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1. Introduction. We are concerned with partially observable control
problems. Let Xt be a state process being controlled, Yt an observation
process and Ut an admissible control defined on a probability space
(Ω, F, P). The process Xt and Yt are governed by the following stochastic
differential equations:

(1.1) dXt = b(Xt, Ut)dt + σ(Xt)dWt 0 < t ^ T ,

(1.2) dYt = h(Xt)dt + dWt 0 < t ^ T ,

where Wt and Wt are independent Wiener processes with values in RN

and RM, respectively (for simplicity, we let M = 1 here).
Our object is to minimize

(1.3) J = Ef(Xτ)

by a suitable choice of an admissible control, where / is a given cost
function. Define Zt by

Zt = exV[\tHX8)dY8 - (1/2)

Then, by Girsanov's formula, Yt and Wt turn out as independent Wiener
processes under the new probability measure P defined by dP = Z^dP.
In partially observable control problems, an admissible control Ut is
usually measurable with respect to σt(Y) (the σ-field generated by the
observation process Y8 for 0 ^ s ^ t). But, in this note we apply the
same idea of admissibility as that in Fleming and Pardoux [5], namely
we merely require that Ut is independent of W and Yr — Yt for r ^ t.
Let Ft denote σt(Y, U) and L(u) be the infinitesimal generator of Xt

with a constant control u. Bensoussan [1] and Pardoux [9] showed that
the unnormalized conditional probability P(ί, α>), defined by

E[g(Xt)Zt\Ft](ω) = [ „ g(x)P(t, ω)(dx)

for any bounded Borel function g on RN, has a density p(t, x, ω) under
mild assumptions on 6, σ and h. Furthermore, p(t) is regarded as a
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Sobolev space ίf2(/O-valued process, which satisfies the following Zakai
equation:

(1.4) dp(t) = L*(Ut)p(t)dt + hp(t)dYt , 0 ^ t ^ T .

In §2, we show some regularity results on p(t). In §3, we regard
p(t) as a state which is governed by the equation (1.4). So, our problem
(1.3) turns out to be the minimization of J = EF(p(t)), and we construct
a nonlinear semigroup Qt associated with the optimal value. In § 4, we
look for the generator of Qt which is related to Mortensen equation.

Our semigroup Qt is heavily related to the semigroup constructed by
Fleming [4]. He regarded an unnormalized conditional distribution itself
as state and constructed a nonlinear semigroup on the space of functions
of measures on jR .̂ Here, we mainly use the D(RN)-theoτy instead of
his method of measure theory.

This paper grew out of the author's master's thesis at Tohoku
University. He would like to thank Professors T. Tsuchikura and M.
Nishio for their advice and encouragement.

2. The control problem for the unnormalized conditional density.
Assume the following conditions (A1)~(A5):
(Al) Γ is a convex compact subset of RL.
(A2) a e Cl(RN, RN2), where a = (atJ) = σσ\
(A3) b e Cb(RN x RL, RN) and £>(•, u) e Cξ(R«, RN) for each ueΓ.
(A4) heCl(RN,R).
(A5) There exists a > 0 such that

Σ di^ζiζj ^ oί |f |2 x e RN and ςe Rλ ,

where Q{Rm, Rn) is the space of functions whose partial derivatives up
to order k are bounded continuous Rn-valued functions on Rm.

Choose any T > 0 which is fixed throughout this note. For each
t e [0, Γ], put

Ωt = {(Γ, U): YQ = 0, ΓeC([0, T], RN), UeL\[0, T], Γ)}

and Ft = σt(Y, U).

DEFINITION. A probability measure πt on (Ωtf Ft) is called an admis-
sible control on [0, ί], if Y is a (πt, {.F8})-Wiener process for 0 <£ s ^ t.

Let s^t denote the set of all admissible controls on [0, ί]. When
t = T, we denote Ωτ and s^τ by Ω and sf. For simplicity, we use the
following notations, U = L\RN), Hι = H\RN) (i = - 1 , 1, 2, 3), (-,•) =
scalar product in L2, | |=L2-norm, || || = fp-norm, || ||2 = J5Γ2-norm,
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<",•>= duality pairing between H1 and H~\ For each π e Jtf denote
by M2(0, T\ U) the space of U-valued measurable processes Φ such that
( i ) Φ(t) is an ^-adapted process,

(ϋ) EX \Φ(8)\*d8 < - ,
Jo

where Eπ stands for the expectation with respect to π. We define
similarly M2(0, T: X) for X = RN and H\ For Φ e M2

π(0, T: L2), we define
Φ(s)d7, by

0

(φ, [ Φ(s)d Γ.) - j y Φ(β))d F., φ e L2 .

