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0. Introduction. Hormander's theorem on the unique propagation
of zeros of solutions of partial differential homogeneous equations through
strongly pseudo-convex surfaces [6, Thm. 8.9.1] cannot be used if the
principal part of the operator has a double zero. The presence of real
double characteristics also precludes the use of Calderόn's uniqueness
results ([4] and [5]). On the other hand, there has been considerable
development in very recent times on uniqueness for the non-characteristic
Cauchy problem for operators with higher characteristics, for instance
[1], [2], [3], [7], [9], [10] to mention a few (the last reference contains an
extensive list of results known to date).

The purpose of this paper is to prove uniqueness in the non-charac-
teristic Cauchy problem for a class of differential operators of order two
with double real characteristics modelled upon the heat equation. Let Ω
be an open subset of Rn+1 and denote by z = (x, y), xeRn

f y eR the
variable point in Ω. We consider an operator

(0.1) P(z, D.) = Σ aa(z)D; + c(z)dy
|α|£2

with principal symbol p(x9 y; ξ). We shall assume that

(0.2) p(x, y; ξ) and c(xf y) are real and c(x, y) Φ 0 .

Let Σ be an oriented non-characteristic surface in Ω and consider a point
z0 in Σ. We prove in Theorem 1.1 that if Σ is "partially pseudo-convex"
with respect to P in the direction of x at z0 there is unique propagation
of the zeros of the solutions of Pu = 0 through Σ in a neighborhood of
z0 (see Definition 1.1 for the precise meaning of partial pseudo-convexity).
It is interesting to note that a class of operators analogous to those
studied here but modelled on the Schrodinger operator (i.e., with the
coefficient c(z) of dy purely imaginary rather than real) was studied in
[7] and sufficient and close to necessary "pseudo-convexity" conditions for
uniqueness in the Cauchy problem were given. These conditions, how-
ever, bear on the sub-principal symbol whereas the notion of partial
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pseudo-convexity, naturally associated to (0.1) when c(z) is real, depends
on the principal symbol alone.

The proof of Theorem 1.1 is based on a Carleman estimate

valid for u smooth and compactly supported in the negative side of the
initial surface φ = φ(z0) and 7 large. It is obtained by patching-up three
microlocal energy estimates.

Concerning the necessity of our hypothesis, it is a consequence of a
result of Alinhac that if partial pseudo-convexity is violated in a strict
sense at a non-radial fiber point ξ over z0 where dp(z0; ξ) Φ 0, there exists
a zero order perturbation of P for which there is no uniqueness through Σ.

We are indebted to Professor Zuily who kindly posed this problem
in the course of his lectures [10] at Recife. We also thank the anony-
mous referee who pointed out a flaw in the original proof of Lemma 2.1
and suggested the use of a partition of unity in the x-space to correct it.

1. Partial pseudo-convexity. Let Ω be an open subset of Rn x Rm.
We denote by z = (x, y), x e Rn, y e Rm, the variable point in Ω. Given
a point z0 = (x0J y0) in Ω, consider the submanifold {(x09 y) e Ω). Its tan-
gent space at z0 is the subspace of TZo(Ω) generated by d/dy\ i = 1, ,
m. We shall denote by NZo Q T*o(Ω) the orthogonal to this subspace.
In local coordinates,

NZo = {(x0, yo; ξ, 0) 6 T*{Ω)}.

Given a differential operator P(x, y, Dx, Dy) with real principal symbol
P(χf V\ ζf V) a n d smooth coefficients, we shall define the notion of partial
pseudo-convexity of a surface Σ with respect to P in the direction of x.
Let φ be a real valued smooth function defined in a neighborhood of z0

and assume that Vφ{z0) Φ 0. Then the equation

(1.1) Φiz) = φ{z0)

defines a non-singular oriented level surface in a neighborhood of zo\ we
say a point z of the neighborhood of z0 is in the positive (resp. negative)
side of the surface when φ{z) > φ{z0) (resp. φ{z) < φ{z0)). In the following
definition { , } denotes the Poisson bracket.

