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1. Introduction. In this paper we deal with the generalized
Littlewood-Paley, Marcinkiewicz and related square functions of spherical
sense in the 7n-dimensional space. So our functions are different from
Stein’s gf(x; f) [14. p. 99] and Z,(f)(x) [15, p. 102].

In what follows, we shall use the following notations. x, &, -.- will
denote points in the Euclidean n-space R" (n = 2). In coordinate notation
we write x = (x,, &, *+, 2,); | x| denotes the length of the vector x, i.e.,
lxP=at+ a2+ -+ + 22; x' = (a1, 23, -+, ) denotes the unit vector in
the direction of x,i.e., x’ =x/|x|; ¥ is the unit sphere, |x| =1; and do is
the Euclidean element of measure on X, hence vdo = 27" (n/2) .

For fe &”(R"), the Schwartz space of rapidly decreasing C~-functions,
the Fourier transform of f is defined by

f(® = SR" Fla)ei=edx |

where x-§ = x.&, + 2.8 + +++ + x,&,. Throughout this paper, we assume
f € (R unless otherwise specified.
If K(x) = 2(x")/|x|" is the Calderon-Zygmund kernel, then

Fae) =lim | K@)fGe - w)dy

exists almost everywhere and

1 Fall, S A0 fll, A<p< ).

fo is a conjugate integral in m-dimensions.
The spherical mean of order @ > 0 of f is

CBY N = et @ = |y - pdy

El

where ¢, = I'a + 7/2)/z"*I'(a). Also we define
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(12) (M@ = et (1= YO x — By

for « > 0. We need (M¢f)(x) and (M%.f)(x) with negative order a.
More generally, Mgf and M%,.f can be defined for complex a as distri-
butions (the finite part in the sense of Hadamard or the canonical
regularization of Gel’fand-Shilov [6, vol. 1, §8.7]). Then this MgZf is
identical with Stein-Wainger’s [20, p. 1270] which was defined by the
analytic continuation of its Fourier transform (cf. [6, vol. 1, Ch. II]).

M:f was studied in Chandrasekharan [2]. See also Stein [17] and
Stein-Wainger [20].

Corresponding to these, let the Riesz-Bochner means of order 8 > —1
of the Fourier integral and the conjugate Fourier integral of f be

(L.3) SN = @ IgrR R e de
and
S Gan = | A - EHRPR@ADeaE

respectively. From these means, we can define several square functions,
see Stein [18]. For example,

(1.5) (RPF)(x) = {Sjl%(%f)(x)[?RdR}”

:le — 2B{(S5)(x) — (SE)(x)} lzdR/R:Im

is the generalized Littlewood-Paley function defined by Stein [12, p. 130]
and one of the authors [22, p. 504]. Another example is

(1) () = {10 @rat]”

This is a generalized Marcinkiewicz function. In fact, if &« = 1, then (1.6)
is equivalent to p(f)(x) defined by Stein [13, p. 435], see §4.

We give more examples of analogous square functions. For examples,
set

an @O ={|]| ZGar))| RE]

= I:S:’ —26{(§5J.Rf)(x) — (g'}"_éf)(x)}lzdR/R:ll/zv

and
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18 N = {S:la%(Mi‘f)(x)'tdt}m

-

One of the objects of this paper is to give pointwise relationship
among such square functions. For any two square functions Ff and Gf,
we shall write (FIf)(x)= (Gf)(x), if there exist two positive constants A
and B, independent of x and f, such that, for all xe R*, (Gf)(x) =<
A(Ff)(x), provided that (F'f)(x) is finite, and (Ff)(x) < B(Gf)(x), provided
that (Gf)(x) is finite. If F' and G have some parameters, then A and B
may depend on them. When both A and B are independent of some of
the parameters, we say that the relation (FIf)(x) ~ (Gf)(x) holds uniformly
in them. Our typical theorems are as follows.

—2(a + n/2 — DIENE) - M) e ]

THEOREM 1. If B=a +n/2>0 and Y, is any surface spherical
harmonic with degree k =1, then

(15,)(x) ~ (BE,£)(x)/| Va0

for fe P(R"), where Y, , = 17*xa"*['(k/2)['((k + m)/2). This relation holds
uniformly in Y, and k.

THEOREM 2. If B=a +n/2 —1> 0, then
Wif)(x) ~ (R f)(x)
for fe F(RM.

