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Introduction. 0-1. Let G be a connected and semisimple linear
algebraic group defined over Q. Denote by G, and G, the group of Q-
rational points of G and the adele group of G, respectively. We identify
G, with a subgroup of G, in a natural manner. Then G, is discrete in G,
and the quotient Go\ G, has a finite volume for a G, invariant measure.

In his paper [6], Kuga proposed the following problem:

How the set of points of Gy is distributed in G,?

He gave an answer for the case that G is a Q-form of SL(2) of Q-
rank 0. With the help of Kuga’s basic idea (“Kuga’s criterion”, see Prop-
osition 1) and a deep result of representation theory due to Howe and
Moore [5], the present author [9] showed a uniformity of distribution of G,
in G, with respect to a Haar measure dg on G, when G is simply connect-
ed, absolutely almost simple and furthermore has Q-rank zero. Roughly
speaking, we showed that, for a relatively compact open subset X of

G,, the main term of the number |X N G,| is equal to S dg, if S dg is
X p.q
sufficiently large. Here we normalize the Haar measure dg on G, by

oo dg = 1. (In fact, we must impose some additional conditions on X.
Q\"4

For detail, see Theorem.)

The object of the present paper is to show that the above result is
also available even if G has @Q-rank greater than zero.

0-2. To explain our result more precisely, denote by G, (resp. G..)
the finite (resp. infinite) part of G.,; G, = [I; Go, (the restricted direct
product), G., = Gr. Then we have G, = G;-G.. For a finite set & of
finite places of @, put G;(&) = [I,cs Gy, X Il,:5Gz,, Which is an open
subgroup of G;.

Consider a sequence {X,};., of relatively compact open subsets of G,.
A sequence {X,}3, is said to be of Hecke type if the following two con-
ditions (0.1)-(0.2) are satisfied:

(0.1) Each X; has the form S(j) x U, where S(j) is an open compact
subset of G,(.&°) for a fixed finite set &7 of finite places of @ and U is
a fixed relatively compact domain in G..
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(0.2) There exists an open compact subgroup K of G, such that
K-S(5))-K=8@4) (j=1,2,---). Let dg be the Haar measure on G,
normalized by SG . dg = 1. Then our main result is stated as follows.

0\64

THEOREM. Let G be a connected, simply connected and absolutely
almost simple linear algebraic group defined over Q, and let {X,}7-, be
a sequence of Hecke type. Assume that

(0.3) lim SX dg = oo .
J

Jooo

Then we have
0.4) lim |G o N X,-l/SX.dg ~1.

0-3. We present an implication of our theorem. Fix an embedding
G, = GL(N, Q) for some positive integer N. Set I' = G4 N GL(N, Z).
Then I' is a discrete subgroup of Gx. Let dg. be the Haar measure on
G, normalized by S dgr = 1. For a positive integer =, set T(n) =

I'\G
{9€Gy|m-g e M(N, Z)}.R It is easy to see that I'T'(n)[" = T(n) and that
I'\T(n) is a finite set. Put degT(n)=|I'\T(n)|. Let {n;} be a sequence
of positive integers such that lim; . deg T'(n;) = ~ and that the primes
which divide some %; form a finite set. Then our theorem implies the
following; for any relatively compact domain U in Gg, we have

lim | T(n;) ( U/deg T(n)) = | dga -

0-4. The present article consists of five sections. In the first section,
we recall a result of Murase [9], which we call “Kuga’s criterion”. This
criterion suggests a deep relation between “a uniformity of distribution
of Gy in G,” and “an estimation of eigenvalues of Hecke’s operators on
the space of automorphic forms on G,’. The next two sections are of
expository nature. In §2, we recall, after Arthur’s exposition [1], the
theory of the spectral decomposition of L*G,\G,), which is due to
Langlands [7]. In §3, we summarize some results of the theory of
spherical functions on p-adie linear algebraic groups (after Satake [10] and
Macdonald [8]). Especially, the explicit formula of zonal spherical funec-
tions is crucial in §4, where we study the behavior at infinity of the
zonal spherical functions associated with parabolic subgroups of G. We
prove our theorem in the last §5.

The author wishes to express his gratitude to the late Professor T.
Shintani for his suggestion of this problem and to Professor M. Kuga for
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his warm encouragement. He also wishes to express his hearty thanks
to Professors H. Shimizu and S. Ihara for their valuable advices.

