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1. Introduction. Fefferman [3] has developed a theory of Fourier
analysis using the notion of entropy. He showed in particular that
entropy arguments are useful to investigate several problems in Fourier
analysis which occur near ZZ-space, e.g., the Zygmund class Llog+L.

In this note we shall prove that if the entropy of / in [—π, π] is
finite, then the partial sums of the Fourier series of / converge a.e.
Our proof depends essentially on Carleson's famous theorem in [2]. On
the other hand, we shall give a function whose entropy is finite but
which does not belong to L \og+L log+log+L or the ZΛDini class. This
fact will be interesting if we recall Sjolin's theorem which implies that
if / e L \og+L log+log+L, then the Fourier series of / converges a.e.

Our result will be extended to the Riesz-Bochner means of the Fourier
series of a function of several variables. Let Q = {x = (xlf , xd)\ — π <
%i S π} be the fundamental cube in Rd. For a set S dQ the entropy
E(S) of S is defined by

E(S) = inf

where Qk are subcubes of Q, and the entropy /(/) of a nonnegative func-
tion / is defined by

J(f) = S~E({xeQ\f(x) > X})dX .
Jo

For these definitions and basic properties of E(S) and J(f) we refer to
Fefferman [3]. Furthermore we define the ZZ-Dini class as the class of
functions which have the finite ZΛDini norm \\f\\Di defined by

Fefferman [3] has proved that if / belongs to the ZΛDini class, then
J(f) is finite, and if J(f) is finite, then / is in the class Llog+L(Q).

2. Theorem. Let d ^ 1 and let / be an integrable function on Q.
The spherical Riesz-Bochner mean of order δ of / is defined by
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S%(x,f)= Σ ( l - | n
\n\<R

where an = (2π)~d [ f{x)e~inxdx. If d = 1, then S£(a, /) coincides with
JQ

the partial sum of the Fourier series of /.

THEOREM 1. Let a = (d — l)/2 (d ^ 1) be the critical index. If J{f)
is finite, then

(2.1) limSS(a?,/) = /(«)
β-+oo

holds a.e.

To prove Theorem 1 we need the following lemmas which are given
in [2], [3], [4], [5], and [7].

LEMMA 1 (Fefferman [3]). If J(f) is finite, then /belongs to Llog+L.

LEMMA 2. (1) If f is essentially bounded, then the relation in
(2.1) holds a.e.

(2) For f in L \og+L(Q) we have

limί \S'R(x,f)-f(x)\dx = 0.
R-+ oo JQJQ

See Stein [4] when d ^ 2 and Carleson [2], Zygmund [7] when d = 1.

LEMMA 3 (Stein [5]). F o r / in L log + L(Q), ίβί 0(a) = fix) for xeQ

and g(x) = 0 otherwise. Let

σB(x, g) = (2π)~d \ HR(y)g(x - y)dy ,

where HB(y) = cQR^Jd_UR\y\)\y\~M/2 with c0 = 2^1)/2Γ((d + l)/2)(2ττ)rf/2.
Then lim^oo S%(x, f) — σB(x, g) = 0, uniformly in xeG, where G is any
closed subset in the interior of Q.

PROOF OF THEOREM 1. We assume I fdx = 1 and / ^ 0. By the

definition of entropy we can select cubes Ql in such a way that

{xeQ I 2n ^ f(x) < 2n+1}a\JQl,

and

Σ I Ql I lofirl Ql I " 1 ^ E{{x eQ\2n^ f(x) < 2n+1} + 2~2n .

From this we have

(2.2) Σ Σ 2"| Q; I log| Ql I"1 ^ AJ(/) .