DEFINITION 1.1. The oriented non-characteristic surface Σ defined
by (1.1) will be called partially pseudo-convex with respect to P in the
direction of x at z0 if

(1.2) {p, {p, φ}}(z09 ζ) > 0 for all (s0, ζ) 6 Nz\{0}
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such that

(1.3) P(Zo,Q = 0 and {p, φ}(zo, ζ) - 0 .

If ψ defines the same surface Σ with the same orientation, then
Vφ = XFψ with λ > 0 a t ^ o and {p, {p, φ}}(z0, ζ) = λ{p, {p, ψ}}(zOf ζ) if (z0, ζ)
verifies (1.3) so the definition is independent of the function used to define
the oriented surface.

REMARK 1.1. If m = 0, then NZo = T*0(Ω) and partial pseudo-convexity
is just pseudo-convexity. On the other hand if ΣQRn is pseudo-convex
with respect to P(x9 Dx), then Σ x Rm will be partially pseudo-convex in
the direction of x with respect to P(x, Dx) in Rn x Rm.

REMARK 1.2. Assume that P is given by

(1.4) P = D\ + Σ α«(s,

with ίceΛ11"1, ίeJS, i/eJB and I' is given by φ(x, t,y)= —t = 0 where
Dt = -V^dldt, Dx = -i/^ϊίδ/Sa?1, , 3/a^-1) and 3y = 3/3?/ in a neigh-
borhood of the origin. Then, Σ is partially pseudo-convex with respect
to P in the direction of (x, t) at the origin if and only if the following
condition holds:

(1.5) (3α/3ί)(0; ξ) > 0 for all felT^MO} such that α(0; ξ) = 0

where we used the notation

(1.6) a(x, t, y;ξ)= Σ aa{x, t, y)ζ« .
|α|=2

REMARK 1.3. If 21 = {φ = ^( 0̂)} is partially pseudo-convex with respect
to P at 20 and 2" = {ψ = ψ(^0)} is another surface tangent to the former
and with the same orientation, it follows that Σ' is also partially pseudo-
convex with respect to P at z0 if the second order derivatives of φ — ψ
at z0 are small enough. In particular, if F is a closed subset of Ω con-
tained in the negative side of Σ, we may find Σf tangent to Σ and
partially pseudo-convex with respect to P so that F is contained in the
negative side of Σf — {ψ = ψ(z0)} and furthermore the sets

{ψ ^ f{z0) - ε} Π F

are compact if ε > 0 is small enough. More generally we have:

PROPOSITION 1.1. If the surface (1.1) is partially pseudo-convex with
respect to P at zoeΩ in the direction of x, then there exists a neighbor-
hood ω of z0 and a positive number δ such that every ψ e C°°(ω) for which
\Da(φ — ψ)\ < δ in ω, | α | 5ί 2, has partially pseudo-convex level surfaces
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with respect to P in the direction of x at every point of a).

The proof is trivial.

We now state our main result.

THEOREM 1.1. Let Ω be an open subset of Rn+1, z0 = (xOf yo)eΩ and
consider the differential operator with C°° coefficients (0.1) satisfying
(0.2). Let Σ be an oriented surface which is partially pseudo-convex
with respect to P at (x0, y0) in the direction of x and non-characteristic
with respect to P at (xOf y0).

Then, there is a neighborhood co of (x0, y0) such that if ue C°°(Ω),
Pu = 0 and u vanishes on the positive part of Σ, u must vanish identi-
cally in ω.

Observe that (0.1) has double real characteristics (p vanishes to the
second order at (zo; 0, , 1)) so there are no pseudo-convex surfaces with
respect to P. Furthermore, the equation p(z, ζ + τN) = 0 always possesses
the double root τ = 0 when ζ = (0, •••,!). If there exists a partially
pseudo-convex surface with normal N at z0, the double root τ = 0 will
split into a pair of simple roots (real or complex conjugate) at nearby
points (z; ζ).

When Σiαi2S2α*(ff, 2/)«D? is elliptic in Rn, as in the case of the heat
operator in Rn+1 (with y representing the time variable), all non-charac-
teristic surfaces are partially pseudo-convex in the direction of x. In this
case Theorem 1.1 implies a result of Mizohata [8]. A different example,
is the "heat equation" based on the Tricomi operator: P = Ό\ + tDl + dy.
In this case the oriented surface φ = 0 is partially pseudo-convex in the
(x, ̂ -direction if φ(x, t, y) = — t and is not if φ(x, t, y) = t.

