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1. Introduction. We are concerned with partially observable control
problems. Let X, be a state process being controlled, Y, an observation
process and U, an admissible control defined on a probability space
(2, F, P). The process X, and Y, are governed by the following stochastic
differential equations:

(1.1) dX, =b(X, U)dt + o(X)dW, 0<t<T,
(1.2) dY, =h(X)dt +dW, 0<t= T,

where W, and W, are independent Wiener processes with values in RY
and RY, respectively (for simplicity, we let M = 1 here).
Our object is to minimize

(1.3) J = Ef(Xy)

by a suitable choice of an admissible control, where f is a given cost
function. Define Z, by

Z, = expD: WX)AY, — (1/2) S lh(X,)Pds] :

Then, by Girsanov’s formula, Y, and W, turn out as independent Wiener
processes under the new probability measure P defined by dP = Z7'dP.
In partially observable control problems, an admissible control U, is
usually measurable with respect to ¢,(Y) (the o-field generated by the
observation process Y, for 0 < s <t). But, in this note we apply the
same idea of admissibility as that in Fleming and Pardoux [5], namely
we merely require that U, is independent of W and Y, — Y, for » = t.
Let F, denote ¢,(Y, U) and L(u) be the infinitesimal generator of X,
with a constant control . Bensoussan [1] and Pardoux [9] showed that
the unnormalized conditional probability P(t, w), defined by

ElgX)ZIF)@) = | | g@Pt, o)do)

for any bounded Borel function g on R”, has a density p(¢, , ) under
mild assumptions on b, ¢ and k. Furthermore, p(t) is regarded as a
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Sobolev space H*(RY)-valued process, which satisfies the following Zakai
equation:

(1.4) dp(t) = L*(Upp(t)dt + kp(t)dY,, 0=t=T.

In §2, we show some regularity results on p(¢f). In §3, we regard
p(t) as a state which is governed by the equation (1.4). So, our problem
(1.8) turns out to be the minimization of J = E‘F(p(t)), and we construct
a nonlinear semigroup @, associated with the optimal value. In §4, we
look for the generator of @, which is related to Mortensen equation.

Our semigroup @, is heavily related to the semigroup constructed by
Fleming [4]. He regarded an unnormalized conditional distribution itself
as state and constructed a nonlinear semigroup on the space of functions
of measures on RY. Here, we mainly use the L*(R™)-theory instead of
his method of measure theory.

This paper grew out of the author’s master’s thesis at Tohoku
University. He would like to thank Professors T. Tsuchikura and M.
Nishio for their advice and encouragement.

2. The control problem for the unnormalized conditional density.
Assume the following conditions (Al)~(A5):
(A1) I is a convex compact subset of R’.
(A2) aeCyR", R), where a = (a;;) = go*.
(A3) beC,(R"XR" R") and b(-, u) € CX(R", R") for each uel.
(A4) heCiR™, R).
(A5) There exists @ > 0 such that

N
D) a@es = alg  xeRY and zeRY,
i7=1

where CE(R™, R") is the space of functions whose partial derivatives up
to order k are bounded continuous R"-valued functions on R™.

Choose any T > 0 which is fixed throughout this note. For each
te[0, T], put

2,={Y,U): Y, =0, YeC(0, T], R"), Ue L¥[0, T], I')}
and F, = o,(Y, U).
DEFINITION. A probability measure =, on (2,, F,) is called an admis-
sible control on [0, ], if Y is a (&, {F,})-Wiener process for 0 < s < ¢.