These theorems arose in connection with the Cesaro-Riesz summation
concerning a function and its Fourier transform. In an analogous way,
we can define some square functions associated with other summation
methods. In particular, the spherical Abel-Poisson summation yields the
original Littlewood-Paley function g(f)(x).

The plan of this paper is as follows. In §§2 and 3 we prove Theorems
1 and 2. §4 is concerned with Marcinkiewicz function u(f) introduced
by Stein [13]. §5 contains some theorems about square functions arising
as Riesz-potentials. We shall also give there a relationship between our
square functions and gf(f) of Stein [14]. In §6 we give some theorems
on Abel-Poisson and other summations. §7 is devoted to applications of
our theorems. In particular, we can deduce new and known results on
the L?-boundedness of several square functions constructed from L*-func-
tions. In this case we can give an answer to a problem by Stein-Wainger
[20, p. 1289, Problem 6 (a)].

The method of proof comes from the same idea as in the one-dimen-
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sional case by one of the authors [23], that is to say, Wiener’s trans-
formation method. However, we shall meet several subtle calculations
in the higher dimensional case.

2. Square functions arising from spherical Cesaro-Riesz means of
functions. (M:f)(x) and (M%,.f)(x) are defined by (1.1) and (1.2), respec-
tively. We consider first &« > 0. For the sake of simplicity we set, for
a fixed function f and a point x, the average over sphere

@.1) 6t) = o(t; x, 1) = | fx = t9)dow) .
Then we can get

(2.2) (M3f)x) = e 71 — ry =gty .
Analogously, set

@.3) VO = ¥t x, £, 9) = | 26)F(x — ty)dow) .
Then

2.4) (M2 o)) = e it = ity

For the sake of calculation, we set
@5) o) = ot %, 1) = t24t: x, ) = - | /- Vfix — 9)do@)
Then we get

a a — n a a—1
@6) 2N = —2(a+ 2 - LWENE) - HEF))

= caslr"“(l — ) 9(tr)dr .
0

If we change variables by r = ¢ and ¢ = ¢=%, then the square functions
(1.6) and (1.8) become the L*norms of convolutions by (2.4) and (2.6)
i.e.,

@7 (9)@) = {|”_|(Kow) @)ida} "
and
2.9) N = |7 ImeO@ ",

where K,, ¥ and O are defined by the following formulae.
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_ caenz(l — e2:c)a—l (x < 0)
&9 Kl = {0 @=0),

(2.10) ¥(x) =¥(w; x,f, 2) = (™) and O() = O(x; x, f) = 0(e™) .

When a = —n/2—v (¥=0,1,2, --.), the above relations are pre-
served in distributional sense (see the proof of Proposition 1).

We now take the Fourier transform of K, as a distribution and
prove the following proposition.

ProOPOSITION 1. If a > —n/2, then

@.1) () = | |mOWC; %, £, DV @Fds
and

2.12) ) = {7 IReH6C; x, AV @) Pds
where

2.13) ko) = Lo+ n20 (2 — ing)

27 M + nf2 — ing)
18 the distributional Fourier transform of K,, and
(2.14) A(le] + 1) = [ka(8)] = B(lgl + 1)
Jor —oo < &< o0,

REMARK. In the sequel, we write the formula such as (2.14) as
|E(&)] ~ (J&] + 1) (=00 <& < 00).

PrROOF. Assume that « is complex. Since SE.Q(y')da(y’) =0, we

evidently have ¥ e &#(— 0, ), and O € &¥(— =, =) is evident. We can
establish convolutional rule for these convolutions. The distributional
Fourier tranform of K, is gotten by analytic continuation. See Gel’fand-
Shilov [6, vol. 1, Chap. 2, §2]. When Rea > 0, the complex Fourier
transform of K, is

Ka(c) — Caso (1 — e)rtetmsgdy — 2_10"S1(1 — t)a-igtma-igy
— o1, L@I(C +n)/2) _ I'le + n2)I'(€ + n)/2)

‘I'la + (€ + n)/2) 2z"I'(a + (€ + n)/2)

For Rea > —n/2, IZ’a(C) is also equal to the last term by analytic continua-
tion, so we get
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5 . I'la+n/2)'(n)2 — imE) _
K, (-2 = - = K, (&) .
(—2mig) ST I a & 12 — ind) &)
Since £,(&) #0 (—c < &< o), the asymptotic formula of the gamma

function, i.e.,
A=Wy |+ < | T(w + )| < Be ™|y [

for sufficiently large |y|, gives us the conclusion. q.e.d.