Define the operators L(«) and L*(«) of L(H\ H'1) by

(2.1) (L(u)φ, ψ) = <?

= ~ Σ
2 ΐ,i= ^ 7 i

for φ, ψeH1 and w e Γ, where L(H\ H'1) is the space of bounded linear
operators from H1 into H*1 and

£*(<*, u) = &,(*, tt)-i-Σ -γ^(»)
2 y=i 9 ^

Thanks to (A1)^(A5), it is easily proved that there exist XeR and
a > 0, so that for all φ e H1 and ueΓ,

(2.2) - < L * C Φ , Φ) + MΦ\2 ^ (cc/2)\\Φ\\2

We consider the following two Zakai equations (2.3) and (2.4):

eM!(0, T-.H1)

dp(t) = L*(Ut)p(t)dt + hp(t)dYt(2.3)

(2.4) \dp(t) = [L*(Ut)p(t) + f(t)]dt + [hp(t) + g(t)]dYt

where feM^O.TiH-1) and geM2

π(0, T: U). We state the following
propositions without proof, which are easy variants of the results of
Bennsoussan [1] and Pardoux [9].

PROPOSITION 2.1. For each πzs/, the equation (2.4) has a unique

solution p, which satisfies
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( i ) pe L\Ω, dπ, C([0, T], U))

(ii) \p(tW = W2 + 2Γ (L*(UMs) + f(s), p(s))ds
Jo

+ 2Γ (Ms) + g(s), p{s))dY, + Γ I M S ) + g(s)\2ds.
Jo Jo

PROPOSITION 2.2. Besides (A1)~(A5), we assume that ψ belongs to

H2. Then, for each π e J < ίΛe equation (2.3) fcαs α unique solution p,

which satisfies (ii) for f = g = 0 αwd

(iii) p 6 M,2(0, Γ: if3) n L2(i2, dπ; C([0, Γ], F 2)) .

Furthermore, dp/dXi (i = 1, , iV) satisfies the equation

(|L)(0) = ft

/ e M 2 ( 0 , Γ: iί"1) and ^6Λβ(0, T: U) are defined by

<ht),Φ) = — Σ ( N ^ ) ^ ^ m x
2 fc.i^i }RN dXi dxk dxi

+ f; ( Ohfa ut)^(t)φdx for φ e H1

k=URN dXi dxk

and

g(t) = (dh/dxMt) .

LEMMA 2.1. There exist constants Kly K2 ^ 1, such that for any

(2.5) sup Eπ \p(t)\2 ^ K, | t l 2 0 ^ ί ^ T ,

(2.6) sup JE7, |J»C*>I* ^ ^2 If I4 0 ^ ί ^ T .

PROOF. Using Propostion 2.1 and (2.2), we get

(2.7) IpWI2 ^ k l 2 + iΓ, Γ |p(s)|2ds + Γ(Λp(β)f 2>(s))dF8 ,
Jo Jo

where Kz = (2λ + |Λ|L) and |fe|oo = supββΛ^|A(aj)|. Taking the expectation
of both sides of (2.7) and using GronwalΓs inequality, we obtain (2.5)
for K, = eκ*τ.

Next, from (2.7), we get

(2.8) EMW ^ 4 | t l 4 + ±{KξT + \h\l)Eπ\ \p(s)\*ds .
Jo
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By GronwalΓs inequality, we obtain (2.6).
Using the same methods as in Lemma 2.1, we obtain the following.

LEMMA 2.2. There exist constants K4, Kδ ^ 1, such that for any

(2.9) s u p ^ l b W H 2 ^ £4II*II2 0 ^ ί ^ T ,

(2.10) sup

3. Nonlinear semigroup. Hereafter, we assume that the initial
p(0) = ψ belongs to H2. Let C denote the space of functionals on H2

satisfying the following two conditions:

(Cl) For any ε > 0, there exists δ = δ(ε) > 0 such that if φ, φ e H2 and
\\φ - φ\\ < δ, then

\F(φ)/(l + \\φ\\2) - F(φ)/(1 + \\φ\\2)\ < ε .

