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Introduction. 0-1. Let G be a connected and semisimple linear
algebraic group defined over Q. Denote by GQ and GA the group of ir-
rational points of G and the adele group of G, respectively. We identify
GQ with a subgroup of GA in a natural manner. Then GQ is discrete in GA

and the quotient GQ\GA has a finite volume for a (^-invariant measure.
In his paper [6], Kuga proposed the following problem:

How the set of points of GQ is distributed in GA ?

He gave an answer for the case that G is a Q-form of SL(2) of Q-
rank 0. With the help of Kuga's basic idea ("Kuga's criterion", see Prop-
osition 1) and a deep result of representation theory due to Howe and
Moore [5], the present author [9] showed a uniformity of distribution of GQ

in GA with respect to a Haar measure dg on GΛ when G is simply connect-
ed, absolutely almost simple and furthermore has Q-rank zero. Roughly
speaking, we showed that, for a relatively compact open subset X of

GA, the main term of the number \Xf)GQ\ is equal to \ dg, if I dg is

sufficiently large. Here we normalize the Haar measure dg on GA by

I dg = 1. (In fact, we must impose some additional conditions on X

For detail, see Theorem.)
The object of the present paper is to show that the above result is

also available even if G has Q-rank greater than zero.
0-2. To explain our result more precisely, denote by Gf (resp. G^)

the finite (resp. infinite) part of GA\Gf — Y['p GQp (the restricted direct
product), Goo = GR. Then we have GA = Gf-G^. For a finite set Sf of
finite places of Q, put Gf(S^) = ΐlpe^GQp x ΐlPί^GZpf which is an open
subgroup of Gf.

Consider a sequence {Xj}f=i of relatively compact open subsets of GA.
A sequence {Xy}JU is said to be of Hecke type if the following two con-
ditions (0.1)-(0.2) are satisfied:

(0.1) Each Xi has the form S(j) x U, where S(j) is an open compact
subset of Gf(£f) for a fixed finite set Sf of finite places of Q and U is
a fixed relatively compact domain in G^.
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(0.2) There exists an open compact subgroup K of Gf such that
K S(j) K = S(j) (i = l, 2, •••)• Let dg be the Haar measure on GA

normalized by I dg = 1. Then our main result is stated as follows.
J GQ\GA

THEOREM. Let G be a connected, simply connected and absolutely
almost simple linear algebraic group defined over Q, and let {Xs}?=i be
a sequence of Hecke type. Assume that

(0.3) lim [ dg = oo ,

Then we have

(0.4) l imlGgnXil/ ί dg = 1 .

0-3. We present an implication of our theorem. Fix an embedding
GQ <=+ GL(N, Q) for some positive integer N. Set Γ = GQ Π GL(iV, Z).
Then Γ is a discrete subgroup of GR. Let dgR be the Haar measure on
GR normalized by I dgR = 1. For a positive integer n, set T(n) =

JΓ\GΛ

{̂  e 6?Q i ^ sr e M(iSΓ, Z)}. It is easy to see that ΓT(ri)Γ = T(n) and that
Γ\T(n) is a finite set. Put degT{n) = |Γ\Γ(w)|. Let {%} be a sequence
of positive integers such that lim^oo deg T(n5) = oo and that the primes
which divide some n5 form a finite set. Then our theorem implies the
following; for any relatively compact domain U in GR, we have

lim I T(n3) n t7Ί/deg T(nd) = \ dgR .

0-4. The present article consists of five sections. In the first section,
we recall a result of Murase [9], which we call "Kuga's criterion". This
criterion suggests a deep relation between "a uniformity of distribution
of GQ in GΛ" and "an estimation of eigenvalues of Hecke's operators on
the space of automorphic forms on 6r4". The next two sections are of
expository nature. In §2, we recall, after Arthur's exposition [1], the
theory of the spectral decomposition of L\GQ\GA)f which is due to
Langlands [7]. In §3, we summarize some results of the theory of
spherical functions on p-adic linear algebraic groups (after Satake [10] and
Macdonald [8]). Especially, the explicit formula of zonal spherical func-
tions is crucial in §4, where we study the behavior at infinity of the
zonal spherical functions associated with parabolic subgroups of G. We
prove our theorem in the last §5.

The author wishes to express his gratitude to the late Professor T.
Shintani for his suggestion of this problem and to Professor M. Kuga for
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his warm encouragement. He also wishes to express his hearty thanks
to Professors H. Shimizu and S. Ihara for their valuable advices.

Notation. As usual, we denote by Z, Q, R, C, Z9t Qp, QA and QA the
ring of rational integers, the rational number field, the real number field,
the complex number field, the ring of p-adic integers, the p-adic number
field, the adele ring of Q and the idele group of Q, respectively. We define
the modulus \a\A of an idele aeQA by d(ax) = \a\A dx, where dx is a Haar
measure on QA. We denote by R+ the group of positive real numbers. For
a linear algebraic group H defined over Q, we denote by HA, Hf and iϊoo
the adele group of H, the finite part and the infinite part of HΛ, respec-
tively. We denote by CT(Hf) the space of locally constant functions on Hf

with compact support. For a continuous function / on a locally compact
group X and a subgroup K of X, we say that / is right iΓ-finite if the
set {Rkf I k 6 K} spans a finite dimensional subspace of the space C\X) of
continuous functions on X Here we put Rkf(x) = f(xk) (xeX, keK).