Notation. As usual, we denote by Z,Q, R, C, Z,, Q,, Q, and Q% the
ring of rational integers, the rational number field, the real number field,
the complex number field, the ring of p-adic integers, the p-adic number
field, the adele ring of Q and the idele group of @, respectively. We define
the modulus |a|, of an idele a € Q% by d(ax) = |a|,-dx, where dx is a Haar
measure on @,. We denote by R} the group of positive real numbers. For
a linear algebraic group H defined over @, we denote by H,, H; and H.,
the adele group of H, the finite part and the infinite part of H,, respec-
tively. We denote by C2(H,) the space of locally constant functions on H;
with compact support. For a continuous function f on a locally compact
group X and a subgroup K of X, we say that f is right K-finite if the
set {R.f |k e K} spans a finite dimensional subspace of the space C°(X) of
continuous functions on X. Here we put R,f(z) = f(zk) (xe X, ke K).

1. 1-1. In this section, we suppose that G is a connected semisimple
linear algebraic group defined over Q. Let {S(j)}i=, be a sequence of
compact subsets of G, satisfying K-S(j)-K=8() (=1,2, ---) with
some open compact subgroup K of G,. Denote by L*G,\G, and
L*(Gy\G,/K) the Hilbert space of square integrable functions on G,\ G,
and its closed subspace consisting of right K-invariant functions. For

FELGN\G.) and peCs(Gy), set frp(g) = S F gz (e da, (g€ 6.
Here dx, is the Haar measure on G, normarized by \ dx;, =1. Let &;
be the characteristic function of S(j) on G,. Then §&; If)elongs to C2(Gy).
Put degé; = S &i(xp)de; = Ss dwy. It is easy to see that the mapping

frofxg;(fe LZ(GQ\ G,/ K)) deﬁnes alinear bounded operator on LGy \ G,/ K)
and that || fx¢;|| < deg &;-|| f|| for any f e LG\ G,/K). Note that 1x¢; =
deg £;-1 where 1 denotes the constant function on G\ Q, taking the
value one. The following fact, which we shall call “Kuga’s criterion”,
plays a basic role in the proof of our theorem.

PROPOSITION 1. Let the notation be the same as above. Assume that,
Jor any fe L (Gy\G4K), we have

(L.1) lim | fx&;/deg &; — (f, 1)-1] = 0.

Then, for any relatively compact domain U in G, the following equality
holds:

(1.2) lim |(S(7) % U)N ol /S ~1.

S5 )><U
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For the proof, see Kuga [6, Theorem] and Murase [9, Proposition 1].
Note that linear operators T';: f — fx&; can be seen as Hecke’s operators
on the space of automorphic forms on G,.

1-2. We consider the simplest case. Assume that there exists an
orthonormal basis {fi}iz, of L*(Go\G,/K) consisting of common eigen-
functions of linear operators T;(j = 1, 2, --+). Let A () be the eigenvalues
of T; with respect to f;; T;f, = M())fi- We may assume that f,=1
(note that fyx¢;/degé&; — (f,, 1)1 =0). Then, in this special case, the
assumption (1.1) of Proposition 1 is satisfied if and only if

lim \,(j)/deg &; = 0

for any k=1,2, ---. This suggests a relation between our problem
and an estimation of eigenvalues )\,(j) of Hecke’s operators T';. In fact,
Kuga [6] proved the so-called “Kuga’s lemma”, which gives an estimation
of eigenvalues of Hecke’s operators on the space of automorphic forms
on the upper half plane with respect to an arithmetic Fuchsian group.
(For a representation theoretical version of Kuga’s lemma, see Murase [9,
Lemma 3].) However, we cannot always find a basis of L*G,\ G./K)
consisting of common eigenfunctions of 7',. Especially, LG, \ G./K) has
continuous spectrum if rank,@ > 0. Thus we are led to the study of
the spectral decomposition of L*G,\ G.).

2. Let G be a reductive linear algebraic group defined over Q. Fix
once for all a minimal parabolic subgroup P, of G defined over @ and a
Levi subgroup L, of P,.

2.1. A Q-parabolic subgroup P is said to be standard if P, is a
subgroup of P. We assume throughout this section that a parabolic
subgroup P of G is defined over @ and standard. We denote by L, the
unique Levi subgroup of P that contains L, and by U, the unipotent
radical of P. Let A, (resp. A;) be the split component of the center of
L, (resp. L;). Then A, is a subgroup of A,.

Fix a maximal compact subgroup M. of G. = Gr whose Lie algebra
is orthogonal to the Lie algebra of (4,), under the Killing form. For
almost all finite places p, G;, is a maximal compact subgroup of G,,.
For such p, we set M, = G;,. For other finite places p, we choose and
fix any maximal compact subgroups M, of Go,. Set M; = [[,<.. M, and
M=M;M.,. Then we have G, = (Up), (L), M for any parabolic sub-
group P of G.

