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1. Introduction. In [6] we considered a martingale version of the
results in Coifman and Rochberg [1] under the condition that every
martingale is continuous. This continuity condition made it possible to
use the Varopoulos decomposition (see Varopoulos [7]) and to avoid some
technical difficulties caused by jumps of sample paths. In this note,
instead of the Varopoulos decomposition, we use the Herz-Lépingle
representation of BMO-martingales (see Lemma 2 below), which, combined
with the section theorem, enables us to remove the continuity condition.

The author would like to thank Dr. T. Sekiguchi for many helpful
comments.

2. Preliminaries. Let (2, F, P; (F,),.r+) be a probability system
which satisfies the usual conditions. We assume that the reader is
familiar with the theory of general processes, especially the section
theorem and the martingale theory. In the sequel T denotes the F-

stopping time. Note that the constant C is not always the same in
each occurrence.

DEFINITION 1. A uniformly integrable martingale X = (X,) is said
to be a BMO-martingale if || X|suo = sup, ess.sup E[| X.. — X,_||Fy] is
finite.

We denote by BMO the class of all BMO-martingales. BMO is a
Banach space with the norm || ||gyo.

The following lemmas are well-known. For the proof, see Meyer
[4] and [3] respectively.

LEMMA 1 (the inequality of John-Nirenberg’s type). Let X be a
BMO-martingale. If a < 1/8| X | pyo), then Elexp a|X. — X, || F;] <eo
a.s. for every T.

LEMMA 2 (the Herz-Lépingle representation). Let X be a BMO-
martingale. Then there is a mon-adapted process B = (B,) (not mneces-
sarily unique) such that (a) S |dB,|<C for some constant C and (b) X..=

0
A, where A is the optional dual projection of B.
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DEFINITION 2. ‘A uniformly integrable martingale Y = (Y,) is said
to be a BLO-martingale if there is a positive constant C such that Y,—
Y.< C and [4Y,]| < C a.s. for every T.

BLO denotes the class of all BLO-martingales and BLO, the class
of all positive BLO-martingales. If Y is in BLO with a constant C,
then || Y||swo = 3C.

DEFINITION 3. A positive uniformly integrable martingale W= (W,)
is said to be in the class 4, (or satisfy the A,-condition) if there is a
positive constant C such that W,/W. < C a.s. for every T, and is said
to be in the class S* (or satisfy the S*-condition) if there is a positive
constant C such that W,/W,_ < C a.s. for every T.

The following lemma is due to Doléans-Dade and Meyer [2].

LeEMMA 3 (the reverse Holder inequality). If W 4s im A, N ST,
then there are positive constants € and C such that E[Wit|F,|<CW}*
a.s. for every T.

3. Theorems.
THEOREM 1. Any BMO-martingale X can be written in the form
X=Y"-Y*,
where Y* (1 = 1, 2) 48 in BLO..

THEOREM 2. X 14s in BMO if and only if there is a positive con-
stant a;, (1t =1,2), a uniformly integrable martingale M, (=1) with
E[(Mx):|F,]eS* for some 0<0d,<1 (i=1,2) and a bounded random
variable K such that

X, = a,log M* — a,log M;* + K
where M} = sup, | M,(t)| (+ = 1, 2).
4. Proof of Theorems.

PrROOF OF THEOREM 1. Take a process B in Lemma 2 corresponding
to X and consider the Jordan decomposition of B: B = B* — B? where
B® (i =1,2) is an increasing process. Denote by A’ the optional dual
projection of B¢ and put Y/ = E[AL|F,]. Clearly A’ is increasing, X.=
Y. — Y% and Y' is a positive martingale. Now we will show that Y*
and Y*are in BLO. From the definition of the optional dual projection,
we can easily deduce E[AL—A}_|F,|=E[B.—Bi_|F,;]. Hence it follows
that
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Y; — Y. = E[AL|F,] — AL, = E[AL — Ai_|F,] — (AL, — Ai.)
< E[AL — Ai-|F;] = E[B; — B;_|Fy]
= E[Bi|F;]<C a.s. for every T.
Furthermore we have
Yi = E[AL|F,] = Ai_ + E[AL — A}_|F,;] = A}_ + E[B. — B{_|F,]
and so Ai_ < Yi< Ai_ + C. Thus by the section theorem, we have

(1) A_SY A +C.
Since A’_ is left continuous, we also have
(2) A Y A +C.

From (1) and (2), it follows that |[4Y,| < C a.s. for every 7. This
completes the proof.

