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1. Introduction. In [6] we considered a martingale version of the
results in Coifman and Rochberg [1] under the condition that every
martingale is continuous. This continuity condition made it possible to
use the Varopoulos decomposition (see Varopoulos [7]) and to avoid some
technical difficulties caused by jumps of sample paths. In this note,
instead of the Varopoulos decomposition, we use the Herz-Lepingle
representation of BMO-martingales (see Lemma 2 below), which, combined
with the section theorem, enables us to remove the continuity condition.

The author would like to thank Dr. T. Sekiguchi for many helpful
comments.

2. Preliminaries. Let (Ω, F, P; (Ft)teB+) be a probability system
which satisfies the usual conditions. We assume that the reader is
familiar with the theory of general processes, especially the section
theorem and the martingale theory. In the sequel T denotes the Ft-
stopping time. Note that the constant C is not always the same in
each occurrence.

DEFINITION 1. A uniformly integrable martingale X = (Xt) is said
to be a BMO-martingale if ]|X||BMO = supΓess.sup2ί[|Xo — XT-\\FT] is
finite.

We denote by BMO the class of all BMO-martingales. BMO is a
Banach space with the norm || ||BM0.

The following lemmas are well-known. For the proof, see Meyer
[4] and [3] respectively.

LEMMA 1 (the inequality of John-Nirenberg's type). Let X be a
BMO-martingale, If a < 1/(8 ]| X||BMO), then #[exp α | X> - Xτ-111*V] < °°
a.s. for every T.

LEMMA 2 (the Herz-Lepingle representation). Let X be a BMO-
martingale. Then there is a non-adapted process B = (Bt) (not neces-

S oo

I dB81 ^ C for some constant C and (Jo) X* =
0

Aoo, where A is the optional dual projection of B.
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DEFINITION 2. A uniformly integrable martingale Y = (Yt) is said
to be a BLO-martingale if there is a positive constant C such that Yτ —
Yoc^C and \ΔYT\ ^ C a.s. for every Γ.

BLO denotes the class of all BLO-martingales and BLO+ the class
of all positive BLO-martingales. If Y is in BLO with a constant G,
then I ]Γ | |BMO^3C.

DEFINITION 3. A positive uniformly integrable martingale W—(Wt)
is said to be in the class A1 (or satisfy the Aj-condition) if there is a
positive constant C such that Wτ/Woo ^ C a.s, for every T, and is said
to be in the class S+ (or satisfy the S+-condition) if there is a positive
constant C such that WτjWτ- <̂  C a.s. for every T.

The following lemma is due to Doleans-Dade and Meyer [2].

LEMMA 3 (the reverse Holder inequality). // W is in A1f]S+

t

then there are positive constants ε and C such that E[WL+ε\Fτ]f^CW}+~
α.s. for every T.

3. Theorems.

THEOREM 1. Any "ΆMO-martingale X can be written in the form

X = Y1 - Y2 ,

where Yι (i = 1, 2) is in BLO+.

THEOREM 2. X is in BMO if and only if there is a positive con-
stant at (i = 1, 2), a uniformly integrable martingale Mt (^1) with
E[(M*yi\Ft]eS+ for some 0 < δt < 1 (ϊ = 1, 2) and a bounded random
variable K such that

X^ = a, log Jkf* - α2 log M2* + K

where Mt* = sup, \Mt(t)\ (i = 1, 2).

4. Proof of Theorems.

PROOF OF THEOREM 1. Take a process B in Lemma 2 corresponding
to X and consider the Jordan decomposition of B: B — B1 — B2, where
Bί (i — 1, 2) is an increasing process. Denote by Ai the optional dual
projection of Bι and put Yf = E[Ai\Ft]. Clearly A1 is increasing, Xoo =
YL — Yl and 7* is a positive martingale. Now we will show that Y1

and Y2 are in BLO. From the definition of the optional dual projection,
we can easily deduce JE

r[Ajo-Aι;_|FΓ] = £ r [Bi-β;_ |F Γ ] . Hence it follows
that
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Yi - YL - E[Ai\Fτ] _ AL = #[AL - A^_|FΓ] - (AL - A _̂)

^ #[AL - A)Γ_\FT] = E[BL - B^\FT]

= E[Bl\Fτ] ^ C a.s. for every T .

Furthermore we have

Yi = E[AL\FT] = A*Γ_ + E[Ai - A^\FT] - A*Γ_ + # [ # ί - # ί - | F Γ ]

and so A\^ ^ YT ̂  A*r- + C. Thus by the section theorem, we have

(1) A!_ ^ Yi ^ A!_ + C .

Since AL is left continuous, we also have

( 2 ) A!_ ^ YL ^ A!_ + C .