Let X(Ly), be the Z-module of @Q-rational characters of L,. Put
ap, = Hom(X(L;),, R), the group of all homomorphisms from X(L;), to R.
Then a, is a vector space over R whose dimension is equal to dim 4.
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For g € G,, we define a vector H(g) € a, by exp(Hp(9)(X)) =|X(l,)|. for any
X e X(Lp)o. Here we choose I, € (L), so that ge (Up),-l,-M. It is easy
to see that H,(g) does not depend on the choice of [,€(Lp),. Define a
homomorphism 4,, from (L), to R} by setting 4, (I) = d(lupl™")/du, for
le(Ly),. Here du, is a Haar measure on (U,),.

Let W be the restricted Weyl group of (G, 4,). Then W acts on the
R-vector space X(L,), @, R and hence acts on its dual a,. Fix a positive
definite W-invariant bilinear form {, ) on ap, by which we identify a,
with its dual. This allows us to embed each a, in a,. For a pair of
parabolic subgroups (P, P’), let W(a,, a,) be the set of distinet isomor-
phisms from a, onto a,, which are induced on a, by the action of elements
of W. 1If W(a,, ap) is not empty, P and P’ are said to be associated.

2-2. In this subsection, we fix a parabolic subgroup P of G. For
simplicity, we often omit P as subscripts; namely we write a, U, L and
A for ap, Uy, L, and A, respectively. Put a;, =a@:C. We shall now
construct a series of representations I.(4) parametrized by Aeca, Let
77 be the space of functions @: U,L,A%\ G, — C satisfying the following
conditions (2.1)-(2.3):

(2.1) For any xz€ G, the function [+— @(lx) on L, is Z%-finite.

(2.2) @ is right M-finite.

2.9 lol =11, ... |owm didm < e

Here we denote by 2% the center of the universal envelopping algebra
of I = 1@®xC, the complexification of the Lie algebra I of Lg, by A%
the identity component of 4, and by dl (resp. dm) the Haar measure on
L, (resp. M) normalized by S 0o dl = l(resp. S dm = 1). Let 57, be
A% Lo\L 4 M
the Hilbert space obtained as the completion of S#7°.
For Adca;, @€ 5% and z,y€ G, set

2.4) I.(4, y)@(x) = O(xy) exp({4 + 0p, Hx(xy) — Hp(x))) .
Here 0, is the vector in a = a, defined by
(2.5) exp({Pp, Hp(1))) = 4p,(1)"* (1€ L,) .

Then y — I(4, y)(y € G,) defines a representation I,(4) of G, on 57#. If
Aeia, then I.(4) is a unitary representation. For @€ C>(G,) and 4 €a,
we define a bounded operator I.(4, #) on 5# by

L4, 9)0 = || 9a)l(4, )0z,

for @ e 5%;.
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2-3. Let & be an associated class of (standard) parabolic subgroups
of G. Let E. be the linear space of collections F' = {F'p}5.» 0of measurable
functions F;:ia, — 5%, satisfying the following conditions (2.6)-(2.7):

(2.6) If P, P'e & and we W(a;, ap), then

Fo(wd) = M(w, )Fs(4) (A€iap).

@.7) IF|* = 3 (2mi)ytmerep | (| Fo(d)|'dd < oo .

Pez Jiap
Here M(w, 4) is an intertwining operator from S#; onto %7, and ¢, is
the number of chambers in a, (for detail, see Arthur [1, pp. 255-256]).

For e C2(Gy) and F = {Fp}per € B set
(2.8) (Fpx@)(A) = Ip(4, p7)Fp(4) (A€ iap),
(29) Frp = {FP*Q}PeQ ’

where we put ¢ (x) = (e )(x € G;). It is easy to see that Fxpe 5.
2.4. One of the main results of the theory of the spectral decom-
position of L*(Go\G.,) is stated as follows.

PROPOSITION 2. (1) For any associated class Z of parabolic subgroups
of G, there exists a linear operator F i O_(F) from E. onto a closed
G invariant subspace Lu(Go\G,) of L (Go\G,) which satisfies the
following conditions (2.10)-(2.11):

(2.10) 6= = I Fll,
(2.11) for @€ Cy(Gy), we have
Oo(F)xp = O(Fx9) .
(2) We have the orthogonal decomposition;
LG \G.) = 3, Lo(Go\G )

where P runs over all associated classes of parabolic subgroups of G.
(8) The space Lig,(Go\G,) decomposes into a direct sum of countadbly
infinite G invariant irreducible closed subspaces.

(For detail, see Arthur [1, p. 256].)