3. Square functions arising from Bochner-Riesz means of Fourier
and conjugate Fourier integral. First we define the space of distributions
of which test functions are between the space S(— oo, o) and the space
Z(— o0, ) following the method of Zemanian [25, Chap. 3]. We shall
prove that in this space the above mentioned functions ¥ and © are the
convolutes in the sense of Gel’fand-Shilov [6, vol. II, p. 137 and p. 148].
f is the convolute in the space .&# of test functions, if the distribution
f € &' has the property that (f x¢) () = {f (W), ¢(x+y)) € & for any g € F
and that the relation ¢, — 0 implies f x¢, — 0 in the topology of &

Let m be a large positive number defined in a moment. {a,} and {b,}
are positive decreasing sequences such that

3.1) m<a,<m-+1, 1/2<b,<1,

lima, = m and limb, = 1/2. Set

@2 b= o a<o.

For any ¢ € C~(— =, =), set

3.3) V5,4($) = sup{k,(x) | D'¢(x) |; — o0 < & < oo}
(g=0,1,2, ...). The class of functions ¢ € C*(— o, ) such that
3.4) Yoal$) < (¢=0,1,2,.-+)

is denoted by &, = Fpp, and its topology is defined by the method
of Zemanian [25, p. 50]. Set &, = Uj;.,.%,. Then the fundamental
space £, of test functions is contained in $#(— o, =) and the conver-
gence of &, implies that of &/(— «, ); see [25, p. 55]. In &,, the
distributional space defined on &, we have the following lemma.
LeMMA 1. The function @ such that
Ce™* (x=0)
3.5 ] = B
( ) I (x), = Ce(m+1)x (x < 0)

18 a convolute in the space 7.
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PrROOF. For any ¢c.&%, set +(x) = Sw oWp(x + y)dy. We must
estimate I(x) = (D%r)(x), where

(3.6) 1w) =" o - D)Wy .
Since 7, ,(¢) < « by (3.3) and (3.4), we have
1@ = 7.6+ iow - o) ikwidy = 7,000 + 1,
say. Then, by (3.2),
1, = {10(=2 — 9| exp(—b,u)dy

and

I, = Sjl@( — 2 + )| exp(—a,y)dy .
If £ =0, then by (3.5) and (3.1) |
I, < Ce“"‘“’”S:oexp{—(m + 1+ b)yldy = C' exp(—a,x)
and |
L < C[e“"‘“’”szexp{(m +1—a,)yldy + engexp{—(l + a,,)y}dy]
< C'exp(—a,r) ,
because m + 1 — a, > 0.
If x <0, then
I < CI:e‘So—zexp{(l — byyldy + e”""*“”S:exp{~(m +14 b,,)y}dy]
< C' exp(b,x)
by 1 —0b,>0, and
I, < Ce S:exp{—(l + a,)yldy < C' exp(b,x) .
Hence by (3.6) 7, ,(v) = supfk,(@)|I(x)]; — <2 < oo} < C",,(9). .
q.e.d.

In (1.4) we set K(x) =Y,(x")/|x|*, where Y, is the surface spherical
harmonic of degree k(=1). Then by Stein-Weiss [21, p. 164],

RE) = 7., (&),



350 M. KANEKO AND G. SUNOUCHI
where v, , = 7z (k/2)/((k + n)/2). Hence (1.4) becomes
B0 Ghal) = 7’°'°S..,<R(1 — |EF/B Y.(E)(E)e = dE

&l

= o, Sl = Bomy ||~ 1gprviErenride
SR CES " Vns AALCILTS

where

(3.8) Fou(t) = (275)7»/2,5»5:“,._1(1 T

Vu(t) = Ju(t)/t* and J, is the Bessel function of order x; see Stein-Weiss

[21, p. 158].
Now we set as in (2.3)

(3.9 V() = 9t x, £, Y = | 10076 - t0)dow) -
Then
(3.10) Btonl ) = Voo Taalr Wi/ Rydrr .