1. 1-1. In this section, we suppose that 6? is a connected semisimple
linear algebraic group defined over Q. Let {S(j)}J=1 be a sequence of
compact subsets of Gf satisfying K S(j) K = S(j) 0" = 1, 2, •••) with
some open compact subgroup K of Gf, Denote by L\GQ\GA) and
L\GQ\GJK) the Hubert space of square integrable functions on GQ\GA

and its closed subspace consisting of right K-invariant functions. For

feL\GQ\GA) and φeC?(Gf), set f*φ(g) - ( f(gχ-f

ι)φ{Xf)dxf (geGA).

Here dxf is the Haar measure on Gf normarized by \ dxf = 1. Let ξs

be the characteristic function of S(j) on Gf. Then ξά belongs to C?(Gf).

Put degf^ = I ξj(Xf)dxf = I dxf. It is easy to see that the mapping
JG/ JS(j)

f*-*f*ξi ( / e L\GQ\ GA/K)) defines a linear bounded operator on L\GQ\GA/K)
and that || f*ξs \\ ^ deg fy-1| /1 | for any / e L\GQ\GJK). Note that l*ξs =
degfj l where 1 denotes the constant function on GQ\QA taking the
value one. The following fact, which we shall call "Kuga's criterion",
plays a basic role in the proof of our theorem.

PROPOSITION 1. Let the notation be the same as above. Assume that,
for any f eL\GQ\GA/K), we have

(1.1) l i m || / * e y / d e β ^ - ( / , 1 ) 1 1 | = 0 .
j

Then, for any relatively compact domain U in G^, the following equality
holds:

(1.2) lim I (S(j) x U) n GQ \ I [ dg = 1 .
i-*oo / js(j)χu
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For the proof, see Kuga [6, Theorem] and Murase [9, Proposition 1].
Note that linear operators T3: f —• f*ξs can be seen as Hecke's operators
on the space of automorphic forms on GA.

1-2. We consider the simplest case. Assume that there exists an
orthonormal basis {fk}k=0 of L\GQ\GA/K) consisting of common eigen-
functions of linear operators Ts(j = 1, 2, •)• Let Xk(j) be the eigenvalues
of T3 with respect to fk; Tάfk = \k(j)fk. We may assume that /0 = 1
(note that /0*£, /deg £, — (/0,1)1 = 0). Then, in this special case, the
assumption (1.1) of Proposition 1 is satisfied if and only if

lim λ,(i)/deg ξ3 = 0

for any k = 1, 2, . This suggests a relation between our problem
and an estimation of eigenvalues Xk(j) of Hecke's operators Tά. In fact,
Kuga [6] proved the so-called "Kuga's lemma", which gives an estimation
of eigenvalues of Hecke's operators on the space of automorphic forms
on the upper half plane with respect to an arithmetic Fuchsian group.
(For a representation theoretical version of Kuga's lemma, see Murase [9,
Lemma 3].) However, we cannot always find a basis of L\GQ\GA/K)
consisting of common eigenfunctions of Tά. Especially, L\GQ \GJK) has
continuous spectrum if rank^ G > 0. Thus we are led to the study of
the spectral decomposition of L2(GQ\GA).

2. Let G be a reductive linear algebraic group defined over Q. Fix
once for all a minimal parabolic subgroup Po of G defined over Q and a
Levi subgroup Lo of Po.

2.1. A Q-parabolic subgroup P is said to be standard if Po is a
subgroup of P. We assume throughout this section that a parabolic
subgroup P of G is defined over Q and standard. We denote by LP the
unique Levi subgroup of P that contains L09 and by UP the unipotent
radical of P. Let Ao (resp. AP) be the split component of the center of
Lo (resp. LP). Then AP is a subgroup of Ao.

Fix a maximal compact subgroup M^ of G^ = GR whose Lie algebra
is orthogonal to the Lie algebra of (A0)R under the Killing form. For
almost all finite places p, GZp is a maximal compact subgroup of GQp.
For such p, we set Mp — GZp. For other finite places p, we choose and
fix any maximal compact subgroups Mp of GQp. Set Mf = Π?><°o Mp and
M = M/Mao. Then we have GA = (Up)4 (LP)A-M for any parabolic sub-
group P of G.

Let X(LP)Q be the Z-module of Q-rational characters of LP. Put
aP = Hom(X(LP)Qf R), the group of all homomorphisms from X{LP)Q to R.
Then aP is a vector space over R whose dimension is equal to
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For g e GA, we define a vector HP(g) e aP by exp(jffP(flr)(Z)) = \l{lg) \A for any
XeX(LP)Q. Here we choose lge(LP)A so that ge(UP)A lg-M. It is easy
to see that HP(g) does not depend on the choice of lg e (LP)A. Define a
homomorphism ΔPA from (LP)A to R+ by setting ΔPA(1) = dilupl'^/dup for
le(LP)A. Here dwP is a Haar measure on (ί/P)^.