3. We shall suppose throughout §3 and §4 that G is simply connected
and F-almost simple linear algebraic group defined over a non-archimedian
local field F. We put G = G, the group of F-rational points of G.

3-1. We fix a maximal F-split torus S of G and a minimal F-
parabolic subgroup B of G which contains S. Let N (resp. Z) be the
normalizer (resp. the centralizer) of S in G&. We write S, B, N and Z
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for the groups of F-rational points of S, B, N and Z, respectively. Due
to Bruhat and Tits [3, 4], there exists a reduced and irreducible root
system ¥, subgroups U, of G (a€ X, the affine root system associated
with ¥,) and a surjective homomorphism y: N —-W (W is the Weyl group
of 3) such that the triple (N, v, (U,)..s) satisfies several axioms stated
in Macdonald [8, p. 27, p. 35, (I)-(IX)]. Note that every root in 3, is
proportional to a root of G relative to S and conversely.

We assume that 3, is a finite subset of the dual of a finite dimen-
sional vector space V over R with a positive definite scalar product (, ).
For ae X, let U, be the root subgroup of G correspoding to a. Put
Y ={ae3|U,cB} and C, = {xc Vl]a(x) >0 for any ac 3;}. Then C, is
a Weyl chamber of 3, in V and X7 is the set of positive roots relative
to C,.

Let T be the translation subgroup of the Weyl group W of X¥. Set
T+t = {te T|t0)eC,} and Z** = v~(T**), where C, is the topological
closure of C, in V. Then Z** is a subsemigroup of Z. Let K be the
subgroup of G generated by U,,, with a € ¥, and non-negative integers k.
The group K is a maximal compact open subgroup of G. Let U be the
unipotent radical of B, and put U =U;. Then we have

3.1) G=U-Z-K (Iwasawa decomposition) ,
(3.2) G = K-Z**.K (Cartan decomposition) .

For ac X, the subgroup of G generated by U,,, with ke Z, which
we denote by U,,,, coincides with the group of F-rational points of U,.
We have
(3.3) U= 11U, (in any order).

aez‘g'
Let du, (resp. du) be a Haar measure on U, (resp. U). For ze Z, put
4,(2) = d(zu.z™)/du, , 4(z) = d(zuz™)/du .

It follows from (3.3) that 4(2) = [l.es74.(2). (Note that 4,(z) and 4(z)
do not depend on the choice of Haar measures du, and du.) Since the
functions 4,(z) and 4(z) depend only on t = »(z), we can define homo-
morphisms d,, 6: T — R in such a way that §,(v(2)) = 4,(2) and o(v(2)) =
4(z) for any ze€Z. For a€ZX, put 4 =|U,,/U,.,|"* (note that 4 >1
and that / = (¢..+.)"? in the notation of Macdonald [8, p. 38]). The
following statement is proved in Macdonald [8, Prop. (3.2.4)].

LEMMA 1. IfteT and x = t(0)e V, we have
0,(t) = 4", o(t) = II 4" .

+
aeXy
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3-2. We summarize several results of the theory of spherical
functions on G = G, due to Satake [10] and Macdonald [8] in a form
convenient for later applications. Let the notation be the same as in
3-1.

A function w on G is called a zonal spherical function relative to K
if the following conditions (3.4)-(3.6) are satisfied:

(3.4) ® is continuous on G.

(8.5) w is not identically zero.

(3.6) ©(g)-0(9) = | ooz (9, 9.66),

where the Haar measure dk on K is normalized by S dk = 1.

Let Hom(T, C*) be the group of all homomorphis;{ns from T to C~.
For se Hom(T, C*) and te T, we write (s, t) for s(t). For s€ Hom(T, C*),
we define a function ¢, on G by ¢,(uzk) = (s7*-0"% v(2)) = (s, t)*- (0, t)"*
(t =v()) for ue U, z2zeZ and ke K (recall that G = U-Z-K). It is easy
to see that ¢, is well-defined. Set

3.7 w9) = | s.kg)il (9€G).

LEMMA 2 (Satake; see Macdonald [8, Theorem (3.3.12)]). For any
s€ Hom(T, C*), the fumction w, on G is a =zonal spherical function
relative to K. Conversely, every zonal spherical function is equal to w,
for some s € Hom(T, C*).

The Weyl group W, of X, acts on T by inner automorphisms and
hence acts on Hom(T, C*); we define ws by (ws, t) = (s, w™'tw) for se€
Hom(T, C*),te T and we W,.