Let o4 denote the set of all admissible controls on [0, ¢{]. When
t =T, we denote 2, and % by 2 and %, For simplicity, we use the
following notations, L’ = L*R"), H' = H(R") (1= —-1,1,2,8), (-, :) =
scalar produet in L?, || = L*norm, || = H%norm, |-|l, = H®-norm,
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{+, +> = duality pairing between H' and H~'. For each 7w ¢ . denote
by M2, T; L*) the space of L*-valued measurable processes @ such that
(i) () is an F,-adapted process,

(ii) B\ o@rds < -,

where E, stands for the expectation with respect to n. We define
similarly M0, T: X) for X = R” and H*. For @€ M0, T: L?), we define
t
an L*-valued stochastic process S o(s)dY, by
0

(4 | 2@9ar.) = {6 0pav., sers.
Define the operators L(u) and L*(u) of L(H', H™) by
2.1)  (Lwg, ¥ = {g, L*(w)y>

-1 ()92 9V ST 39
= g_;,l SRN a4;(x) P axidx + gl SRN b (z, u)gx—iyrdx

for ¢, € H* and we I, where L(H', H") 1is the space of bounded linear
operators from H*' into H™' and

~ N
b, u) = b, u) — = >, W% () .
2 J=1 ax,

Thanks to (Al)~(A5b), it is easily proved that there exist e R and
a > 0, so that for all g H' and uel,

(2.2) —(L*w)¢, ¢) + Mgl = (@/2)[|g]" -
We consider the following two Zakai equations (2.3) and (2.4):
pe M0, T: H)

(2.3) dp(t) = L*(U)p®t)dt + hpt)dY,
p(0) = yeL’.
pe MO0, T: H)
(2.4) dp(t) = [L*(U)p@t) + f(H)ldt + [hp(t) + g(t)]ldY,
p(0) = ye L,

where fe M¥0, T: H') and ge M0, T: L?). We state the following
propositions without proof, which are easy variants of the results of
Bennsoussan [1] and Pardoux [9].

PROPOSITION 2.1. For each m e 7, the equation (2.4) has a unique
solution p, which satisfies
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(1) p e LXQ, dr, C([0, T], L?)
(i) O = Wl + 2| LHUIB6) + f5), p)ds
2| (p(s) + g) PN, + | hp(s) + go)ds .

PROPOSITION 2.2. Besides (Al)~(Ab), we assume that « belongs to
H*:. Then, for each me .7, the equation (2.3) has a unique solution p,
which satisfies (ii) for f=¢ =0 and

(iii) pe M0, T: H*)N L}Q, dr; C([0, T], H?)) .
Furthermore, opjox; (t =1, -+-, N) satisfies the equation
op [ * op 1 [ op = ]
d(ax) L (U)( % )+ Fy Jat + h<axi) + g0 Y,

(g—fi)(m =5

1

where fe M0, T: H) and §e M*O0, T: L?) are defined by

Forp = -5 3, B2 L

+§1§R az'f( t) (t)¢dx for gecH'

and
gt) = (Oh/ox)p(t) .

LEMMA 2.1. There exist comstants K,, K, =1, such that for any
G € LP

(2.5) sup B [p()f = Kilyf 0=t=T,

(2.6) sup E;[pt)* = Kyl 0=t=T.
ProoF. Using Propostion 2.1 and (2.2), we get

@) POF S W + K| p@)rds + | (o), p&)aY,,

where K, = 2\ + |hl%) and |h|. = sup,csv|h(x)|. Taking the expectation
of both sides of (2.7) and using Gronwall’s inequality, we obtain (2.5)
for K, = %7,

Next, from (2.7), we get

2.8 Bip(o)f < 41vl* + 4(KT + W)E.|| p(s)lds .
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By Gronwall’s inequality, we obtain (2.6).
Using the same methods as in Lemma 2.1, we obtain the following.

LEMMA 2.2. There exist constants K, K, =1, such that for any
Y e H!

2.9 sup B [p®)|' < K.llwl* 05t=T,
(2.10) sup B [p)lI* < Killyl* 0st=<T.