Let W be the restricted Weyl group of ((?, JL0). Then W acts on the
R-vector space X(L0)Q ® z R and hence acts on its dual αPo. Fix a positive
definite W-invariant bilinear form < , > on αPo, by which we identify αPo

with its dual. This allows us to embed each aP in αPo. For a pair of
parabolic subgroups (P, P'), let PP(αP, αP,) be the set of distinct isomor-
phisms from aP onto aP, which are induced on aP by the action of elements
of W. If W(CLP, <v) is not empty, P and P ' are said to be associated.

2-2. In this subsection, we fix a parabolic subgroup P of G. For
simplicity, we often omit P as subscripts; namely we write α, U, L and
4̂ for ctp, (7P, Z/P and APf respectively. Put ac = a ® Λ C. We shall now

construct a series of representations JPC4) parametrized by A e αc. Let
έ%fP be the space of functions Φ: UΛLQAR\GA —* C satisfying the following
conditions (2.1)-(2.3):

(2.1) For any xeGA, the function lv^Φ{lx) on Z^ is ^-finite.
(2.2) Φ is right M-finite.

(2.3) | |φ | | 2 = ( ( \Φ(lm)\2dldm < oo .
JMJARLQ\LA

Here we denote by ^R the center of the universal envelopping algebra
of lc = I ® Λ C, the complexification of the Lie algebra I of LΛ, by AR

the identity component of AR and by dl (resp. dm) the Haar measure on

LA (resp. M) normalized by I dl — 1( resp. I dm — 1). Let 3ίfP be
UR.LQ\LA \ U J

the Hubert space obtained as the completion of έ%fP.
For Λeac,Φe £ίfP and x, y e 6?̂ , set

(2.4) Zp(y4, y)Φ{x) = Φ($i/) exp(< ί̂ + PP, HP(xy) — HP(x)}) .

Here /?P is the vector in o = αP defined by

Then ί/ H> IP(Af y)(y e GA) defines a representation IP(Λ) of 6?̂  on 3ίfP. If
il 6 ΐα, then JP(/ί) is a unitary representation. For φ e CΓ(Gf) and Λ 6 αc,
we define a bounded operator IP(A, ψ) on ̂ ĝ , by

IP(A, φ)Φ = I φ(xf)IP(A, XfjΦdXf
jGf

for Φe,
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2-3. Let & be an associated class of (standard) parabolic subgroups
of 6r. Let 3& be the linear space of collections F = {FP}Pe<? of measurable
functions FP: iaP -> 3ίfP satisfying the following conditions (2.6)-(2.7):

(2.6) If P,P' e ^ and w e W(aP, aP,)f then

FP,{wΛ) = M(w, A)FP{Λ) (A e ίaP) .

(2.7) || F\\> = Σ (2ττ i)- d i m β ^; 1 ( || FP(Λ) \\2dΛ < «> .
Fe^» Jίop

Here Λf(w, Λ) is an intertwining operator from ^fP onto gίfP,, and cP is
the number of chambers in aP (for detail, see Arthur [1, pp. 255-256]).

For φeC?(Gf) and F = {FP}Pβ*eS*» set

(2.8) (FP*φ)(Λ) = IP(4, φlFP(Λ) (A e iaP) ,

(2.9) F*φ = {Fp*9>}Pβ^ ,

where we put <£>"(#) = φ{x~ι)(x e G/). It is easy to see that F*φ e Ξ&.
2.4. One of the main results of the theory of the spectral decom-

position of L2(GQ\GA) is stated as follows.

PROPOSITION 2. (1) For any associated class & of parabolic subgroups
of G, there exists a linear operator F\-*Θ^(F) from Ξ& onto a closed
GΛ-invariant subspace L%.(GQ\GA) of L2(GQ\GA) which satisfies the
following conditions (2.10)-(2.11):

(2.10) \\Θ

(2.11) for ψ e C?(Gf), we have

( 2) We have the orthogonal decomposition;

L\GQ\GA) = Σ,LU

where & runs over all associated classes of parabolic subgroups of G.
( 3 ) The space L2

G)(GQ\GA) decomposes into a direct sum of countably
infinite GA-invariant irreducible closed subspaces.

(For detail, see Arthur [1, p. 256].)

3. We shall suppose throughout §3 and §4 that G is simply connected
and F-almost simple linear algebraic group defined over a non-archimedian
local field F. We put G = GF, the group of F-rational points of G.

3-1. We fix a maximal F-split torus S of G and a minimal F-
parabolic subgroup B of G which contains S. Let N (resp. Z) be the
normalizer (resp. the centralizer) of S in G. We write S, B, N and Z
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for the groups of F-rational points of S, B, N and Z, respectively. Due
to Bruhat and Tits [3, 4], there exists a reduced and irreducible root
system ΣOf subgroups Ua of G (aeΣ, the affine root system associated
with ΣQ) and a surjective homomorphism v\ N —>W (W is the Weyl group
of Σ) such that the triple (N, v, (Ua)aeΣ) satisfies several axioms stated
in Macdonald [8, p. 27, p. 35, (I)-(IX)]. Note that every root in ΣQ is
proportional to a root of G relative to S and conversely.