LEMMA 3 (Satake; see Macdonald [8, Prop. (3.3.3)]). For we W, and
seHom (T, C*), we have w,, = ,.
The following explicit formula for the zonal spherical function w,
plays a basic role in the next section.
LEMMA 4 (Macdonald [8, Prop. (4.6.2)]). For se Hom(T, C*) and z¢
Z**, we have
wa(z) = 'E @8’(x)(s'_61/2’ t—l) .

s'ewgps

Here t = v(z), x = t(0), W,s is the Wy-orbit of s in Hom(T, C*) and @, is
a polynomial function on V depending on s’ € Ws.

4. Let the notation be the same as in §3. In this section, we
define zonal spherical functions w,, on G = G associated with F-parabolic



UNIFORMITY OF DISTRIBUTION 145

subgroups P of G and study their behavior at infinity.

4-1. Let P be a proper F-parabolic subgroup of G containing B, the
fixed minimal F-parabolic subgroup of G. Denote by U, the unipotent
radical of P. We write P and U, for the groups of F-rational points
of P and U,, respectively. For pe P, put

4.1) 4p(p) = d(pupp™)/dup
where du, is a Haar measure on U,. Since G = P-K, we can extend 4,

to a function on G by 4.(pk) = 4.(p) (e P, ke K). It is easy to see
that 4, is well-defined as a function on G. Set

(4.2) w0r(9) = | 2oy (ge6) .

LEMMA 5 (Macdonald [8, Prop. (1.4.7)]). The function @p is a positive
definite zonal spherical function on G relative to K.

It follows from Lemma 2 that w, is equal to w, for some se
Hom(T, C*). Put X{(P) ={aeX,|U,cU;}. Since Up,cU =U,, 35(P) is
contained in 37. Define s, e Hom(T, C*) by
4.3) 8p = II o™ (teT)

aexf -3t (P)

— H /a—a(z)/z (x — t(O)) .

aesy-sf(p)

Then we have:
LEMMA 6. 4p(9)" = ¢,-1(9) (9€@).

ProOF. Observing that U, is generated by U, with ac I (P), we
have, for any ze Z,
42} =TI 4.2 = TI 0.,(2))" = (8p:0"*, ¥(2)) = 9,31(?) -

aex (P aeIf(P)
This proves the lemma since 4, and ¢.; are, as functions on G, right
K-invariant and left U-invariant. q.e.d.

In view of the above lemma and the definitions (3.7) and (4.2), we
have w, = w,;1. There exists an element w, € W, such that w,a = —a for
acX, Then we have w,s, = s3'. Thus we have proved:

LEMMA 7. Let sp be the element of Hom(T, C*) given by (4.3). Then
we have wp = ®,,. Furthermore we have, for zeZ**,

wP(z) = E )¢wsp(x)(wsi"81/2r t_l)

weWo/Wolsp

where t = v(z), x = t(0) and W(sp) is the stabilizer of sp in Wy Wi(sp) =
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{we W,|wsp = sp}.

4-2. A continuous function f on a locally compact space X is said
to vanish at infinity on X if, for any ¢ > 0, there exists a compact
subset C of X such that sup,.y_o| f(x)] < e.

We now show that ®, vanishes at infinity on G, if P+ G. Since
G = K-Z*"-K, we have only to show that the function 2z — w,(2) vanishes
at infinity on Z**. Denote by L the lattice in V generated by ¢(0) with
teT. For xel, let ¢, be the element of T given by ¢,(0) = 2. By a
straightforward calculation, we obtain

(wsP,sm’ t;l) — H /:Lxl)a/z, H /a—a(z)/z .
ecu(zf-2d () aexs
Set 3f(w, P) = w(Z;y — 2{(P)) N 2§ and 35 (w, P) =w(ZS — 2 (P)) N (—25).
Observing that /,—, = / (see Macdonald [8, p. 89]), we obtain
('wsp-5”2, t;l) — H /aa(x)/z, H /a—a(x)/Z .

aeXy (w,P) aexf—rfw,p)
Since a(x) < 0 for ac 3;(w, P) and xcC,, and since 4 > 1, we have
(wsp_al/Z, tx_l) é H /a—a(:c)/z
aesf—rFw,p)

for x€C,NL. Put <= Min{4|aeZ;}. Since a(w) =0 for ae X and
xeC, we have proved:

LEMMA 8. For xeC,N L, we have
(wsp,al/z, L) < g~ o, p@ /2
Here A, p s a linear form on V given by
Aw,P(x) = S alx) .
aes—-2f (w,P)

Combining Lemmas 7 and 8, we obtain:
LEMMA 9. For z€ Z**, we have
lwp(2)| = 3] )IQW(W)!/ “hep@ 2 (g = v(2)(0)) .
P

weWqyingls

Note that the kernel of the homomorphism from Z to L defined by
z+— y(2)(0) is compact. Hence, in order to show the vanishing at infinity
on Z** of wp, it is sufficient to verify that 2|0, (x)| ¢ twr®”?
vanishes at infinity on C, for any we W,.