(C2) saτ>[\F(φ)\/a + \\φ\\2)] < 00 .

For simplicity, we put p(φ) = (1 + ||ί*||2) for φ 6 H1. We define a norm
II-lie by

||2f||σ = suv[\F(φ)\p-\φ)] .

Then, C becomes a Banach space.
Define Qt by

QtF(ψ) = inf Eπ

where py.(ί) is the solution of (2.3). Then, we have the following theorem.

THEOREM 1. Qt maps C into C.

PROOF. For FeC and ψ, ψeH2, we get

== £ + I2 , say .

For any ε > 0, we can choose 3 = δ(ε) > 0 so that

\F(φ)p-\φ) - F(φ)p-\φ)\ < ε ,

whenever φ,φeH2 and \\φ - φ\\ < δ. Put A = {ω: \\p+(t) - p?(ί)|| < δ}.
Then,
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ϋ ^ ε sup Eπ[lΛp(pΨ(t))p-\ψ)] + 2 \\F\\C sup

where 1A stands for the characteristic function of A. Using (2.9) and
(2.10), we get

I, ^ e(l + Kd + (2/δ)\\F\\a[2(l

In the same way, we have

Hence, we get

\QtF(ψ)p-\f) - QtF(ψ)p-\ΐr)\

3S e(l + Kd + ||F||σ[(2/δ){2(l + Kh)f> + (1 + 6JQ]|h|r - ΨII

Since e > 0 is arbitrary, QtF satisfies (Cl). Appealing to

\QtF(f )| ^ H l̂lσCl + K4)p(ψ) ,

we see that QtF satisfies (C2). This completes the proof.

THEOREM 2. Q8+tF = Q8QtF for FeC and s, t ^ 0, s + t ^ T.

From Theorems 1 and 2, we see that Qt is a semigroup on C.

The proof of Theorem 2 is based on two lemmas. We write pψ(t)
as vψ(t) to emphasize its dependence on (Y, U)eΩ. Let us denote

Yl = Γβ + ί - Γβ , ϋl = ϋ . + l .

Clearly, (Y,U)eΩ implies (Γ8, U°)eΩτ_8.

LEMMA 3.1. For eαcfe TΓ e s/ and 0 < s < T, the following equation
holds as an element of C([0, T — s], H2) with πτ^-probability 1,

(3.1) p$F(8 + ί) = 2>^β(ί) for t e [0, Γ - s] ,

where p8 = p^(s) .

PROOF. We have for 0 < ί < Γ - s, πΓ_8-a.s.

p5F(8 + ί) = ψ> + Γ+ tL*(C7,)p(^)^ + [+thp(θ)dYθ

Jo Jo

L*(Uβ)p(θ)dθ Γ

+ Γ L*(U8

θ)p(s
JSince the solution of (2.3) is uniquely determined in L2(ΩT_8, πτ_81

C([0, T - s]H2)), this completes the proof.

Let τr8( Y, U) be the regular conditional distribution for (Y'9 U8) given
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F8. Next lemma is proved by the same method as in Fleming [4].

LEMMA 3.2. If πej^f then we get for 0 ^ s, t, s + t <; ϊ7,

( i ) πB(Y, U) e j ^ _ β , ττ.-a.s. ,

(ii) EπF(pV(s + ί)) = \Q Eπ3{Y>U)[F(pl!u8(t))]dπ8 .

PROOF OF THEOREM 2. Step 1. From Lemma 3.2 (ii), we see

(3.2) EπF(pψ(s + t)) £ ( QtF(pψ{s))dπ8 ^ Q8QtF(ψ) .

Since (3.2) holds for all π e j < we get Q8+tF(ψ) ^ Q8QtF(ψ). Step 2. We
prove the opposite inequality. Let ε e (0, 1) be arbitrary. Since H2 is a
separable Hubert space, we can find a sequence of Borel sets Blf B2,
such that Bi(\Bi= (d if i ^ i , diam JSί < ε and UΓ=i#ί = £Γ2. For any
ψieBt, choose πt e s/ so that

(3.3) QtF(ψύ + e > E%iF(pφ)) .