REMARK 1.4. Concerning the necessity of partial pseudo-convexity in
Theorem 1.1, the following remarks are in order. Keeping the notation
of the theorem, to say that Σ is not partially pseudo-convex with respect
to P Sit z0 means that there exists £oeJ?n\{0} such that

P(z0; ξo) = 0 , {p, φ}(z0; ξ0) = 0 and {p, {p, φ}}(z0; ς0) £ 0 .

If we strengthen this to {p, {p, φ}}(z0; ξ0) < 0 and assume furthermore
that dp(z0; ξ0) Φ 0 and the characteristic set {(z; ζ) 6 Γ*i2n+1\{0}; p(z; ζ) = 0}
is transverse to the fibers, it follows from a recent result of Alinhac [1,
Theorem 2] that there exists a smooth function b such that uniqueness
in the Cauchy problem does not hold for P + b through the oriented
surface Σ.

COROLLARY 1.2. Let Ω be an open subset of Rn, xoeΩ and consider
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a second order operator

Q = Σ aa(x)D;
|α|£2

with real principal symbol and smooth coefficients. Let Σ be an oriented
surface which is pseudo-convex with respect to Q at x0. Then, there is
a neighborhood ω ofxo such that if ueC°°(Ω), Qu = 0 and u vanishes in
the positive side of Σ, u must vanish identically in ω.

Indeed, this follows if we apply Theorem 1.1 to Q + d/dy. This result
is a particular case of the aforementioned theorem of Hormander since
for second order operators with real principal symbol there is no difference
between pseudo-convexity and strong pseudo-convexity.

2. Proof of Theorem 1.1. We may choose local coordinates (as, t, y),
x e Rnl, teR, yeR, so that z0 = (0, 0, 0), Σ is defined by φ(x, t, y) =
— t = 0 and (changing P by — P if necessary) P is given by

(2.1) P = d2/dt2 + Σ a^dηdx'dx5) + cidjdy) + ^atf/dx') + a(d/dt) + β
i,3=l i=l

with

(2.2) c(0) > 4

(2.3) aiS = a^ = ajt, i, j = 1, , n - 1.

Observe that the definition of partial pseudo-convexity (Definition 1.1)
does not make use of coordinates. Once a decomposition of Rn+1 as the
product of say, Rn x R is chosen, partial pseudo-convexity is invariant
under coordinate changes of the form (x, t, y) H* (X'(X, t, y), t, y\y)). In
these coordinates the partial pseudo-convexity is expressed by (1.5).
Furthermore (see Remark 1.3) there is no loss of generality in assuming
that the sets supp u Π {t ^ ε} are compact for small positive values of ε.
Thus, Theorem 1.1 will follow in a standard way from:

LEMMA 2.1. Assume that P is given by (2.1) and satisfies (2.2).
Then there exists a neighborhood ω of the origin and a positive constant
C, such that when Ύ is sufficiently large the estimate

(2.4) 73|| t~r~2u ||2 + 7|| t-r-Xdu/dt) ||2

+ Σ Wt-r-vXdu/dx')]]1 + l-ψ-'du/dyW2 ^ C\\rrPu\\2

3=1

holds for all u e Cc°°(ώ Π {t ^ 0}). Here \\ || indicates the U-norm in all
variables.

PROOF. It is enough to prove (2.4) with P replaced by Po = d\ +
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Σi,i diaiβj + cdy with d/dXj = dά. We may also assume that the support
of u is a compact subset of {t > 0} which will be useful later since in
the course of the proof we use an operator depending smoothly on t for
t > 0 but not defined for t = 0. The general case will follow easily con-
sidering the sequence u(x, t — 1/n, y), n —> °°.

We set v = t~ru. Thus, Pou = trPv with

P = 35 + Σ dtatidj + 7(7 - l ) r 2 + 27r 13 ί + cdy .

Consider the operator

P1 = P+ (1/27)9,.

To prove (2.4) for large 7 we need only to show the following estimate
for P,:

(2.5) 73|| t-H; ||2 + 7|| %~Ht ||
2 + 7 Σ II r ι / 2 3 ^ ||2 + Ί~% vy ψ <. C\\ P,v | | 2 .