For k=1,2, ..., if 8 < (n—1)/2, then
(3.11) 7p,k(t) ~ {Bt-12

for large t; see Chang [3, p.p. 17-18, Lemma T7].
If we change variables by » = ¢’ and R = ¢®, and set

(3.12) U(x) = ¥(x; x, f, Yi) = y(e™®) and
K;k(x) = —28%,{7s,1(€") — Vp_1,:(e7)} ,
then the square function (ﬁ,‘lk f)(x) becomes
3.13) Bty = | | (Rao(@) s
by (1.7), (8.10) and (3.12). Now we can prove the following.

PROPOSITION 2. For B8 >0,
(3.14) By = | i@ =, 5, Yore e,

where N\, is the distributional Fourier transform of Kf.,

I'(B + DI'(k/2) o (1 + i)l ((k + n)/2 — ing)

3.15 pe(8) =
G18)  MD = T T o TG 1+ ke 1 i)
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and
(3.16) M@ ~ (J&] + D7D (=00 < g < 00)
Proor. By the formulas (3.8), (3.11) and (3.12), we have
| K@) | < Cmax({l, exp((—8 + (n + 1)/2]x)}

for x = 0. If we take a positive number m such that m > (n + 1)/2 — 8

in &, of Lemma 1, then K, € &, and the convolution rule is established,
because ¥ satisfies the condition (3.5). Hence

| @ Ba@rde = |7 1B@ &z @z,
where (K#,)" is the distributional Fourier transform of K¥,. However,

r e= K¥ () dae
= 287, | E @) — Tl
= (27)""287,, rtc+n--1dt§1un+l(1 WP Tt Vs oy (Ctuw)
0 0

= 2,87,,,013"(277:)""‘"’2’“8 w1 — uz)ﬁ“ldur@nut)“"*"“ Vet wm—1(Crut)dt
0 0

_TB+1HI'EK2) _I'(—= €2 + DI(E+k+ n)2)
I'(k +m)2) = l(—(E2) + 6+ DI(=C + k)/2)

for —(k + n) < Rel{ < —(n + 1)/2 by Watson [24, p. 391, (1)]. The last
formula is analytic in a broader domain which contains the imaginary
axis. Hence by the argument of Gel’fand-Shilov, we get (Kr,)(¢) by
letting { = —2xi¢ in the last formula. We denote this by A\j.(¢) as in
(8.15). Since A}, has no zero and the asymptotic formula for I"-function
is applicable, we get (3.16). q.e.d.

For (h*f)(x), we can proceed in an analogous way. Since

sine) = | - 1Ry ieeseat
by (1.3), we get
(3.17) (S8) = | 7)ot/ B; x, P,
where ¢(t; x, f) is the same as in (2.1) and

V(8) = 2°@r)"*['(B + 1" Viy(am(@nt) ,
see Stein-Weiss [21, p. 171]. Differentiating (3.17) with respect to R, we
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get

RSt = =0 m0iE; x, Hdnir,

where @ is defined by (2.5). If we set » = ¢ and R = ¢7, then the square
funetion (R#f)(x) defined by (1.5) becomes

(3.18) wify) = " |(Ki+0)@)lda,
where
(3.19) K3 @) = 74(e") = 2@ T(8 + e Vi, (2e”)

and O(x) = f(e~®) as in (2.10). Since the order of 7,(t) is t#*"» V"2 ag ¢
tends to infinity, K} ¢ &'(— o, =), if 8 < (n — 1)/2. Now we take m >
(n—1)/2— 8 in Lemma 1 and consider the test function space &,. Then
Ky e #,. Evidently |0(x)| < Ce™ < Ce™ (x = 0), <Ce™** (x <0). There-
fore, © is a convolute of this space. Hence the convolution rule is true
for Kf*®. The complex Fourier transform of K is

r K3 (@)de = 2/(2x) (8 + 1) S°°t<+"-1v,,+(",2)(2nt)dt
—00 0

— I+ HIE + n)/2)
2r (-2 4+ 8+ 1)’

and is analytic in —m < Re{ <m — {(n — 1)/2 — B}. Hence we get the
following.

PROPOSITION 3. For 8> 0,

(3.20) we ) = |7 e @60 =, Ay e s,
where k; is the distributional Fourier transform of Kf,
(8.21) HEES F(éi’ ;';2 Lz w2 — .iﬂ:é)

T G +1+ g
and
(3.22) K@) ~ (Jg] + T2 (=00 < &< o0).