On the other hand, recalling the same calculation as for Iι in the proof
of Theorem 1, we get for any ψ, ψ e H2

\QtF(ψ) - QtF(ψ)\

^ KMΨ) + KJίPM + WFUΠW + 11*11)] 11+ - f II,

where KQ = max{(l + KA), 1 + 6KQ + 2(1 + K,)1/2}. Hence, for each ψ e Bu

EπF(pΨ(t)) ^ QtF{ψt) + ε + UKQp{f) + ε i Γ β | | ^ | | c ( l + 2\\f II)

^ QtF{f) + εK7p(ψ) ,

where K7 is a suitable positive constant depending only on \\F\\C and KQ.
Put τr8(Γ, U) = ΣΓ=i ^ ί l^ , where Ωi = {α>: p^(s, α>) e 5 J . For a given

π8 e J ^ , we can find π e sf so that 7Γ8( F, Z7) is a regular conditional
distribution for (Y°, U8) given F β and π\F8 = π8. By Lemma 3.2 and the
above results, we see

EπF(pψ(s + ί)) ^ Σ ( KWWGO) + eK7p(ψ)]dπ8
ΐ=l Ji2ΐ

= Eπβ[QtF(pψ(s)) + εK7p(ψ)] .

Therefore, we obtain

Q,+tFW ^ Eπa[QtF(pψ(s))] + εKφ(ψ) .

On taking the infimum over π, e j ^ t , we have

Q,+tF(ψ) ^ Q,QtF(ir) + SK,p(ψ) .
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Step 3. From Steps 1 and 2, we see, for any ε > 0

\\Q8+tF - Q8QtF\\c ^ eK7.

Letting ε tend to 0, we get Theorem 2.

Now, we consider the continuity of Qt. We put

H} = {φeHt:\\φ\\2£r} (0 < r < «>) .

THEOREM 3. For each r, QtF(ψ) -> Q8F(ψ) uniformly on HI, as

| t - 8 | - > 0 .

For the proof of Theorem 3, we need two more lemmas, of which

the first is obvious.

LEMMA 3.3. There exists a positive constant K8 so that

|

LEMMA 3.4. There exist positive constants K9, Kw so that for any

(3.4) sup Eπ\pψ(t) — pψ{s)\2 a K9\t — s\ | | ^ | | 2 ,

(3.5) sup E. \\pΨ{t) - pΨ(s)ψ ^ K10\t - 8\

PROOF. We prove only (3.4). Using Lemma 2.2, we can prove (3.5)
by the same methods as (3.4). For simplicity, put s = 0. We set p(t) =
Pfit) — ψ. Then, p(t) satisfies the following equation π-a.s.:

dffl) = [L*(ϋi)p(«) + L*(Ut)ψ]dt + [hp(t) + hψ]dYt ,

p(0) = 0 .

Using Proposition 2.1, Lemma 3.3 and the inequality

2 \ab\ ^ μa2 + b2/μ (α, b e Rt μ > 0) ,

we get

Eπ\p(t)\2 + (α - K,μ)Eπ\ \\p{s)\\2ds ^ 2\Eπ Γ \p(s)\2ds
Jo Jo

We choose μ > 0 sufficiently small so that a — Ksμ > 0. Then, by
GronwalΓs inequality, we get for any π e

2xTe»τ)[(Kat/μ)\\ψ\\> + Kxt|A|L|^I2] .

Put ίΓ9 = 2(1 + 2\Teίiτ) x [max{ί:8/^, XilAI1,}]. Then, we have

Eπ\p(t)\* ̂  Kst\
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This completes the proof.

PROOF OF THEOREM 3. For any e > 0, choose δ = δ(ε) > 0 so that if
φ,φeH2 and \\φ - φ\\ < δ, then

\F{φ)p~\Φ) - F(φ)p~\φ)\ < ε .

By (3.5), we get

\QtF(ψ) - QJFW)\ ̂  e(l + K,)p{f) + 2\\F\\c\\f\\Kll?

χ | * - β|[(i/«)||9ll{2(i + KM))1* + H\\*κn .

Hence, choosing a suitable positive constant Kllf we get on HI

\QtF(f) - Q8F(ψ)\ ^ Kn(ε + \t- sΠ(l + r3) .

Since ε > 0 is arbitrary, this completes the proof.

4. The generator of the semigroup Qt. Let C2 denote the totality
of FeC satisfying the following conditions:

( i ) F is defined on U and twice continuously Frechet differentiable
on ZΛ

(ii) φeH1 implies that the first derivative DF(φ) is in H1 and
DF(φ)/(l + I\φ\I) is bounded and uniformly continuous on H1.