We assume that Σo is a finite subset of the dual of a finite dimen-
sional vector space V over R with a positive definite scalar product ( , ) .
For aeΣ0, let Ua be the root subgroup of G correspoding to α. Put
Σ+ = {aeΣ0\UaczB} and CQ = {xe V\a(x) > 0 for any aeΣϊ}. Then Co is
a Weyl chamber of Σo in V and 2Ό+ is the set of positive roots relative
to Co.

Let T be the translation subgroup of the Weyl group W of Σ. Set
T++ = {t 6 TI ί(0) e Co} and Z + + = i^T**) , where Co is the topological
closure of CQ in V. Then ^ + + is a subsemigroup of J£. Let K be the
subgroup of G generated by Ua+k with aeΣ0 and non-negative integers k.
The group ίΓ is a maximal compact open subgroup of G. Let ί7 be the
unipotent radical of B, and put U = UF. Then we have

(3.1) G =U Z K (Iwasawa decomposition) ,

(3.2) G = K'Z++-K (Cartan decomposition) .

For aeΣ0, the subgroup of G generated by Ua+k with keZ, which
we denote by U{a), coincides with the group of F-rational points of Ua.
We have

(3.3) U = Π U{a) (in any order) .

Let dua (resp. du) be a Haar measure on U{a) (resp. 17). For zeZ, put

2/β(«) = d{znaz~~1)jdua , 4(2) = d{zuz~ι)jdu .

It follows from (3.3) that Δ{z) = Π.βjjAOs). (Note that Jα(z) and 4(2)
do not depend on the choice of Haar measures dua and du.) Since the
functions Δa{z) and Δ(z) depend only on ί = v(z), we can define homo-
morphisms δa, δ: T -> R$ in such a way that δa(v(z)) = Jβ(«) and δ(y(s)) =
4(2) for any zeZ. For α 6 ί 0 , put /α = \Ua_JUa+1\

1/2 (note that /α > 1
and that Sa = (qaqa+1)

m in the notation of Macdonald [8, p. 38]). The
following statement is proved in Macdonald [8, Prop. (3.2.4)].

LEMMA 1. If teT and x = i(0)e F, we

= Π
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3-2. We summarize several results of the theory of spherical
functions on G = GF due to Satake [10] and Macdonald [8] in a form
convenient for later applications. Let the notation be the same as in
3-1.

A function ω on G is called a zonal spherical function relative to K
if the following conditions (3.4)-(3.6) are satisfied:

(3.4) ω is continuous on G.
(3.5) ft) is not identically zero.

(3.6) α>(&) α>(flr2) = I ω(gjcg2)dx (gl9

JK

where the Haar measure dk on K is normalized by 1 dk = 1.

Let Hom(Γ, Cx) be the group of all homomorphisms from Γ to Cx.
For s e Hom(Γ, Cx) and teT, we write (s, t) for s(t). For s e Hom(Γ, Cx),
we define a function φs on G by φ8(uzk) = (s^S172, v(z)) = (s, ί)" 1 -^, ί)1/2

(t = v(z)) for ueU,zeZ and keK (recall t h a t G = U Z K). I t is easy

to see that & is well-defined. Set

(3.7) ω8(g) = \ Φs(kg)dk (geG).
JK

LEMMA 2 (Satake; see Macdonald [8, Theorem (3.3.12)]). For any
86 Hom(Γ, Cx), the function ω8 on G is a zonal spherical function
relative to K. Conversely, every zonal spherical function is equal to ω8

for some s e Hom(Γ, Cx).

The Weyl group Wo of Σo acts on T by inner automorphisms and
hence acts on Hom(Γ, Cx); we define ws by (ws, t) = (s, w~Hw) for s 6
Hom(Γ, Cx), t e T and w 6 WQ.

LEMMA 3 (Satake; see Macdonald [8, Prop. (3.3.3)]). For we Woand
s e Horn (Γ, C x ) , we have ωW8 = ω8.

The following explicit formula for the zonal spherical function ωa

plays a basic role in the next section.

LEMMA 4 (Macdonald [8, Prop. (4.6.2)]). For seHom(T, Cx) αwd ze

= Σ
Here t = v(z), a? = t(0), Wos is the W0-orbit of s in Hom(Γ, Cx) and Φ;, is
a polynomial function on V depending on s' e Wos.

4. Let the notation be the same as in §3. In this section, we
define zonal spherical functions ωPp on G = GF associated with F-parabolic
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subgroups P of G and study their behavior at infinity.
4-1. Let P be a proper i^-parabolic subgroup of G containing B, the

fixed minimal F-parabolic subgroup of G. Denote by UP the unipotent
radical of P. We write P and UP for the groups of F-rational points
of P and UP, respectively. For p e P, put

(4.1) ΔP(p) = dipupp-^/dup

where duP is a Haar measure on UP. Since G = P-K, we can extend ΔF

to a function on G by AP{pk) — AP(p) (peP, ke K). It is easy to see
that ΔP is well-defined as a function on G. Set

(4.2) cϋp(g) = \ ΔP(kg)mdk (geG).
JK

LEMMA 5 (Macdonald [8, Prop. (1.4.7)]). The function ωP is a positive
definite zonal spherical function on G relative to K.