Indeed, HP^H2 = H v̂ + (l/2y)vy\\z ^ 2||Pv||2 + (l/2)7~2i|i;J|2 and the second
term on the right-hand side is absorbed by 7~1||#2/1|2 as 7 -> ©o. To obtain
(2.5) write P, = M + N where

M' = d\ + Σ Siα^y + (72 - (77)r2 + (1/27)3,,

N = 27ί"13t + cS,, + (σ - 1)7Γ2.

Note that we have split the term 7(7 - l ) r 2 into (72 - <77)r2 and
7(σ — l)t~2. Here σ is a real number that we will take later equal to
0, 1 and —1 to obtain three estimates that, combined, will yield (2.5).
At any rate, \σ\ ^ 1. We may write

(2.6) || Pγv ||2 = || Mv + Nv \\2 ^ 2 Re (Mv, Nv)

where ( , ) indicates the inner product in IΛ To compute 2 Re (Mv, Nv)
it is convenient to use the formulas below. They are easily proved by
integration by parts. We assume that v is compactly supported and a
is a smooth real function:

2 Re (vt, av) = -(v, atv), 2 Re (vtt, av) = (v, attv) - 2(vt, avt)

2 Re Σ (didifijV, av) = Σ ([oujltdsV, adtv) + Σ (βiβjV, &$&)
i i i

- 2 Re Σ (βtβiV, (da/dxj)vt).

In the sequel C will denote a large positive constant that need not be the
same in each expression and v will be a smooth function with compact
support contained in ω Π {t > 0}. We will need to shrink the neighbor-
hood ω a number of times in the course of the proof. Typically, C is
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chosen to dominate certain coefficients of Px or its derivatives, thus,
shrinking ω does not affect the size of C. Finally, 7 is a big parameter
that will eventually tend to infinity. We compute the terms appearing
in 2 Re (Mv, Nv):

(2.7) I, = 2 Re (d\v, 2Jt~1dtv) = 27|| t~ιdtv ||2

(2 8) £ = 2 R e (%v> cdvv) = (d*v> cvdt») - 2 Re (dyv, ctdtv)

IJ 2 1 ^ CΊ\\ v t ||
2 + 7 - 1 ! ! v , II2 ^ 2 " 1 7 | | t - % II2 + 7 - | | v , ||2,

shrinking ω in the ί-direction;

(2.9) 73 = 2 Re (dlv, (σ - l)Ίt~2v) = (27|| r'dtv ||2 - 67|| r 2 v ||2)(1 - σ)

(2.10) I4 = 2 Re ( Σ d.a^djV, Zrt'fyv)

= 27 Σ (O«α«y)3ίt;, r ^ v ) - 27 Σ ( o , ^ , r'S.t;)

(2.11) Jδ = 2 R e ( Σ 3 i α i i 3 i v , c3,«), 11.1 £ Cy\\Fxvf + 7-1 | |vJ|2

where Vxv indicates the gradient of v in the x variables;

(2.12) Iβ = 2 Re ( Σ dtatjdjv, (σ - l)Ύt~2v) = 27(1 - σ) Σ ( α , ^ , r 2 3 i V )

(2.13) /7 = 2 Re ((72 - σ7)r2v, 27ί"13tv) = 67(72 - <T7)|| t~2v ||2;

Λ = 2 Re ((72 - σ7)r2'υ, cdvv) = - ( 7 2 - crr)(t>, c.r2-!;)

' | I 8 | ^ O Ύ « | | * - X V ||* ^ O Ύ || *-H» II*

assuming | ί | < 1;

(2.15) I 9 = 2 Re ((72 - <τ7)r2v, (σ - l)7Γ2v) = 7(72 - <rt)(σ - 1)|| ί"H; ||2

(2.16) I1 0 = 2 Re ( ( 2 7 ) - ^ , 2 7 ^ 3 ^ ) , |J 1 0 | ^ 7-1||ί;B||2 + T p - ^ l l 1 ;

(2.17) In = 2 Re ( ( 2 7 ) - ^ , cdyv) ^ 7"1 inf c(z)|| vy ||2 ^ 47"1!!«, | | 2 ,

taking advantage of (2.2) and shrinking ω conveniently; finally

(2.18) I12 = 2 Re ( ( 2 7 ) " ^ , (σ - l)7r 2 v) = 0 .