(in) The second derivatine D2F is bounded and uniformly continu-
ous on ZΛ

By Pardoux [9], for FeC2, we have Ito's formula in infinite dimen-
sion for the solution of (2.3) as follows:

(4.1) F(V(t)) = F(f) + Γ (DF(p(s)), L*(UsMs))ds
Jo

+ \*(DF(p(8)), hp(s))dY, + (1/2) Γ (D*F(p(s))hp(s), hp(s))ds .
Jo Jo

We define the operators J2f(u) and £f on C2 by

= <DF(ψ), L*(u)ψ) + (l/2)(D2F(ψ)hψ, hψ) ueΓ ,

and

= inf
ueΓ

We can easily see that SfF belongs to C. Taking the expectation in
(4.1), we have for each π 6

(4.2) EπF(p(t)) - F(f) - Eπ Γ
Jo

THEOREM 4. For each r < oo 9
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\im(l/t)[QtF(ψ) -
nono

holds uniformly on HI.
PROOF. Let ε > 0 be arbitrary. We choose δ = δ(e) > 0 so that, if

\\φ - φ\\ < δ, then

\\DF(φ)/(l + \\φ\\) - DF(φ)/(l + \\φ\\)\\ < e

and

WF{φ) - DΨΦWMLW < e .

So, we get

supEπ\\sf{U8)F(p(s))ds - ΓJ2?(U8)F(ψ)ds
IΓ6J/ I JO JO

^ supS, Γ \(DF(p(s)), L*(U,)p(s)> - <DF{f), L*(U.)jr)\ds
πej* Jo

+ (l/2)βup Eτ [ |(D2F(j)(s))/ιp(s), Λp(β)) - {D*F{ψ)hf, hψ)\ds
πej* Jo

Ξ Jx + J2 , say .

By Lemma 3.3, we get

Jλ ^ X.SUP JS7, Γ \\DF{V{s))\V\\v{s) -
7Γ6J^ JO

+ KΛΨ|| sup ̂  Γ
7Γ6J^ Jθ

Put \\DF\\cι = supφeH2[\DF(φ)\/(l + | |^ | |)]. Then, using Lemmas 2.2 and 3.4
and choosing a suitable positive constant K12 depending only on iΓ4, K8,
K10 and HZλFΊIfli, we have

(4.3) J, ̂  K12t(e + ί 1 / 2)d + WfWl)

P u t \\D2F\\C2 = svφΦ&L2\\D2F{φ)\\L{L2iL2). Then, choosing a suitable positive
constant K1S depending only on Kx K9, |λ|«> and Hi) 2 ^! !^ , we have

(4.4) J2 <Z Kat(e

Next, we note that

(4.3) inf Eκ [ jzf(U8)F(ψ)ds ^ inf Ex Γ
itssr Jo rejx Jo

= inf Γ £?(u)F(ψ)ds ^ inf s T ̂ f( ί7.)F(-f)ds .
jrej/ Jo πejy Jo

Hence, all inequalities are replaced by equalities. So, we get from
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\(l/t)[QtF(ψ) - F(ψ)] -

^ sup(l/ί)

E*F(p(t)) -

Jo

:g (Ka + Kls)(ε + ί1/2)(l

Since e > 0 is arbitrarj

lim

r, we have

{l/t)[QtF(ψ)

F(ψ) — Eπ

+ UWΐ).

- FM] =

I

J o

>JΓ Jo

J^F(ψ)
no

uniformly on if2. This completes the proof.
We denote QtF(f) by W(t, ψ). By Theorem 4, we expect that

TΓ(ί, ψ) is a solution of the following equations:

(d W/dt(t, ψ) = SfW% ψ) in (0, Γ) x W ,

' (W) t) ^W on H2 .

It is, however, very difficult to derive the regularity of W(t, ψ) with
respect to t and ψ. We extend the concept of viscosity solution to
infinite dimension and show that W(t, ψ) is a viscosity solution of (4.6)
in that sense.