It follows from Lemma 2 that ωP is equal to ω8 for some se
Hom(Γ, Cx). Put Σt(P) = {aeΣ0\UadUP}. Since UPdU = UB, Σ+(P) is
contained in If. Define sP e Hom(r, Cx) by

(4.3) sP= Π Sa(trm (feT)
aeΣ+-Σ+(P)

aeΣ+-Σ+(P)
= Π

Then we have:

LEMMA 6. Mσ)m = Φ.piΰ) (geG).

PROOF. Observing that UP is generated by U{a) with a e Σi(P)9 we
have, for any zeZ,

Δp{zT= Π Λ(*)1 / 2= Π Um)m = (sP δv\v(z)) = φ8-i(z).
aeΣ^iP) aeΣ + {P)

This proves the lemma since ΔP and φ8-ι are, as functions on G, right
Z-invariant and left ϊ7-invariant. q.e.d.

In view of the above lemma and the definitions (3.7) and (4.2), we
have ωP = α>8-i. There exists an element w0 6 Wo such that woa = —a for
a € ΣQ. Then we have wosP = sP\ Thus we have proved:

LEMMA 7. Lei sP be the element of Hom(Γ, Cx) given by (4.3).
we have ωP = α>βp. Furthermore we have, for z e Z++,

(0P(z) =

where t = v(z), x = t(0) and W0(sP) is the stabilizer of sP in Wo) W0(sP) =
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{w e Wo I wsP = Sp}.

4-2. A continuous function / on a locally compact space X is said

to vanish at infinity on X if, for any ε > 0, there exists a compact

subset C of X such that supβeχ_(7l/(a0| < ε

We now show that ωF vanishes at infinity on G, if P Φ G. Since
G = K' Z++ K, we have only to show that the function z t-> ωP(z) vanishes
at infinity on Z++. Denote by L the lattice in V generated by ί(0) with
t e T. For x e L, let tx be the element of T given by tx(0) = x. By a
straightforward calculation, we obtain

£1/2 4.—1\ TT •α(x)/2# TT y—a(χ)/2

Set Σi{w, P) = w(Σo - 2Ό+(P)) Π Σί and Σό(w9 P) = iίi(Jβ

+ - ^o+(P)) Π (-^o+).
Observing that /w-ιa = /α (see Macdonald [8, p. 39]), we obtain

(wsP'δ^,t-ί)= Π C u ) / 2 Π <Γ α U ) / 2 .
oeJ 0 (u .P) αeI + -J0

+(«;,P)

Since a(x) ^ 0 for aeΣϊ(w, P) and ίceC0, and since /a > 1, we have

(wsP-δι'\ ί"1) ^ Π f-a(x)/2

aeΣ + -Σ+(w,P)

for cceCofΊL. Put / = Min{/α | αe2Ό+}. Since α(x) ^ 0 for αe2Ό+ and
xeCQ, we have proved:

LEMMA 8. For x e Co Π L, ^

Here ΛWfP is a linear form on V given by

J*-w,P\ά') — 2-k ll\Λ/) .
α e J + -J+(M;,P)

Combining Lemmas 7 and 8, we obtain:

LEMMA 9. For zeZ++, we have

I coP(z) I ̂  Σ I Φw.P(x) I /-^,P(*)/2 (X = v(z)(p)) .

Note that the kernel of the homomorphism from Z to L defined by
z \—> ^(^)(0) is compact. Hence, in order to show the vanishing at infinity
on Z++ of ωP, it is sufficient to verify that x\-+\Φwβp(x)\ s-A*»plx)/2

vanishes at infinity on Co for any w e Wo.
4-3. Let {au , ar} be the set of the simple roots of Σo relative to

the Weyl chamber CQ. Then alf - , ar are linearly independent over R
and Co = Πί=i{β£ V\at(x) > 0}. Recall that every positive root a can be
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written in the form a = m ^ + + mrar with non-negative integers
m,. Since ΛWiP is a sum of positive roots, we have ΛWfP = ΣΓ=i w<(w) αf

with non-negative integers m^w).
We claim that m^w) > 0 (1 ^ i ^ r) for any w 6 Wo. Suppose the

contrary. We may assume that m^w) = 0 for some w e Wo. Denote by
Σ}(aj) (resp. -E0(<O) the set of all roots in Σo whose coefficients at at are
positive (resp. non-negative). It is easy to see that Σ^(ax) c 2Ό+. Then
the assumption m^w) = 0 implies that (2Ό+ — Σi(w, P)) Π Σϊ{a^) is empty
and hence that Σt(a^) is a subset of Σ£(w, P). Thus we have

(4.4)

Observe that the root subgroup Ua corresponding to a e w(Σt — Σi(P)) is
contained in nwLPnz\ where LP is a Levi subgroup of P and nw is any
element of NF such that v(nw) = w. On the other hand, let P(ax) be the
subgroup of G generated by Z and Ua with a e ^ ( α j . Then P(αx) is a
proper parabolic subgroup of G and the unipotent radical U(aλ) of P(αJ
is generated by Ua with asΣίia^. If the inclusion relation (4.4) were
true, we would obtain the following:

(4.5) nwhPn7 3 <ί/α; a e ^(^ 0

+ - ^0

+(P))> => Π K = U(a,) .
αel+(θl)

Observe that n^pU'1 is a Levi subgroup of a proper parabolic subgroup
nwPn~ι. The following lemma shows that the inclusion relation (4.5)
never occurs and hence that the assumption m^w) = 0 gives rise to a
contradiction.