Writing 2 Re (Mv, Nv) = Σΐ=i I< a n ( i collecting the identities and estimates
furnished by (2.7) to (2.18) we obtain

(2.19) 2 Re (Mv, Nv) ^ || t^v ||2(73(5 + σ) + O(72)) + 7|| r 1 v t ||2(5/2 - 2σ)

Combining (2.6) and (2.19) we obtain for large 7 and |σ | ^ 1

(2.20) || Ptv ||2 ^ 373|| Γ*v ||2 + 2~17|| r V ( ||2 + Ύ-r|| vv ||2

+ 7 Σ ((dtai3)dάv, t-fyv) - 2σ7 Σ (a^d^, Γ2d{v)

+ ΊC(Δxv, V)
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where Δx indicates the Laplacian in the #-variables so ||Fβv||8 = — (Δxvf v).
Now we let σ take the values σ — — 1, σ = 0 and σ = 1 in (2.20) in order
to get the three key estimates. To shorten the formulas we write

Hit; Hi; = 73 | |r2^||2 + 7\\t-%\\2 + T-^KH2.

Thus, for σ — — 1 we get

(2.21) CyP^H2 ^ | |H| | 2

r + 2τΣ(α ί i 9 i v, t"%v) + 7C(t-^xv, v).

Letting σ = 0, we obtain

(2.22) C| |P^ | | 2 ^ ||bHI2 + 7 Σ ( θ A i ) 3 Λ t'^v) + ΊC{ΔXV, V) .

As σ = 1 we see that

(2.23) CIIP^II 2 ^ Hlvlli; - 2 7 Σ (aiSdjV, t~%v) + ΊC(rιΔxv, v).

Should one of the quadratic forms α(0; ξ), αt(0; ζ) or — α(0; ς) be positive,
we could get (2.5) from (2.21), (2.22) or (2.23) respectively. Microlocally
we are always in one of these cases so we need only patch together the
microlocal forms of those estimates in the usual way. In view of (1.5)
we can find a neighborhood ω of the origin and three open cones Γ19

Γ2, Γ3 in Rnl such that

(2.24) a(x, t,y;ξ)>0, (x, t,y;ξ)eωx Λ M 0 }

(2.25) at(x, t,y;ξ)>0, (x, t,y;ζ)eωx Γ 2 \ { 0 }

(2.26) a(x, t,y;ξ)<0, (x, t,y;ξ)eωx Γ 3 \ { 0 }

(2.27) Λ U Γ 2 U Γ 3 = Λ-^tO}

where we have used notation (1.6).
Let {φi}, ί = 1, 2, 3, be a smooth part i t ion of uni ty of Sn~2 = {ζ e Rnl;

\ξI = 1} subordinated to t h e covering {Γif]Sn~2}. Consider a smooth part i-
tion of uni ty in Rnl, {ZJ so t h a t Z,(£) = φt(ξ/\ξ\) for \ξ\ ^ 1/2 and set

Vi(x, t, y) = fix, Dx)v{x, t, y) = -g@L \ e^Uξ)v{ξy t, y)dξ

where v(ζ, t, y) is the partial Fourier transform of v(x, t, y) in the vari-
able x and a(x) is a smooth function that is identically 1 in a neighbor-
hood of the origin and has small compact support so that inequalities
(2.21), (2.22) and (2.23) are valid for vt. We shall apply (2.21) to vl9

(2.22) to v2 and (2.23) to v3 and add the three estimates up. We get

(2.28) C Σ l | i>*II 2 ^ Σ IIKIil? + Ύ[2(a(x91, y; Dx)vu r 2 ^ )

+ (at(x, t, y; Dx)v2, tr'v,) - 2(a(x, t, y; Dx)vs, r%)]

+ CΎ[(J.VU t-%) + (Δ.vu v,) + (Jxvs, t~ιv3)]

= Σ III^IHJ + τ(j^(x, t, y; Dx)v, v)