From Propositions 1,2 and 3, we get Theorems 1 and 2, because any
bounded function is an L*-multiplier. To prove the uniformity in Theorem
1, it is sufficient to note that (3.16) holds uniformly in k, if \}.(¢) is
replaced by N\ji(&)/7.o-

4. Other square functions associated with the Marcinkiewicz func-
tion. Stein [13] introduced the square function u(f):



LITTLEWOOD-PALEY AND MARCINKIEWICZ FUNCTIONS 353
o , 2 1/2
@y o =" _eirrewnse - way|and”

This is a generalization of the classical Marcinkiewicz function to the
higher dimensional case. Hormander [8, p. 136] generalized this. We
consider now more general square function pX*’f. We set first

4.2)  (Mzif)x) = Cl,at"’gmq(l — [y Py 2@ f(x — y)dy
for 6 > 0, where ¢, ; = I'(n/2)[ (o + 6/2)/x"*I"(a)I"(6/2) and define p}*’f by
4.3) (s f)w) = {1 @zen e paye}”

Obviously (u"’f)(x) coincides with the one defined by Hormander
and (i) (x)={(n/2)/2z" *}p(f)(x). Furthermore, (u5f)(x) = (u5*"f)(x).
Tracing the proof of Proposition 1, we have the following.

PROPOSITION 4. Let

I'n/2)I'(a + 6/2) I'(6/2 — izmg)
272 I"(6/2) I'a + 6/2 — img)

If a > —6/2 and 6 > 0, then

Ea,s(E) =

(@4 @) = |7 1@ x, £, 9@ g
and
@5) |Bea®] ~ (6] + D (—e0 << o0).

Taking (2.14) and (4.5) into account, we have the following from (2.11)
and (4.4).

THEOREM 3. If ¢ > — 6/2 and 6 > 0, then

(5" 1)(x) ~ (5 1)(x)
for fe PR, and the relation holds uniformly in Q.
We set further
(Thu)@) = &) Vs @2yl 199W)f (& — )iy ,
where ¢; = 2/@27)"*I'(B + 1), and
@@ = {{ 1T rate)
Then
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(To.N)x) = {KFU(-5 x, f, D)) (t=e),
where Kj is defined by (3.19). As shown in §3,
1R3 @] = 165@] ~ (6] + DR (—o0 << o).
Comparing this with Proposition 1, we have the following.
THEOREM 4. If B=a + n/2—-1>0, then
(ToS)(x) = (p5f)(x)
for fe PR, and the relation holds uniformly in Q.

5. Spherical square functions arising as Riesz potentials. In this
section we assume f(€) = 0 near the origin for f e S”(R") and denote the
class of all such f by 4(R". The Riesz potential of f is defined by

(.1) LA = |, e Fee=at .
Set
(5.2) (I“f)(x) = SM| E|af(§)ezm;x-edf .

Now we will define such a spherical square function as

63 0N =| [Tt e - ) - sendow|aut ]
Then (D*f)(x) is essentially smaller than

5.4) 2@ = {176 — o) = f@) Iyl dg}

of Stein [15, p. 102], because
240w = ] 17 — ) = @) rdoytar)
We will prove the following.
THEOREM 5. If B=a + n/2 and 0 < a < 1, then
(5.5) (hff)(x) ~ D*(L.f)(x)
for any f e FH(R.

For the proof of Theorem 5, we give the following two propositions.
First we consider

(@2)x) = (Sef)(x) — (SF)x) .

Then elementary calculation yields
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(5.6) (I f)(x)
— —(2n)"/2t—a§:°{r"-l S:u“"“(l — ) V(,,,2>_1(2mu)du}
X g(tr; x, fdr ,
where ¢(t) = ¢(t; x, f) is given by (2.1). Set
5.7) ryt) = S:r"'ldr S:u“"“(l WY e ru)du

= t" S:u“*‘"“(l — w'V, Crtu)du .
Then by integration by parts we have
(5.8) L)) = @ayete| Tt x, Harpr
where 4(t) = 0(t; x, f) is given by (2.5). Moreover, we set

(5.9 0_o(t) = 0_a(t; x, f) = t7°0(@; x, f) .

As in the preceding sections, putting K*(x) = KJ,(x) = (27)"*e**I",(¢*) and
O_,(; x, f) = 0_,(e7%), (5.8) becomes

(I (%) = {K**0_,(+; x, HY@) (¢t =e™) .