LEMMA 10. Let P and Pf be proper F-parabolic subgroups of G.
Then the unipotent radical U' of Pf is not contained in any Levi sub-
group L of P.

PROOP. Suppose that U' c L for some Levi subgroup L of P. Then
ί / ' c P and hence U'aPf]P'. In view of Borel and Tits [2, Prop. 4.4
(b)], U'- (P Π P') = P Π P' is an F-parabolic subgroup of G. Hence P and
P' contain a common minimal parabolic subgroup Po of G. Let So be a
maximal jP-split torus of G contained in Po. Let Σ'o be the root system
of G relative to So. Denote by {bu , 6r} the set of the simple roots
of ΣΌ relative to Po. Then there exists a root δ0 = nλbx + + nrbr with
nt > 0 (1 <; i ^ r). It is known that the root subgroup Uh corresponding
to 60 is contained in the unipotent radical of every proper parabolic
subgroup, especially in U'. Hence the assumption U' c L implies that

(4.6) UhcL.
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On the other hand, since P i s a proper parabolic subgroup of 6?, there
exists a non-empty subset μP of {1, , r} which satisfies the following
condition:

For a root b = m^ + + mrbr (mt e Z) in ΣΌ, assume that Ub c L.
Then mt — 0 for any i e μP. This fact contradicts the inclusion relation
(4.6) and the assumption nt > 0 for all i. q.e.d.

As a consequence, we have proved:

LEMMA 11. If we put ΛWtP = Σί=i w,(w) α, , £frew m,(w) > 0 /or
i and w e Wo.

Since Co = {x e V | α<(a?) ̂  0 (1 <̂  i ^ r)} and since ΦWSp(x) is a polynomial
function on V, the function given by x\-> ΦWSp(x)-S~A™>p{x) vanishes at
infinity on Co. Thus we have proved:

PROPOSITION 3. If P is a proper parabolic subgroup of G, the zonal
spherical function ωP associated with P = PF vanishes at infinity on
G = GF.

5. In this section, we suppose that 6? is a connected, simply connected
and absolutely almost simple linear algebraic group defined over Q.

5-1. For each finite place p of Q, we can apply results of §3 and §4
to GQp. We write Mp for K, the maximal compact subgroup of GQ

defined in 3-1. Then, except for a finite number of p, we have M9 =
GZp if we fix a suitable embedding GQ ^+ GL(iNΓ, Q). Hence this choice of
Mp is consistent with the choice of the maximal compact subgroups of
GQ in 2-1. From now on we fix the Haar measure dxf on Gf normalized
by"

ί dxf = l

Let {S(j)}?=1, K and ξs be the same as in §1.
5-2. We fix throughout 5-2, 5-3 and 5-4 a proper Q-parabolic sub-

group P of G. In this subsection, we let the notation be the same as
in 2-2. Denote by SίfP

κ the closed subspace of £{fP consisting of right
iΓ-invariant functions. Let V(P, K) be the linear space spanned by all
elements of SίfP that are continuous, bounded and Moo-finite as functions
on GA. We easily see that V(P, K) is dense subspace of SίfP.

Define a function ωPff on Gf by

(5.1) coP)f(xf) = \ exp«ίoP, HP(mfxf)))dmf ,

where dmf is the Haar measure on Mf normalized by \ dmf = 1. Then
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Q)Ptf is a zonal spherical function on Gf relative to Mf. Denote by
φ(G/, K) the C-module of φ e C~(Gf) satisfying φ(kgkf) — φ(g) for any
geGf and k, k' e K. Observe that ξ3- belongs to §(Gff K).

LEMMA 12. For any Φ e V(P> K), there exists a positive constant Cφ

such that

(5.2) \\IP(A, φ)Φ\\ ^ CΦ \ ωPlf(xf)\φ(Xf)\dxf
JGf

for any A e iaPy φ e §(Gf, K).