4-3. Let {a, ---, a,} be the set of the simple roots of 3, relative to
the Weyl chamber C,. Then a, ---, a, are linearly independent over R
and C, = Ni-, {x € V|a,(x) > 0}. Recall that every positive root a can be
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written in the form a = ma, + --- + m,a, with non-negative integers
m,. Since 4, is a sum of positive roots, we have 4, , = >, m,(w)-a,
with non-negative integers m,(w).

We claim that m;(w) >0 (1 <1< 7) for any we W,. Suppose the
contrary. We may assume that m,(w) = 0 for some we W,. Denote by
2 (a,) (resp. XY (a,)) the set of all roots in ¥, whose coefficients at a, are
positive (resp. non-negative). It is easy to see that X{(a,) C ;. Then
the assumption m,(w) = 0 implies that (X — 3F(w, P)) N Xi(a,) is empty
and hence that X;(a,) is a subset of 3 (w, P). Thus we have

(4.4) w(Z§ — 27(P)) D i (a,) .

Observe that the root subgroup U, corresponding to a € w(Zy — 3§ (P)) is
contained in n,Lyn;!, where L, is a Levi subgroup of P and =, is any
element of N, such that yv(n,) = w. On the other hand, let P(a,) be the
subgroup of G generated by Z and U, with ac Y(a,). Then P(a,) is a
proper parabolic subgroup of G and the unipotent radical U(a,) of P(a,)
is generated by U, with a € X (a,). If the inclusion relation (4.4) were
true, we would obtain the following:

(4.5) W, Lpmy' D (Ug; a € w(ZF — 25(P))y D I U, = Ula) .

ae).‘aL(al)
Observe that n,Lyn;' is a Levi subgroup of a proper parabolic subgroup
n,Pn;'. The following lemma shows that the inclusion relation (4.5)
never occurs and hence that the assumption m,(w) = 0 gives rise to a
contradiction.

LEMMA 10. Let P and P’ be proper F-parabolic subgroups of G.
Then the unipotent radical U' of P’ 1is not contained in any Levi sub-
group L of P.

Proor. Suppose that U’ c L for some Levi subgroup L of P. Then
U cP and hence U'c PN P'. In view of Borel and Tits [2, Prop. 4.4
o)], U'-(PNP')= PN P’ is an F-parabolic subgroup of G. Hence P and
P’ contain a common minimal parabolic subgroup P, of G. Let S, be a
maximal F-split torus of G contained in P,. Let X; be the root system
of G relative to S,. Denote by {b, ---,b,} the set of the simple roots
of 3, relative to P,. Then there exists a root b, = n,b, + --- + n,b, with
n, >0 (1 =¢=7r). Itis known that the root subgroup U,, corresponding
to b, is contained in the unipotent radical of every proper parabolic
subgroup, especially in U’. Hence the assumption U’ c L implies that

(4.6) U,cL.
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On the other hand, since P is a proper parabolic subgroup of G, there
exists a non-empty subset g, of {1, ---,r} which satisfies the following
condition:

For a root b = m,b, + --- + m,b, (m;€ Z) in 3;, assume that U, L.
Then m,; = 0 for any 7€ . This fact contradicts the inclusion relation
(4.6) and the assumption n; > 0 for all 7. g.e.d.

As a consequence, we have proved:

LeMMA 11. If we put A, pr = D m(w)-a;, then m,(w) >0 for any
1 and we W,

Since C, = {x e V]a,x) = 0(1 < ¢ < 7)} and since 9,,,(x)is a polynomial
function on_ V, the function given by x+ @, (x)-# "?* vanishes at
infinity on C,. Thus we have proved:

PROPOSITION 3. If P is a proper parabolic subgroup of G, the zonal
spherical function w, associated with P = P, vanishes at infinity on
G =G,

5. In this section, we suppose that G is a connected, simply connected
and absolutely almost simple linear algebraic group defined over Q.

5-1. For each finite place p of Q, we can apply results of §3 and §4
to Go,. We write M, for K, the maximal compact subgroup of G,,
defined in 3-1. Then, except for a finite number of p, we have M, =
G,, if we fix a suitable embedding G, = GL(N, @). Hence this choice of
M, is consistent with the choice of the maximal compact subgroups of
Go, in 2-1. From now on we fix the Haar measure dx; on G, normalized

by
SMfdxf -1 (M, ~ 11 Mp> .

p<oo

Let {S(4)}=,, K and ¢&; be the same as in §1.