The complex Fourier transform of K* is
S“’ ¢ K*(0)dz
— @n) S”tc+a+n—1dt Slumﬂa — WV, 2t du
0 0

1 0o
= (27?:)"/28 w1l — u2)5“dus teretn=1y Crut)dt
0 0

- I'BIr=¢/2 + HI'€ + a + n)/2)
ArtreremP(=Cf2 + B + DI'(—C/2 — a/2 + 1)

for —(a +n) <Rel{ < —a— (n —1)/2. By an argument analogous to
that in Proposition 2, we have:

PROPOSITION 5. For —m<a<1and 8> 0,

6.10) wENY = | [020© (5 x AV ©rde,

where 7%, is the distributional Fourier transform of K, that is to say,

' +1) @a“ra + in&)l'(a + n)/2 — iwg)

Na (&) = 27t (B + 1 + ixe)[(—a/2 + 1 + ine)
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and
(6.11) |72 ~ (J&] + D)x PP (—c0 < &< 00),

Concerning (D*f)(x) defined by (5.8) we proceed analogously. By (2.1),
(2.5) and (5.9), we have

¢(t; x, ) — ¢(0; x, f) = S:ﬁ(tr; x, fdr/r

and
6.12) et x, £) — 905 x, ) = | r0_ultrs x, Harr

Hence, if we set K(x) = ¢** (x <0) and = 0 (z > 0), then (5.12) becomes

{K*@—a('; X, f)}(x)
with ¢t = ¢™. Hence we get:

ProrosiTION 6. If 0 < a < 1, then

D) = |7 _|REHO (5 %, Y@,
where £(&) = (a — 27i6)™ and
B ~ (] + D (—e0 <& < ).

Theorem 5 follows, if we take I.f as f in Propositions 5 and 6.
For (ﬁfr,‘ f)(x), we get analogous one. For a surface spherical harmonic
Y, of degree k(=1), set

613 05N = {[7] o] s - ) viendow) | at”

THEOREM 6. If B=a + n/2 and 0 < a < 1, then the relation
(B3 )@/ Vio| ~ DE(LS))

holds uniformly in Y, and k for any f e (R, where the constant 7,
1s the same as in Theorem 1.

The method of proof is the same as that for Theorem 1 and the one
above. If we set

Vot x, [, Y3) = t™9(t; x, f, ¥})
and

U_(x;x,f, ) =9 e x,f, Y3,
then we have



LITTLEWOOD-PALEY AND MARCINKIEWICZ FUNCTIONS 357

619 D370 = |7 ¥ e x, £, Vo) de

by definition. On the other hand, by an argument parallel to that in the
proof of Proposition 2, we have

80T = Vuo\ Fus sy R; x, f, Yodr/r
and
B 1@ = | {BEaur® o %, f, YYalde
where KX;,(@) = —287,0{Va5.1(€") — Ta,p_1:(e”)} and
Tups®) = @] WL — W@ Vi 2t

Furthermore, the same calculation as in the proof of Proposition 2 yields
that the complex Fourier transform of KJ,, is equal to

5.15) 7 LB+DI(k2) zI(=C/2 + DIE/2 + (@ + & + n)/2)
r(k+mn)2) I'(=¢2+8+1DI(—C2—a2+k2)

Let AX;.(&) be in the form which we obtain by exchanging { by —2mi¢
in (6.15). Then

G.16)  (ELEN@F = |7 MO %, YOV @ e
By the asymptotic estimate of I'-function, we have
(6.17) N8 k@ /[ Vio| ~ ([&] + DA+ (—o0 < g < o0)

uniformly in k. Replacement of f by I,f in (5.14) and (5.16), and the
relation (5.17) prove Theorem 6.

Now, we give a relation between h*f defined by (1.5) and the Littlewood-
Paley g*-function gF(f):

618 gzH@ =[]

t2+1

R"(|x _ IIP + tz)(1+n)/2

1/2
|Vuy, tidydt}

defined by Stein [14], where u is the Poisson integral of f.