From (1) and (2), it follows that | z / Γ r | ^ C a.s. for every T. This
completes the proof.

For the proof of Theorem 2, we need the following.

LEMMA 4. Y is in BLO+ if and only if Wt = l?[exp aY^lFt] (^1)
is in At Π S+ for some a > 0. // we suppress the condition W ^ 1,
ίfeew Y is ϊw BLO.

PROOF. Let Y be in BLO+. By Lemma 1, there are positive con-
stants a and C such that i?[exp a \ Y^ — Yτ_ \ \ Fτ] ^ C. Hence by the
definition of BLO, £Ίexp aY^Fτ] ^ CexpαΓoo, that is, W is in Ax. By
Jensen's inequality, exip aYτ <^> E[exτρ aYoo\Fτ]. Then we apply the
section theorem and take the left-hand limits: exp αF._5ίCl?[exp aY^ |F.]_.
Hence Sfexp aY^ \ F.]/E[exip aY^ \ F.]_ ^ £[exp α 7 M | F.]/exp αY._. Since
^[expαΓoolF^/expαΓ^ ^ ^[expαlΓ^ - YT_\\FT] ̂  C, we see that W
is in S+. It is clear that W ^ 1.

Conversely assume that T7 is in Ax fl S+ for some α > 0. Since W
is in Ax, by Sekiguchi [5, Lemma 1] and the section theorem, we have
ElexvaYcolF.] ^ CexpαF.. Thus by taking the left-hand limits, we
have

(3) J^expαΓcoljF7.]. ^ CexpαΓ._ .

By the S+-condition and the section theorem, we also have

(4) E[exvaY^\F.] ^ OEr[expαΓ0O|i<7.]_ .

From (3) and (4), it follows that ElexpaY^F.] ^ Cexp α7._. Hence
by Jensen's inequality,

- YT-)\FT] ^ C .
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Therefore ΔYT ^ C a.s. for every T. On the other hand, by Jensen's
inequality and the Arcondition, we have

Thus expα(FΓ - Γoo) ^ C, that is, Yτ - ΓTO ^ C a.s. for every T.
Furthermore by the right continuity of Y, Y. — Y^ <; C. Taking the
left-hand limit and conditioning on F., we obtain — ΔYT <̂  C a.s. for
every T. If W ^ 1, then Y is clearly positive. This completes the
proof.

LEMMA 5. If W (*>1) is in A1ΓϊS+

f then there is a positive con-
stant <5, 0 < δ < 1, a uniformly integrable martingale M (^1) with
E[(M*)δ\Ft] eS+ and a martingale H bounded above by 1 and bounded
away from 0 such that W^ = (ikf*)5^. The converse, except that W^l,
is also true.

PROOF. By Lemma 3, there are two positive constants ε and C
such that E[Wi,+t\Fτ]£CWϊ+ε. Hence by the ^-condition, E[W^£\FT]^
CWL+S. Put Mt = E[WL+ε\Ft] (^1). Then from the above inequality
and the Holder inequality, it follows that

(1/C)(ilf *)1 / ( 1 + ε ) ^ Woo ^ (ilί*)1/(1+£) .

Thus if we put δ = 1/(1 + ε) and Ht = E[(M*yδW«,\Ft], then ^ =
(ΛP^iϊoo, 1/C ̂  H ^ 1 and jEr[(M*)5|jPt]eS+.

Conversely assume that TFoo = (ikf*)δϋr

00, where M, δ and ί ί satisfy
the above conditions. It is easy to see that WeS+. To show that
WeAlf we have only to treat the case when W^ = (ikf*)5. Now con-
sider a uniformly integrable martingale N. Then we know that

(for the proof, see Shiota [6, Lemma 4J). We apply (5) to the new
probability system Ω' = {T < co}, p' = P\Ώ,/P(Ωf), F't = Fτ+t and the
^/-martingale Mi = ikfΓ+ί — MΓ_ and then replace T by 2^ ( i e FΓ):

τ+t - Mr_ |a 12?V] ^ CE[\ M^ -

By this inequality, we have

E[swpMf+t\Fτ] ^

where M* = supt^Γ |M*|, and so
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Therefore W is in Ax.

Combining Lemmas 4 and 5, we have the following.

LEMMA 6. // Y is in BLO+, then there is a positive constant a, a
uniformly integrable martingale M (^1) with E[(M*)δ\Ft] eS+ for some
0 < δ < 1 and a bounded random variable H such that Y^ = a log M* +
H. Conversely if Yo, = a log M * + H, where α, M and H satisfy the
above conditions, then Y is in BLO.

Theorem 2 is clear from Theorem 1 and Lemma 6.
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