5-2. We fix throughout 5-2, 5-3 and 5-4 a proper Q-parabolic sub-
group P of G. In this subsection, we let the notation be the same as
in 2-2. Denote by 577 the closed subspace of 5%, consisting of right
K-invariant functions. Let V(P, K) be the linear space spanned by all
elements of 577 that are continuous, bounded and M.-finite as functions
on G,. We easily see that V(P, K) is dense subspace of S#X.

Define a function w;; on G, by

(5.1) Wr @) = || exp(pr, Hylmyw))dm,

where dm, is the Haar measure on M, normalized by S dm; =1. Then
My
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®p,; is a zonal spherical function on G, relative to M;. Denote by
9(Gs, K) the C-module of ¢eCy(G,) satisfying o(kgk’) = ¢(g) for any
g€G; and k, k'€ K. Observe that &; belongs to $(G,, K).

LEMMA 12. For any @€ V(P, K), there exists a positive constant C,
such that

(5.2) 114, 90| 5 Cs || wr.s(@)|ptap)|da

for any Aeia,, @€ H(Gy, K).

ProOF. Denote by M~ the set of all equivalence classes of irreducible
unitary representations of M. For teM™, let V. be the representation
space of 7. For TeEnd(V.), set ||T|:=dimz-tr(T-T*), where T*
denotes the adjoint of T with respect to the scalar product of V,. Then
T — || T||. defines a norm of End(V,). For teM" and ¥ € 5%, set

(5.3) Wz, 7) = guqf(xm) mdm  (zeG),

where dm is the Haar measure on M normalized byS dm =1. By virtue
M
of the Peter-Weyl theorem, we have

el ={ | wempaam = 5 1w¢, 2k,

eMA

where & denotes the quotient space (Lp)o(Ap)%\(Lp).. Applying this
formula to ¥ = I,(4, )@ (pe H(Gy, K), @€ V(P, K)), we obtain

(5.4) 11, 901 = 5 | 1704, 901, ) il
In view of definitions (5.3), (2.3) and (2.4), we have
I:(4, P)0(, 7)
= SMSGf@(xf)@(lmxf) exp({4 + pp, Hp(lmwxs) — Hp(lm)))t(m™)dadm

- SMSG;Z’W@UWH exp({4 + p, Hp(ma,)))e(m™)dw,dm

(note that H.(lgm) = Hy(l) + Hp(g) for any le(L;),, g€ G, and me M).
Put C) = sup,cc,|9(9)|. If Acia,, we have

6.5 sup L4, )0, 7)]

=< sup S‘usgflsv(wf) | exp(Redp, + 4, Hp(may)))

T lellp)y

x| @(ma,)| - 7(m™) || dw dm
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< Gydime-| |o(e))|dz, | XDy, Holmz,))dm,
f M
= Cjdim ¢ ngl P(a,)| @p, () das

(note that Hp(m.x;) = Hp(x;) for any m.eM. and xz,€G;). Since
I.(4, )@ is right K-invariant for any @€ (G, K) and since @ is M.-
finite, there exists a finite subset N, of M~ such that, if te M~ — N,,
we have I.(4, p)@(g, ) = 0 for any Aeia,, pcH(Gs, K) and geG,. In
view of (5.4) and (5.5), we have

11, 0| = 3, | 114, )00, ) :a1
= 3, | dl-sup [ 14, #)-00, o)1

=5 | d-Cidime Safl P(,) | 5, (@,)da, )

TeNg

for A ciap, @ € H(G,, K) and 0 ¢ V(P, K). (Note that S dl is ﬁnite.) Thus
the inequality (5.2) holds if we set )

Cy = C;,(r;v,a)(dim ). Sydz)m . q.e.d.

5-3. Recall the definition of 4,, in 2-1; 4,,(l) = d(lupsl™)/du,
(le (Lp)s) where du, is a Haar measure on (U,),. We extend 4,,
to a function on G, by putting 4.,(9) = 4,,(1,) for geG,, where we
choose [, € (Lp), so that ge (Uy),-l,-M. (For simplicity we use the same
notation 4,,.)

In view of (2.5), we have exp({pp, Hpx(9))) = 4p,(9)"* (9€G,), and
hence

0rdw) =\ deimgzyram, (@6
f

For a; = (2,),<- € G, (x,€Gy,), We easily see 4p,(x;) = [I,< 45,(2,) Where
we write P, for P, and hence

<

(5.6) @ps() = T1| | 4y, () dm, = 1] 0,(a,) -
0 » (=]
(For the definition of 4,, and w,, see (4.1) and (4.2), respectively.)
Since wp, is positive definite (see Lemma 5), we have
(5.7) |wp, () =1 (x,€Gy,)
in view of Macdonald [8, Lemma (1.4.1)]. Combining (5.6), (5.7) and
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Proposition 3, we obtain:

LEMMA 13. The function wp ; vanishes at infinity on G(.”) for
any finite set &~ of finite places of Q.