As remarked in the definition of Z,(f) in (5.4), we have (D*f)(x) <
C.2,(f)(x). Theorem 5 shows (hff)(x) < C,D*(I,.f)(x) (B=a + n/2,0<
a < 1). Stein [15] showed that Z,(I.f)(x) < C,g9f(/)lx) 0 <a<1],0<
A < 2a). Therefore we have

(5.19) (RPf)(x) = Cpagf(N)(X) 0 <M< 2N+ 1 <20).
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Next we consider the relation between p3°f = p3™'f and g¥(f). By
Theorems 3, 1 and 6, we have

(15,.1)(x) ~ DE(LS)(x) (0 < a<1)

uniformly in Y,. Hence, by the Schwarz inequality and the above result
of Stein,

D (L)) = (| Vil ZaLf)(x) £ Coil Yo |l 22595 () (x)
0<a<l,0< < 2a).

Therefore we have

(5.20) U X)) = Copll Yl z2c) g% (F)(x)

for 0 <a <1 and 0 <M< 2a. If we have any good condition for the
expansion 2 = 3\Y,, we shall be able to get

3 Nx) £ Canogf(Hx) 0<a<1,0<n<20).

6. Square functions arising from the Abel-Poisson summation. We
define the spherical Abel-Poisson means of a function f by

6D (APE) = e |y I exp(—|yl)f(x — th)dy ,

where ¢, , = (m + 1)I'(n/2)2z™*T (@ + n)/(m + 1)), m > —1 and a > —mn,
following Levinson [11]. The corresponding square function is

62 @i = ||| Gurnw| g

- B | = (@ + m{(Arf)(x) — (AZ’"”"‘“f)(x)}|2dt/tT/2 .

We also define the square function from the spherical means of Abel-
Poisson type of Fourier transform. Let

(6.3) Un(x, 1) = CZSRH(IIH””‘“’ + 1) f(x — ty)dy

where m > — 1/(n + 1) and the constant ¢, is taken so that u,(x,0) =
f(x). Set

(6.4) i) = {S:}a—at-um@, o|tat}” .

When m =1 and a =0, (6.1) agrees with the Gauss-Weierstrass
integral of f, and when m =0, (6.3) is the Poisson integral of f and
(6.4) is the “real part” of the original Littlewood-Paley function g(f)(x).
See Stein [16, p. 83], where it is denoted by g¢,(f)(x).
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We can prove the following:
THEOREM 7. If m > —1/(n + 1) and a = (m — 1)n/2, then
@™ f)(x) = gnsa(S)(X)
for fe F(R.
The proof uses the same idea as that in the preceding sections.

PROPOSITION 7. For m > —1 and a > —n,
@) = |7 15201005 x NV @lds
where O 1is defined by (2.10),

A I'(n/2) a+ m —i2x¢
L = Gy T )

and

| S al@) | ~ ([&] + 1)@t/ 0= exp(—72|¢|/(m + 1))

(—o0 < g < o0).
PROPOSITION 8. For m > —1/(n + 1),
(6.5) {Gm ()Y = Sllpm(s){@(-; x, NHY (&) ['de ,
where
5 _ o M — 12%E m(n + 1) + 1 + 12x¢
6.6) P = e r( S )r( T )

with ¢, = I'(n/2)/2z"* T (n/2(m + 1)) {m(n + 1) + 1}/2(m + 1)), and
6.7 1Pa@®] ~ (&| + D" exp(—n|gl/m + 1)) (—o0 <& < o).
PROOF OF PROPOSITION 7. Set
A (@) = cm,ae(a+n)z exp(_e(m+1)z) .
Then, by the change of variables ¢ = ¢=*, we have
9
ot
as in the proof of Proposition 1. In this case, the convolution is ordinary
and we can prove Proposition 7 without the concept of distribution. It is

easy to calculate the Fourier transform .,Q/;,, of &, , and we get Pro-
position 7. q.e.d.

b= (AT S)(x) = {,,40(+; x, [} (@)
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PrOOF OF PROPOSITION 8. We set
P (x) — c;enz{ez(m+l)z + 1}—(n+1)/2 .

Moreover, by the change of variables { = ¢~%, then
t2au,(x, 1) = (Pur(-; x, @) -

The Fourier transform of P, is (6.6). q.e.d.