3. Nonlinear semigroup. Hereafter, we assume that the initial
p(0) = 4 belongs to H®. Let C denote the space of functionals on H*
satisfying the following two conditions:

(C1) For any ¢ > 0, there exists 6 = d(¢) > 0 such that if ¢, 4 e H® and
llp — Il <, then

|F($)/(1 + llgl) — F()/L + || < e .
(C2) §3£2UF(¢)I/(1 + Igl0] < e .
For simplicity, we put () = (1 + ||¢]|*) for ¢ H'. We define a norm

I+ lle by
IFle = sup[IF@)lo~(@)] -

Then, C becomes a Banach space.
Define Q, by
QF() = inf EF(py(®) ,
where py(t) is the solution of (2.3). Then, we have the following theorem.
THEOREM 1. Q, maps C into C.
Proor. For FeC and +, 4 € H?, we get
|QF(y)o~'(¥) — QF @)~ (W)
= Sup[E; [F(py(£)07(py(t)) — F(p3®))0~(p3(®)| 0(py(8)0™ ()]
+ Sup[E [F(p3()| 07 (03(1) [0y ()07 (¥) — £(p3E)0~ ()]
=I+1I,, say.
For any ¢ > 0, we can choose 6 = d(¢) > 0 so that
|F(g)p™(¢) — F()p~()| < e,

whenever ¢, §e H? and || — 4|l <5. Put A = {w: ||py) — p3@)| < 8}
Then,
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I < & sup B, [Lo@s()p™ ()] + 2| Fllo sup E[Lp®y®)0™ 0] ,
where 1, stands for the characteristic function of A. Using (2.9) and
(2.10), we get
I, = (1 + K) + 2/0)|1Flc[2Q + K]y — Il «

In the same way, we have

L < ||F|l(1 + 6K) |4 — ¥l .
Hence, we get

|QF(y) 07 () — QF ()0~ ()]
= el + K) + ||Fll[@/0){2(1 + K} + A + 6K)] ||y — ¥l -

Since ¢ > 0 is arbitrary, Q.F satisfies (Cl1). Appealing to

QF ()| = ||Fllc(X + K)o(y) ,
we see that Q,F satisfies (C2). This completes the proof.

THEOREM 2. Q,..F = Q,Q.F for FeC and s,t =0, s+t = T.

From Theorems 1 and 2, we see that @, is a semigroup on C.
The proof of Theorem 2 is based on two lemmas. We write py(%)
as pY¥’(t) to emphasize its dependence on (Y, U)e 2. Let us denote

Y: = Ys+t - Yl ’ Ut' = Ua+t .
Clearly, (Y, U)e 2 implies (Y*, U®) € 2,_,.

LEMMA 3.1. For each we 7 and 0 < s < T, the following equation
holds as an element of C([0, T — s], H*) with w,_,-probability 1,

3.1) P¥(s +t) = pp""(t)  for tel0, T —s],
where p* = P (s).

PrOOF. We have for 0 <t < T — s, m,_,-a.8.

¥+ =v+ | LU0 + | hp0)a Y,
8 8 8+t s+t
=¥+ S L*(U,)p(0)do + Sohp(ﬁ)dYoJrS’ L*(U,)p(é))d(i-&-S‘ hp(0)dY,
= pl¥(s) + S‘ L*(U)p(s + 0)do + S:hp(s +O0)dY?.
Since the solution of (2.3) is uniquely determined in L*2,_,, 7r_,,
C([0, T — s]H?), this completes the proof.

Let 7,(Y, U) be the regular conditional distribution for (Y?, U®) given
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F,. Next lemma is proved by the same method as in Fleming [4].

LEMMA 3.2. If mwe 7 then we get for 0 < s, t,s +t< T,
(i) (Y, U)e 4, , T,-a.8. ,

(i) EF@"6 + 1) = || Bowol @R ©)dr, .
PrOOF OF THEOREM 2. Step 1. From Lemma 3.2 (ii), we see
3.2) EFpy(s+1) =2 SQ Q.F (0¥ (s))dm, = Q.Q:F () .

Since (3.2) holds for all 7 € 57, we get Q,,.F(v) = Q,Q.F(y). Step 2. We
prove the opposite inequality. Let ee (0, 1) be arbitrary. Since H® is a
separable Hilbert space, we can find a sequence of Borel sets B, B,, --
such that B,NB; = @ if 1 # j, diam B, < ¢ and U, B, = H*. For any
4r, € B;, choose 7, € &% so that

3.3) Q.F () + ¢ > E. F(py,?)) .