CAUCHY PROBLEM 257

where we have written

, t, y; Dm) = 2r\f*a

W ^ i + f *Jxψ3} + <tf 4,

The operator sf{x, t, y; Dx) is a classical pseudo-differential operator of
order two in Dx depending smoothly on (ί, y), t > 0. The principal symbol
8(x, t, y\ ξ) of J^f is

s(x, t, y; ξ) = [2r\X\ - Xl)a(x, t, y; ζ) + t'ιXiat(xf t, y; ζ)

It follows from (2.24), (2.25), (2.26) and the choice of Z,(£) that there
exists a positive constant k such that

(2.29) 8(x,t,y;ξ)>t-ιk\ξ\ι, (x,t,y)eωf ζeR"-1

if we decrease ω enough; in particular a(x) = 1 for (x, t, y) e ω. Apply-
ing the Garding-Fefferman-Phong inequality to t2j^(xf t, y; Dx) — tk\Dx\

2

we obtain

(J*(a f ί, 2/; I ? > , v) ̂  *| | r F . i ; ||2 - V\\ t^u | | 2 ,

supp v £ ft) Π {ί > 0}.

It is another immediate consequence of the calculus of pseudo-differential
operators that

( 2 ' 8 1 ) ΣM'-IMΓ, Σ

At this point we make an additional assumption that will be dropped
later:

the coefficient c of dy is independent of x, in particular
( 2 ' 8 2 ) [c, Ψi] = 0, i = 1, 2, 3 .

Using (2.28), (2.30), (2.31) and (2.32) we get

cilP^ii2 ^ IIMIIΪ + TfcUr172^!!2 - C| |F.V| | 2 - fc'Tiir^n2

which implies (2.5) for 7 large.

3. End of the proof of Lemma 2.1. To deal with the general case,
consider the operator

(3.1) PXo = d]+ Σ <*<*(&, ί, yW/dxW + c(x0, t, y)dy

defined in ωx = 17 x (—ε, ε) x (—p,p) where U is a neighborhood of the
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origin in Rn~ι and x0 e U is fixed. If Z7, ε and p are small enough, the
first part of the proof applies to PXo (it verifies (2.32) in addition to
the hypothesis of Lemma 2.1) to conclude that there exist M, 70 such
that

( 3 . 2 ) M | | r r P x u | | 2 ^ 7 3 1 | r r ~ 2 u I I 2 + 7 { | | r r ' l u t I I 2 + I I t - r - υ Ψ x u I I 2 }

for 7 > 70, xoe U, ueCTiω^ Π {t ^ 0}). Then we proceed to show (2.4)
by partition of unity in the x-space. Let θ e C°°(Rn~ι) be equal to 1 on
\x\ ^ 1 and 0 on \x\ ^ 2. For δ > 0, k = (fclf , fc^) 6Z71"1 and 7 > δ"2^
set

θk(x) = θ(δ-Ύ/2x -

Then, Σfc^* = l o n Rnl a n d S^PP (^) S {|# - a?*| ^ 27~1/2<5}. For ue
C?{ω Π {t ^ 0}) and α) c ωx define

, ί, V) = θk(x)u(xf t, y)

and observe that for δ fixed and 7 > 70(δ), uk has support in α^ and
xke U whenever uk Φ 0. Then

PXkuk = Puk + (c(xkf t, y) - c(x, t, y))dyuk

Puk = θkPu + 2 Σ atάdθJdx'Xdu/dxί) + Σ a^d'ΘJdx'dx^u .

Hence,

\PXkuk - θkPu\2 ^ q δ ^ - ^ Λ l 2 + δ-27|βkVxu\2 + r472|/3fcu|2}

where βk(x) denotes the characteristic function of the support of θk and
C is constant. It follows that

(3.3) Σ II t-r(PXkuk - θkPu) II2

^ CΛδ^-'iir^ttii2 + a-^iirv.ttii1 + δ-472 | |r^||2}.

Thus, in view of (3.2) and (3.3)

\\t-rPu\\* = Σ I|t- Σ
- 2

% II2

- C1{8'r-ι\\t-τdtu\\t + 8-tΎ\\rΨmu\
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for a positive constant C3, if we choose δ and ε sufficiently small and
fixed and 7 > τ'o. This proves the lemma.
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