PROOF. Denote by M~ the set of all equivalence classes of irreducible
unitary representations of M. For r e f A , let Vτ be the representation
space of τ. For ΓeEnd(FΓ), set || T\\l = dimr tr(Γ Γ*), where Γ*
denotes the adjoint of T with respect to the scalar product of Vτ. Then
Γ-> | |Γ | | r defines a norm of End(Fr). For r e I A and ? e j r P , set

(5.3) Ψ(χ, τ) = [ ¥(xm)'T(m-1)dm (x e GA) ,

where dm is the Haar measure on M normalized by I dτn — 1. By virtue

of the Peter-Weyl theorem, we have

\\Ψ\\>=\ \ \Ψ{lm)\*dldm= Σ ( \\Ψ(l,τ)\\ldl,

where Sέ* denotes the quotient space (LP)Q(ApfR\(Lp)A. Applying this
formula to Ψ = IP(Λ, φ)Φ (<p e Q(fif, K), Φ e V(P, K)), we obtain

(5.4) || IP(Λ, Ψ)Φ f = Σ ( II IM, Ψ)Φ(1, τ) \\\dl .
τ 6 M Λ J ^f

In view of definitions (5.3), (2.3) and (2.4), we have

IP(Λ, φ)Φ(l, τ)

— \ \ <p(Xf)Φ(lmXf) exp«yl + pPi HP(lmxf) — HP(lm)})τ(m"'1)dXfdm
JMjGf

= \ \ φ(Xf)Φ(lmxf)exι>((Λ + pPf HP(mxf)y)τ(m"1)dXfdm
JMJGf

(note that HP(lgm) = HP(l) + HP(g) for any I e (LP)A, geGA and m e l ) .
Put Cφ = &wpgeGA\Φ(g)\. If Λeίcip, we have

(5.5) sup \\IP(Λ,φ)Φ{l,τ)\\

^ sup \ \ \<p(Xf)\exp(Re(pP + A, HP(mXf)))
le(Lp)AjMJβf

x I Φ(lmxf) I || τ{m~ι) \\τdxfdm
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<̂  Cφ dim τ I |<p(xf)\dxf I exp«/oP, HP(mfxf)))dmf

= Cφ dim τ \ \ φ(xf) \ ωP f(xf)dxf

(note that H^m^Xf) = HP(xf) for any m^eM^ and xfeGf). Since
JP(Λ, ?>)Φ is right if-invariant for any φ e Q(Gf, K) and since Φ is ikί̂ -
finite, there exists a finite subset iVφ of M~ such that, if τ e Λf" — iSΓφ,
we have IP(A, φ)Φ(g, τ) = 0 for any /ί e iaP, φ 6 ©(G/, K) and βr e 6r̂ . In
view of (5.4) and (5.5), we have

\IP{Λ, 9)Φf = Σ ( \\IAΛ, Ψ) Φ{1, τ)\\\dl

dl-$uv\\IP(Λ,<P) Φ(l,τ)\\l
' leLA

= Σ ( dZ (C;dimr ί |?>(!C/)|α)p>/(»/)<ia!/)ί

for /ί e ϊαP, ̂  6 φ(G/, if) and Φ e F(P, JSΓ). (Note that ( dl is finite.) Thus

the inequality (5.2) holds if we set

CΦ - C'Φ( Σ (dim τ)2 ( dl)m . q.e.d.

5-3. Recall the definition of ΔPΛ in 2-1; ΔPΛ(ΐ) = d(luPl~
ι)lduP

(le(LP)A) where duP is a Haar measure on (UP)A. We extend JP^
to a function on 6?̂  by putting APA(g) = JPA(lg) for geGA, where we
choose lg 6 (LP)A so that gr e (UP)A lg M. (For simplicity we use the same
notation APΛ.)

In view of (2.5), we have exp«/oP, HP(g)}) = APA(g)m (geGA), and
hence

= \ APA(mfxf)
1/2dmf (xfeGf) .

For a;/ = W ^ O O G G / (a?,6ίrβj(), we easily see APA(xf) = ΠP<OO^(a?,) where
we write P p for P ρ i ) and hence

(5.6) ωPtf(xf) = Π ( Jpp(m,a!F)1/2imf = Π α>Pp(aj,) .

(For the definition of APp and ωPp9 see (4.1) and (4.2), respectively.)
Since ωPp is positive definite (see Lemma 5), we have

(5.7) | a > , , ( * , ) | ^ l ( β ,

in view of Macdonald [8, Lemma (1.4.1)]. Combining (5.6), (5.7) and



UNIFORMITY OF DISTRIBUTION 151

Proposition 3, we obtain:

LEMMA 13. The function ωPj vanishes at infinity on Gf{6^) for
any finite set 6^ of finite places of Q.

5-4. The following lemma was proved in Murase [9, Lemma 5].

LEMMA 14. Let X be a locally compact group and let dx be a Haar
measure on X. Let {S(j)}f=1 be a sequence of open compact subsets of X.
Assume that

lim I dx = oo .

If a continuous function f on X vanishes at infinity, we have

lim ( f{x)dx / I dx = 0 .
j-^oo Jsj I JSJ

We can now prove the following fundamental result.

PROPOSITION 4. Let the notation be the same as in 5-1. Assume

(5.8) limdeg^ = oo .

Then, for any Φ e 3ffP and A e ίaP,

(5.9) \im\\IP(Λfξ7)Φ\\/άegξj = 0.

PROOF. The equality (5.9) for Φ e V(P, K) is an immediate consequence
of Lemmas 12,13 and 14. Since V(P, K) is dense in SίfP

κ and since

for ΦzS{fpκ and ΛeiaP, the equality (5.9) is also valid for Φ
q.e.d.