On the other hand, recalling the same calculation as for I, in the proof
of Theorem 1, we get for any q, 4 € H*

|QF(y) — QF (V)]
= Kep(y) + Klo(y) + [1Flle(lvll + [1¢ DIl — 4l
where K; = max{(1 + K,), 1 + 6K, + 2(1 + K,)'*}. Hence, for each € B,,
E. F(py@) = QF () + € + 4eK0(y) + K, ||Fllo(1 + 2 |||
= QF () + eKp(y) ,

where K, is a suitable positive constant depending only on || F||; and K.

Put =,(Y, U) = 332, wl,, where 2, = {w: p37(s, w) € B}. For a given
T, €. 57, we can find we % so that =, (Y, U) is a regular conditional
distribution for (Y?, U®) given F, and #|F, = n,., By Lemma 3.2 and the
above results, we see

EF@yG +0) s 3| [QF@FE) + KWz,
= E, [QF(py7(s) + eKp(y)] .

Therefore, we obtain
Q.. F(y) < E, [QF(03(s))] + eKi0(y) .
On taking the infimum over =, € .5, we have
Q. F () = QQF(y) + eKp(y) .
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Step 3. From Steps 1 and 2, we see, for any ¢ > 0
1Qu+eF — QQ.F||¢ < €K .
Letting ¢ tend to 0, we get Theorem 2.
Now, we consider the continuity of @,. We put
H={¢eH" gl =71} (0<7r<eo).

THEOREM 3. For each v, QF(¥) — QF(y) uniformly on H}, as
|t —s|—0.

For the proof of Theorem 3, we need two more lemmas, of which
the first is obvious.

LEMMA 3.3. There exists a positive constant K, so that
SE?‘”L*(u)“L(Hl,H"“) SK < oo

LEMMA 3.4. There exist positive constants K, K, so that for any
€ H*

(3.4) sup B, [py(t) — py©)l < Kolt — s/l
(3.5) sup B [py(t) — py@)l* < Kalt — sl [ -

PrROOF. We prove only (8.4). Using Lemma 2.2, we can prove (3.5)
by the same methods as (8.4). For simplicity, put s = 0. We set 3(f) =
py(t) — 4. Then, B(t) satisfies the following equation z-a.s.:

dp@t) = [L*(Upp@#) + L*(U)yldt + [hBE) + hyldY,,
p0)=0.
Using Proposition 2.1, Lemma 3.3 and the inequality
2|ab| = pa* + b/ (a,beR, 1> 0),
we get

E. B + (@ — KyE 156)ds < 20 || [5)ds

+ (Kit/) l¥|* + K.t |h[ |y

We choose g > 0 sufficiently small so that a — Ky > 0. Then, by
Gronwall’s inequality, we get for any me .

E PO = (1 + 22T [(Kat/m) |l [I* + Kt [Bl%|9[7] .
Put K, = 2(1 4+ 2\Te*") x [max{Ks/y, K,|h[:}]. Then, we have
sup E;[pO)f" = Kt [l¥]* -



NONLINEAR SEMIGROUP 259

This completes the proof.

ProOOF OF THEOREM 3. For any ¢ > 0, choose 6 = d(¢) > 0 so that if
¢, $ € H* and |lp — 8|l < 9, then

|F(g)0™(¢) — F(@)o~(P)] < e.
By (3.5), we get
QF(y) — QF ()| = e(1 + K)py) + 2||Fllg|lv| Kis?
X[t — s|[(1/0) [|@[{2(1 + Killw(D}* + [yl K] -
Hence, choosing a suitable positive constant K,,, we get on H?
QF () — QF()| = Ky(e + [t — s")A + 7°) .

Since ¢ > 0 is arbitrary, this completes the proof.