Let G be a continuous functional on (0, T)xH2 so that G(t) belongs
to C for each t e (0, Γ). Denote by E+(G) the set of all (ί0, ^0) e (0, Γ) x H\
where [max{G(ί, ψ); (t, ψ) e (0, T)xH2}] is attained. Similarly, denote
£L(G) the set of all (ί0, f 0) e (0, Γ) x if2, where [min{G(ί, ψ); (ί, ψ)6
(0, T) x Jϊ2}] is attained. We remark that if (ί0, ψ0) belongs to E+(G)
(resp. E_(G)) and ||^0 — ̂ 0|U = 0, then (t0, ^0) belongs to £7+(G) (resp.

The following is due to Lions [6]:

DEFINITION. WO e C([0, Γ) x H2) is said to be a viscosity solution of
(4.6), when it has the following properties:

W0(0, ψ) = F(f) and for any G e C([0, Γ] x H2) we have

(4.7) dG/dt - ^ G ^ 0 at (tOf f 0) e £7+( Wo - G)

(4.8) dG/dί - J5?G ^ 0 at (t0, f 0) e #_( Wo - G) ,

if G is twice differentiate with respect to t, d2G/df is bounded on
(0, T) x U, dG/dt belongs to C and G(ί, f) belongs to C2 for each t e (0, Γ).

THEOREM 5. W(t, φ) is a viscosity solution of (4*6).

For the proof of Theorem 5, we introduce the following order in C.

DEFINITION. We say that F ^ F in C, if F(φ) ̂  F(φ) for all φ e iϊ 2.
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L E M M A 4 . 1 . / / F ^ F in C, then QtF ^ QtF in C for all O ^ t ^ T .

PROOF. Since F ^ F in C, we have for all f e f f π e s/ and
0 ^ t ^ T,

QtF(ψ) £ EπF(Pf(t)) £ EπF(pΨ(t)) .

On taking the infimum over πe sf, we get

QtF(ψ) £ QtF(f)

This completes the proof.

LEMMA 4.2. LetFeC2 and HeC' Then, for each ψeH2, we have

lim(l/θ)[Q$(F + ΘH) - F](ψ) = H(ψ)
θ\0

PROOF. We have
\(1/Θ)[QΘ(F + ΘH) - F](ψ) - [H(f)

^ \(1/Θ)[QΘ(F + θH){ψ) - QθF{ψ) - θH(ψ)]\

= Mt + M2 , say .

Since J*f is the infinitesimal generator of the semigroup Qty we see that
M2 —> 0 as θ i 0. On the other hand, we have

M, ^ snvEπ\H(pΨ(θ)) ~

By (3.4), we have Mx —> 0 as θ | 0. This completes the proof.

PROOF OF THEOREM 5. By Theorem 3, we see easily We C([0, T] xif 2 ).
Let (ί0, to) 6 E+(W - G) and M = (W - G)(t0, f 0 ) . Then, considering
G(t, ψ) + M instead of G(ί, ψ), we may assume (W — G)(t0, ψ0) = 0 with-
out loss of generality. For θ e (0, t0) we have

G(«o, to) = TΓ(ίo, ̂ o) = [ Q Λ ^ I W = [QeW(t0 - β)](^o)

Since W(t) ^ G(ί) in C ΐor 0 ^ t ^ Γ, using Lemma 4.1 we get

[QφWfo - θ)](ψ0) <ί [QθG(t0 - θ)](ψ0) .

Since d2G/dt2 is bounded on (0, Γ) x L2, there exists e(θ) > 0, so that for
all φ 6 H2

G(t0 -θ,φ)^ G(t0, φ) - [dG/dt(t0, φ)] + θε(β) ,

and

ε(θ) -> 0 as θ I 0 .

Let ε 0 >0 be arbitrary. We choose θo(εo)>O in such a way that if 0<θ<
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θo(εo), then 0 < e(0) < ε0. By Lemma 4.1, we have G(t0, ψ0) ^
Qβ[G(t0) + H](ψ0), where H = -(dG/dt)(t0, •) + ε0. Hence, we have
(Vθ)[Qθ(G(t0) + H) - G(to)](ψ0) ^ 0. Since dG/dί belongs to C, using
Lemma 4.2 we have dG/dt(t0, ψQ) — £fG(tQ, fQ) — ε0 ^ 0. Since ε0 > 0 is
arbitrary letting ε0 tend to 0, we get dG/dt(t0, ψ0) — £fG(t0, ψ0) ^ 0.

The proof is similar, when (t0, ψQ) belongs to E_(W — G). This com-
pletes the proof.
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