5-5. In this section we employ the notation in 2-3 and 2-4. Let
& be an associated class of (standard) parabolic subgroups of G. Assume
& Φ {G}. Let Ξ% be the subspace of Ξ^ consisting of F = {FP}Pe^eΞ^
which satisfies IP(A, k)FP{Λ) = FP{Λ) for any P e &*, A e iap and keK.
Then Θ& defines a norm-preserving linear operator from Ξ% onto the
subspace L%,(GQ\GA/K) of L%(GQ\GA) consisting of right i£-invariant
functions. In view of (2.7)-(2.11) we obtain

\IP(Λ, ζ7)FP(Λ)/degξj\\2dΛ

for FzΞ%. Observe that FP{A)e<§ίfP

κ for any P G ^ and ΛeiaP iίFe
B%. By virtue of Proposition 4, we have
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lim\\IP(A,ξ7)FP(Λ)/degξj\\ = 0

for any AeiaP under the assumption (5.8). Observe that we have
\\IP(Afξ7)FP(A)/άegξJ\\ ̂  \\FP(A)\\ for any AeiaP and j ^ 1, since IP(A)
is a unitary representation. Since A \-+ \\FP(A)\\2 is integrable on iap,
the Lebesgue convergence theorem applies and we have

lim ( || IP(A, ξ7)FP(A)/άeg ζ, \\2dA = \ lim || IP(A9 ζJ)FP(A)/deg ζ, \\*dA

= 0 ,

and hence

]im\\θP(F)*ξi/άegξi\\ =0

for any FeΞ§. under the assumption (5.8). Observing that Θ^ maps Ξ%
onto L%>(GQ\GA/K) and that CΛ is orthgonal to L%,(GQ\GA/K), we obtain
the following:

PROPOSITION 5. Let & be an associated class of parabolic subgroups
of G. If & Φ {6?} and if the assumption (5.8) is satisfied, we have

for any f QL%.(GQ\GA/K).

5-6. We shall consider the case & = {(?}. Recall that L2

{G}(GQ\GA)
decomposes into a discrete direct sum of countably infinite irreducible
unitary representations with finite multiplicities;

(5.10) LWG
π=l

The following proposition was essentially proved in Murase [9].

PROPOSITION 6. Let Sίf be a G^invariant subspace of L\GQ\GA).
Assume that the unitary representation of GA defined on £$f by right
translation is irreducible. Denote by J%fκ the closed subspace of Sίf
consisting of all right K-invariant functions. Then, ΐ/(5.8) is satisfied,
we have

lim || /*ei/dear fi - (/, 1) • 1II - 0

for any f e

This proposition and the decomposition (5.10) imply that the state-
ment of Proposition 5 also holds for & = {ίr}. Observing that
L\GQ\GA\K) = Σi^L%(GQ\GA/K) where & runs over all associated
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classes of parabolic subgroups of G, we obtain the following result,
which completes the proof of our theorem in view of Kuga's criterion
(Proposition 1).

PROPOSITION 7. Let the assumption be the same as in Theorem.
Then we have, for any f eL\GQ\GA/K),

REFERENCES

[1] J. ARTHUR, Eisenstein series and the trace formula, Proc. Symp. Pure Math. 33 part
1 (1979), 253-274.

[2] A. BOREL AND J. TITS, Groupes reductifs, Publ. Math. I. H. E. S. 27 (1965), 55-151.
[3] F. BRUHAT AND J. TITS, (a) J5iV-paires de type affine et donnees radicielles; (b) Groupes

simples residuellement deployes sur un corps local; (c) Groupes algebriques simples
sur un corps local; (d) Groupes algebriques simples sur un corps local: cohomologie
galoisienne, decompositions dΊwasawa et de Cartan, C. R. Acad. Sci. Paris Ser. A-B.
263 (1966), (a) 598-601; (6) 766-768; (c) 822-825: (d) 867-869.

[4] F. BRUHAT AND J. TITS, Groupes algebriques simples sur un corps local, Proc. Conference
on Local Fields, Springer-Verlag, Berlin-Heidelberg-New York, 1967.

[ 5 ] R. HOWE AND C. C. MOORE, Asymptotic properties of unitary representations, J. Functional
Analysis 32 (1979), 72-96.

[6] M. KUGA, On a uniformity of distribution of 0-cycles and the eigenvalues of Hecke's
operators, Sci. Papers College Gen. Ed. Univ. Tokyo 10 (1960), 1-16; 171-186.

[7] R. P. LANGLANDS, On the functional equations satisfied by Eisenstein series, Lecture
Notes in Math. 544, Springer-Verlag, Berlin-Heiderberg-New York, 1967.

[ 8 ] I. G. MACDONALD, Spherical functions on a group of p-adic type, Publ. Ramanujan
Institute 2, Madras, 1971.

[9] A. MURASE, On the uniform distribution property of certain linear algebraic groups,
Pacific J. Math. 88 (1981), 163-187.

[10] I. SATAKE, The theory of spherical functions on reductive algebraic groups over p-adic
fields, Publ. Math. I. H. E. S. 18 (1963), 1-69.

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE

UNIVERSITY OF TOKYO

TOKYO 113

JAPAN