For the proof of Theorem 2, we need the following.

LEMMA 4. Y is in BLO, if and only if W,= ElexpaY,|F,] (=1)
s im A, N ST for some a > 0. If we suppress the condition W =1,
then Y 4s in BLO.

Proor. Let Y be in BLO,. By Lemma 1, there are positive con-
stants @ and C such that Flexpa|Y.,— Y,_||F;] < C. Hence by the
definition of BLO, ElexpaY.|F,;] < CexpaY,, that is, W is in A,. By
Jensen’s inequality, expaY, < ElexpaY.|F,;]. Then we apply the
section theorem and take the left-hand limits: exp aY._<CE[expaY.|F.]_.
Hence ElexpaY.|F.]/ElexpaY.|F.]. < ElexpaY.|F.]/expaY._. Since
ElexpaY.|F,]lexpaY, < Elexpa|Y.,— Y, ||F;] £C, we see that W
is in S*. It is clear that W = 1.

Conversely assume that W is in A, N S* for some a > 0. Since W
is in A,, by Sekiguchi [5, Lemma 1] and the section theorem, we have
ElexpaY,|F]<CexpaY.. Thus by taking the left-hand limits, we
have

(3) ElexpaY.|F].<CexpaY._.
By the S*-condition and the section theorem, we also have
(4) ElexpaY.|F] < CE[expaY.|F]_.

From (8) and (4), it follows that ElexpaY.|F.] < CexpaY... Hence
by Jensen’s inequality,
expadY, = expadY,expaKE|Y.—Y,|F,;] < Elexpa{dY,+(Y.— Y )}|Fy]
=[expa(Y. — Y, )| F,]<C.
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Therefore 4Y, < C a.s. for every T. On the other hand, by Jensen’s
inequality and the A,-condition, we have

expaY, < ElexpaY.|F;]< CexpaY. .

Thus expa(Y, — Y.) < C, that is, Y, — Y.< C as. for every T.
Furthermore by the right continuity of Y, Y. — Y, < C. Taking the
left-hand limit and conditioning on F., we obtain —4Y, < C a.s. for
every T. If W =1, then Y is clearly positive. This completes the
proof.

LEMMA 5. If W (=1) is in A, N S™, then there is a positive con-
stant 0, 0 <0 <1, a uniformly integrable martingale M (=1) with
E[(M*Y|F,)eS* and a martingale H bounded above by 1 and bounded
away from 0 such that W. = (M*)YH,. The converse, except that W=1,
18 also true.

PrOOF. By Lemma 3, there are two positive constants ¢ and C
such that E[Wi|F,]<CW;". Hence by the A,-condition, E[Wi|F,]<
CWi:. Put M,= E[W.*|F,] (=1). Then from the above inequality
and the Holder inequality, it follows that

(1/0)(M*)1/(1+s) é Wm é (M*)l/(1+s) .

Thus if we put 6 =1/(1 +¢) and H, = E[(M*)"W.|F,], then W, =
(M*YH,, 1/C < HZ1 and E[(M*)|F,]eS".

Conversely assume that W, = (M*)’H., where M, 6 and H satisfy
the above conditions. It is easy to see that WeS*. To show that
We A, we have only to treat the case when W, = (M*)’. Now con-
sider a uniformly integrable martingale N. Then we know that

(5) E[(N*)'] = CE[|N.|F

(for the proof, see Shiota [6, Lemma 4]|). We apply (5) to the new
probability system 2’ = {T < «}, P’ = P|,/P(Q"), F, = F,,, and the
F/-martingale M/ = M,,, — M,_ and then replace T by T, (A e F;):

E[S?leT+t_‘ || F;] < CE[| M, — M,_|| F,] .

By this inequality, we have
Elsup M| Fy] < COMF)

where M} = sup,., |M,|, and so
E[M*Y | Fy] = E{M?) + sap M, | Fr] = C(M7*)' = C(M*) .
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Therefore W is in A,.
Combining Lemmas 4 and 5, we have the following.

LemMMA 6. If Y is in BLO,, then there is a positive constant a, a
uniformly integrable martingale M (=1) with E[(M*)’|F,]eS* for some
0< 6 <1 and a bounded random variable H such that Y. = alog M*+
H. Conversely if Y. =alog M* + H, where a, M and H satisfy the
above conditions, then Y is in BLO.

Theorem 2 is clear from Theorem 1 and Lemma 6.
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