Set £"; = {xeQIlimsupr,^ \S%(x, f) - Sa

τ(x, f)\ > λ}. We shall show



ENTROPY 595

IEλ\ = 0 for any positive λ. Let fN(x) = f(x) if f(x) ^ 2N and fN(x) = 0
otherwise. Let fN = f - fN. Then

SS(a, / ) = SB(x, fN) + {S%(x, fN) - σB(x, gN)} + σR(x9 gN) ,

where gN(x) = fN(x) for a? 6 Q and gN(x) = 0, otherwise. By (1) of Lemma
2, lim sup^co S%(x, fN) = lim i n f ^ S%(x, fN) a.e. Since fN belongs to
Llog + L by Lemma 1, we also have lim^^ {SR(x, fN) — σB(xf gN)} = 0
a.e. by Lemma 3. Let FN = \Jn^N Ufĉ i 8Q? Since we can make |2<V|
as small as we wish, it suffices to consider the measure of Eλ =
{xeQ - Fy|limsupΓ i Λ_ ookΛ(α5, gN) - στ(x, gN)\ > λ} for a large but fixed
N. By a basic property of Bessel functions, we have \HR{y)\ <̂  c/\y\d.
Therefore it follows that

> ^ ) l ^ c ( Σ Σ 2 ^ ; ( l l ) , ^ „ •

Thus

( sup |σΛ(a;, flr^)|dα; ̂  Σ Σ c2n

JQ-FN R n^N fc2UJ ρ _ F i V Λ - • " • ' - ^NkΈl JxeQ-FN JyeQl\X - y\d

V 9.n dxdy

Therefore \Eλ\^ (c/λ) Σn^iv Σ ^ i 2n |Q?|log|Q?I"1. Thus we conclude
\Eλ\ = 0 by (2.2). This means the relation in (2.1) holds a.e. by Lemma
1 and (2) of Lemma 2.

COROLLARY 1. If f is in the U-Dini class, the relation in (2.1)
holds a.e.

This corollary follows from a theorem in Stein [5] which depends on
a theorem of Bochner in [1], We get this result from Theorem 1 and
Lemma 4 below, which can be shown similarly as in [3], without refer-
ring to a result in [1],

L E M M A 4 ([3]). J{f) ^ c\\f\\Du

3. Remark. In this section we shall construct a function / on
[ — 7Γ, π] which has finite entropy, but which deos not belong to both the
class L Iog+L log+log+L and the L'-Dini class. Thus our theorem is not
included in the theorem of Sjδlin cited in Introduction. See [6].

LEMMA 5. Let f be a non-negative function of the form f = Σ& αΛ^,
\JkEk = [ — π, π], Ek Π Es — 0 if k Φ j . If there exists a constant cι > 0
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such that \f(x) — f(y)\ ̂  cxf(x) for xeEd yeEk, with j Φ k. Then it
follows that

\X — y\ k

PROOF. The left hand side equals

\
eEk Jyej&JEk JyeEj \χ — y\ k JχeEk Jyej&J \X — y\

By our assumption the last term is not smaller than

\ c7^^τdxdy = (cJ2)Σ,ak[ [ \lEk{χ) -
JyeEί \χ — y\ J -π J -π Λ

I I C \ X/—/ ^ ' " / C I 1 Hik\"/ ϋ ^ V C / I I i

Let J be an interval [0, a] and

Sδ = aιa°(j] * [lOOmδ, (100m + l)δ] , where α, δ > 0 .
m=0

Then we have \Sδ\ ~ \J\ = a and

I \ I Xs(x) - XSδ(y)\}

 X V ^ ca log(a/δ) .
J-^J-^ δ \x — v

Let Jk and Sδje be the sets J and Sδ with α = 2-*λr2(log k)~2 and S = α2~2\
Furthermore, we translate Jk and SδA. so that J3 (Ί J* = 0 (j Φ k). Put
/ = Σfc^2o2fc%5δ . Then we have that | | / Ĥ i = °° by Lemma 5 with cx = 1/2.
By a direct computation

\ / log+/ log+ log+/^^ = °°

On the other hand, the finiteness of the entropy of / is obvious.
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