4. The generator of the semigroup Q,. Let C* denote the totality
of F'e(C satisfying the following conditions:

(i) Fis defined on L?* and twice continuously Fréchet differentiable
on L7,

(ii) ¢€ H' implies that the first derivative DF(g) is in H' and
DF(¢)/(1 + ||#]) is bounded and uniformly continuous on H'.

(iii) The second derivatine D*F' is bounded and uniformly continu-
ous on L7

By Pardoux [9], for F'€(C? we have Ito’s formula in infinite dimen-
sion for the solution of (2.3) as follows:

@) Fw) = Fo) + | (DF@e), L*(U)p()Hds

+ |, (DF @), hp@)a Y, + (1/2) || (D*Fp(e)hn(s), h(s)ds .

We define the operators #(u) and & on C* by
LWF() = (DF(y), L*(w)y) + 1/2)(D*F(y)hy, hyr) uwel
and
ZLF() = inf LW)F(y) .

We can easily see that &°F belongs to C. Taking the expectation in
(4.1), we have for each 7 e

4.2) E.F(p(t) — Fy) = E. || SAUIFp©)s .

THEOREM 4. For each r < oo,
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ltigl(llt)[QtF ) — F(y)] = LF@)

holds uniformly on HE.

PrROOF. Let ¢ > 0 be arbitrary. We choose 6 = d(¢) > 0 so that, if
¢ — &Il <9, then

IDF($)/(1 + llgll) — DF($)/(L + lIg]DIl < e
and
“D2F(¢) - DzF(&)HL(Lz,Lz) <e.

So, we get

sup B, ||| AU Fw@)ds — || AU Fwds

< sup E, || KDF(0(s)), L*(U)p(s)) — <DF(y), LUl ds

+ (1/2)sup E, | (D F@@)ha(s), b(s) — (DFhy, bl ds
=J,+J,, say.
By Lemma 3.3, we get

J, = K,sup E, | IDF@@)I-lpGs) — ¥l ds

t
+ Kllvlsup E. | 1DF(@e) — DF)lds .
Put ||DF||s = supsen2[|DF(¢)|/(1 + ||#][)]. Then, using Lemmas 2.2 and 3.4
and choosing a suitable positive constant K,, depending only on K,, K,

K, and ||DF||;:, we have
(4.3) Ji = Kpt(e + 7)1 + [y [l3)

Put ||D*F|oe = SuPser2||D*F(¢)||1z2,.5. Then, choosing a suitable positive
constant K, depending only on K, K,, |h|~ and ||D*F||;z, we have

(4.4) J: = Kit(e + 7)1 + [lvll) -

Next, we note that
4.3) inf E, S LUIFW)ds = inf E, S' LFp)ds = tLF0)
= inf S’ L)F)ds = inf ES P(UYFp)ds .

Hence, all inequalities are replaced by equalities. So, we get from
(4.2)~(4.5),
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(WOIQFW) — Fe)] — LF)
< sup(/t)| E.Fo(®) — F) — E. || AU)Fends|

< sup(9)|E. || AVIF @) — E. || AUIFeyas|
< (K + Ko + (L + Il -

Since ¢ > 0 is arbitrary, we have

ltilrgl(l/t)[Q,F(mb) — F(y)] = ZLF(¥y)

uniformly on H?. This completes the proof.

We denote Q.F(y) by W(, ). By Theorem 4, we expect that
W(t, v) is a solution of the following equations:

AW/dLt, ») = LWE, ) in (0, T)x H?,
W, ¥) = F(y) on H*.

It is, however, very difficult to derive the regularity of W(t, 4) with
respect to ¢ and . We extend the concept of viscosity solution to
infinite dimension and show that W(¢, 4) is a viscosity solution of (4.6)
in that sense.

