lemma 2.

COROLLARY 1. If f s im the L'-Dini class, the relation in (2.1)
holds a.e.

This corollary follows from a theorem in Stein [5] which depends on
a theorem of Bochner in [1]. We get this result from Theorem 1 and
Lemma 4 below, which can be shown similarly as in [3], without refer-
ring to a result in [1].

LemMMA 4 ([3]. J(f) = ¢l fllo-

3. Remark. In this section we shall construct a function f on
[—z, =] which has finite entropy, but which deos not belong to both the
class Llog*Llog*logtL and the L!-Dini class. Thus our theorem is not
included in the theorem of Sjolin cited in Introduction. See [6].

LEMMA 5. Let f be a non-negative function of the form f =3, a;Xz,,
U.E.=[—-=n,7l, E.NE; =@ ifk+j. If there exists a constant ¢, > 0
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such that |f(x) — f(y)| = e,.f(x) for xe E; ye E,, with j+ k. Then it
follows that

I

|| O =T giy 2 @S| | @) — 20| 220

dxdy
|l — ¥y

="zl

PROOF. The left hand side equals

S I AT (PSS, S SR ER TP

|z — vl ¥ lz — vl

By our assumption the last term is not smaller than

I DA N ORI R

lz —y|

verp |2 — y|

Let J be an interval [0, a] and

[a/(1003)}—1

S;= U [100mé, (100m + 1)6], where a,d > 0.

m=0

Then we have |S;| ~ |J| = a and

[V 170@ — @) 25 > a log(als) .
" oz —yl

Let J, and S;, be the sets J and S, with a = 27*k*(log k)™* and ¢ = a2,
Furthermore, we translate J, and S, so that J;NJ, = @ (j # k). Put
f = 202X, . Then we have that || f ||, = c by Lemma 5 with ¢, = 1/2.
By a direct computation

Sflog*f logt log* fdx = oo .

On the other hand, the finiteness of the entropy of f is obvious.
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