5-4. The following lemma was proved in Murase [9, Lemma 5].

LEMMA 14. Let X be a locally compact group and let dx be a Haar
measure on X. Let {S(j)};-, be a sequence of open compact subsets of X.
Assume that

limg dx = o .
S

j—ooo
If a continuous function f on X vanishes at imfinity, we have
limS f(x)dx/s dz = 0.
jooo JSj Sj
We can now prove the following fundamental result.
PROPOSITION 4. Let the notation be the same as in 5-1. Assume

(5.8) limdeg &; = oo .

j—o

Then, for any @ € 574X and A€ iap,
(5.9) lim || Z,(4, &0 |/deg ¢; = 0.

Proor. The equality (5.9) for @ € V(P, K) is an immediate consequence
of Lemmas 12, 13 and 14. Since V(P, K) is dense in S#* and since

[ Ix(4, &) /deg &; = || @]

for @ ¢ &4¥ and Acia,, the equality (5.9) is also valid for @ ¢ S#%.
q.e.d.

5-5. In this section we employ the notation in 2-8 and 2-4. Let
< be an associated class of (standard) parabolic subgroups of G. Assume
Z #+ {G}. Let EX be the subspace of Z_. consisting of F = {F,}p.-€ &
which satisfies Ip(4, k)Fp(4) = Fp(4) for any Pe . Aeia, and ke K.
Then 6O, defines a norm-preserving linear operator from Z% onto the
subspace LL(Go\G,/K) of LL(Go\G,) consisting of right K-invariant
functions. In view of (2.7)-(2.11) we obtain

[|0L(F)x&;/deg &> = ||Ox(Fx&))/deg &;||* = || F'x¢;/deg &;|
= 3% (2mi) e o7 S | Io(4, &) Fa(A)/deg &;|2dA

for Fe EX. Observe that F,(4) e 5745 for any Pe & and Adecia, if Fe
Z%. By virtue of Proposition 4, we have
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}_ijg | Io(4, &) Fe(A)/deg &;]| = 0

for any 4ecia, under the assumption (5.8). Observe that we have
| I:(4, &) Fp(4)/deg &;|| < | Fp(4)|| for any Aedap and j =1, since Ix(4)
is a unitary representation. Since A || Fp(4)|* is integrable on ia,,
the Lebesgue convergence theorem applies and we have

lim | 12,04, &)Fe(/deg &[da = | lim | L,(4, &) Fu()/deg & 'dd
=0,
and hence
lim || 04(F)x¢;/deg &1 = 0
for any F'e 5% under the assumption (5.8). Observing that 6. maps ZX

onto LL(Go\G./K) and that C-1 is orthgonal to L%L(G,\G./K), we obtain
the following:

PROPOSITION 5. Let &7 be an associated class of parabolic subgroups
of G. If P == {G} and if the assumption (5.8) is satisfied, we have

ELIE | f*¢;/deg & — (f, D1]| =0

Jor any feLL(Gy\G./K).

5-6. We shall consider the case & = {G}. Recall that Li(Go\G.)
decomposes into a discrete direct sum of countably infinite irreducible
unitary representations with finite multiplicities;

(5.10) Lio(Ge\G) = 3, 57 -

The following proposition was essentially proved in Murase [9].

PROPOSITION 6. Let 57 be a G invariant subspace of L Go\G.,).
Assume that the unitary representation of G, defined on 57 by right
translation s irreducible. Denote by S#Z% the closed subspace of 57
consisting of all right K-invariant functions. Then, if (5.8) is satisfied,
we have

lim | f+¢,fdeg & — (f, 1] =0
for any feSF%.

This proposition and the decomposition (5.10) imply that the state-
ment of Proposition 5 also holds for & = {G}. Observing that
L{(Go\G,/K) = 3,5 Ls(Ge\G,/K) where & runs over all associated
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classes of parabolic subgroups of G, we obtain the following result,
which completes the proof of our theorem in view of Kuga’s criterion
(Proposition 1).

PROPOSITION 7. Let the assumption be the same as im Theorem.

Then we have, for any f e L G,\G,/K),

[1]
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[3]
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[6]
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[91]

[10]

lim || f+¢,/deg & — (£, 1] = 0.
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