Let G be a continuous functional on (0, T') x H? so that G(t) belongs
to C for each t€ (0, T'). Denote by E.(G) the set of all (¢, v) € (0, T') x H?,
where [max{G(t, ¥); (¢, ¥) € (0, T)x H?}] is attained. Similarly, denote
E (G) the set of all (¢, 4,) €(0, T)x H?, where [min{G(t, v); (¢, ¥)€
(0, T)x H*}] is attained. We remark that if (¢, 4,) belongs to E,(G)
(resp. E_(@)) and |4, — ¥o|. = 0, then (¢, 4,) belongs to E.(G) (resp.
E_(®)). The following is due to Lions [6]:

(4.6)

DEFINITION. W,e C([0, T') x H?) is said to be a viscosity solution of
(4.6), when it has the following properties:
W0, ) = F(4) and for any G e C([0, T]x H*) we have

4.7 dGldt — LG =0 at (t, ¥0) € E(W, — G)
(4.8) dGldt — <G =0 at (tyYv)eE_(W,—G),

if G is twice differentiable with respect to ¢, d*G/dt* is bounded on
(0, T)x L?, dG/dt belongs to C and G(t, ) belongs to C* for each t € (0, T).

THEOREM 5. W(t, «) is a wviscosity solution of (4.6).
For the proof of Theorem 5, we introduce the following order in C.

DEFINITION. We say that F < F in C, if F(¢) < F(¢) for all ¢ € H*.
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LeMMA 4.1. IfF<FinC, then QF < QF in C for all 0 <t < T.

PrROOF. Since F< F in C, we have for all v+eH* we.& and
0t T,

Q.F(y) < E.F(py(t)) < E.F(py(t)) .
On taking the infimum over z e ¥, we get
QF(W) £ QF () .
This completes the proof.
LEMMA 4.2. Let FeC* and HeC* Then, for each + € H?, we have
13{{)1(1/0)[(20(14’ + 6H) — Fl(y) = HW) + LF()
Proor. We have
|(L/0)[Q(F + 6H) — Flly) — [H(y) + LF)]|
= |(UOIQe(F + 60H)(¥) — QuF (y) — 6H(y)]|

+ |1/O[QF () — F(y)] — LF ()]
=M, + M,, say.

Since & is the infinitesimal generator of the semigroup Q,, we see that
M,—0 as §}0. On the other hand, we have

M, < sup E, [H(py(6)) — Hw)| -

By (3.4), we have M, — 0 as § | 0. This completes the proof.

PROOF OF THEOREM 5. By Theorem 3, we see easily We C([0, T']x H?).
Let (t, v)eE (W —-G) and M= (W — G)(t, 4). Then, considering
G(t, 4) + M instead of G(¢t, 4), we may assume (W — G)(t, v¥,) = 0 with-
out loss of generality. For #¢ (0, t,) we have

G(t,, o) = W(to, ¥o) = [QoQto—ﬂF ](’\l“o) = [Qﬂ W(t, — 0)]("/“0) .
Since W(t) < G(t) in C for 0 £t < T, using Lemma 4.1 we get
[Qo W(to - 0)]("/"0) = [QaG(to - 0)]("1"0) .

Since d*G/dt* is bounded on (0, T')x L?, there exists ¢(@) > 0, so that for
all g€ H®

Gt — 0, 9) = Gty ¢) — [dG/dE(E, §)] + 0¢(6) ,
and
@ —0 as 6/0.
Let ¢,>0 be arbitrary. We choose 6,(¢,)>0 in such a way that if 0<d<
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Os(&), then 0<e@) <e. By Lemma 4.1, we have G(t, 4, <
QIGE,) + Hl(v,), where H = —(dG/dt)(t, -) + . Hence, we have
(1/0)[Qs(G(t,) + H) — GEt)](¥y) = 0. Since dG/dt belongs to C, using
Lemma 4.2 we have dG/dt(t,, 4,) — LG, o) — & = 0. Since ¢ > 0 is

arbitrary letting ¢, tend to 0, we get dG/dt(t,, ¥) — LGy, ¥y) < 0.
The proof is similar, when (¢, ¥,) belongs to E_(W — G). This com-
pletes the proof.
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