REMARK. Except when m =0, u,(x,t) in (6.3) does not represent
the exact Abel-Poisson mean of Fourier transform of f. In fact, in the
casem = 1 and a = 0, (A™*f)(x) is the Gauss-Weierstrass mean of function
f and also that of its Fourier transform coincidentally. However, if we
take m =1 and @ = 0 in Proposition 7 and m = 0 in Proposition 8, then
we have

p}%,o(e)l ~ (| + D™ exp(—72|£]/2) and
|P&)| ~ (J&] + 1) exp(—n®|g])

These show that the square function (6“°f)(x) arising from the Gauss-
Weierstrass summation is not smaller than the classical Littlewood-Paley
function ¢,(f)(x). Hardy [7, p. 176] already observed that a summable
(W) Fourier series is certainly summable (A).

It may be natural to consider the square functions
@) = {{T1@nene raye}”
for m > —1 and @ > —n, and
TomaN@) = {|1Tontx, Ot}
for m > —1/(n + 1), as the counterparts of (6™*f)(x) and g,..(f)(x), where
(AFEF)E) = Cne W)y [* exp(—|y[*)f (x = ty)dy
and
Bo,nl, §) = ca| QWI(BI™ + 1= ""f(x — ty)dy .

Between them, we have the following relation:
THEOREM 8. If m > —1/(n + 1) and a = (m — 1)n/2,
@2f)(x) & Jo,mei()(X)
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for fe F(R™ and the relation is uniform in Q.

The proof is similar to that of Theorem 7.

If we take 2,() =v;/ly| 4 =1,2,---,m) as 2, then we have the
relation

0.0 = {| 1., ot} ~ 3 Gz

(¢ = —m/2 + 1), where % is the Poisson integral of f. The left hand side
in the above relation is another part of the classical Littlewood-Paley
g-function. See Stein [16, p. 83].

7. Applications. Let H?(R"),0 < p < e, be the Hardy spaces in
the sense of Fefferman-Stein [4]. If 1 < p < =, then H?(R") coincides
with L?(R") and its norms are comparable. So for any p, 0 < p < oo, we
assume that || f||, denotes the H?(R")-norm of f. Moreover, we denote
by || g|lzrn the L?(R™)-norm of ge L*(R"),0 < p < co.

It is known that the class S%4(R") defined in §5 is dense in H?(R"),
0<p=1, and L?(R") = H?(R"),1 < p < . See Calderén-Torchinsky [1,
II, pp. 104-105]. This is useful for extension of f.

The square function arising from the Cesidro summation is generally
greater than that arising from the Abel summation, except for a constant
factor (Flett [5, p. 116]). Thus concerning the inequality || S(f)|lzr;m <
A, fl, for any square function S(f), if S(f) is generated from a Cesiro
type summation, then it is better than the inequality whose S(f) is
generated from an Abel type summation.

The following two H”-boundedness theorems about square functions
are fundamental for our argument.

THEOREM A. For 0 < p < oo,
1Al = Al gD llzemm and || £, = A3 9:() loam -

This was given by Fefferman-Stein [4, p. 185] and Calderén-Torchinsky
[1, I, p. 55].

THEOREM B. For 8> n(l/p —1/2) +1/2(0 <p <2)and 8> (n — 1)
12 —-1/p) +1/2 2= p < =),

I P2S zoemy = Byl £l -

For 1 < p £ 2, Theorem B was given by Sunouchi [22]. We cannot
find the case 0 < p £ 1 in the literature, but it can be proved by the
atomic decomposition of H?(R"); see Latter [10]. Furthermore, when
0<p<1and g =n(l/p—1/2) + 1/2, h* is weak type (H?, L?). For the
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case 2 < p < o, we can prove Theorem B as follows.
As proved in Theorem 5, for B =a + n/2,0 < a < 1,

(R f)(x) ~ D(L.f)(x) = AeZ(Lf)(x) .
However, for p = 2, Stein [15, p. 103, Lemma 1] showed that, for « > 0,
| DeLef) lzr ey = Apull Fllo -
Hence, for n/2 < 8 <m/2 +1 and p = 2,
[ R2f (| ommy = Apgll £l -

So we can get the conclusion by interpolation between p, = 2, 8 > 1/2
and p, = p, B > n/2.

This result is better than that of Igari-Kuratsubo [9].
Combining these two theorems with our results in the preceding
sections, we have following Corollaries 1, 2, 3 and 4.

COROLLARY 1. Fora>n/p—n+320<p=2) and a>—(n—1)/p+1

2=p< ),
Ayl fllo = 12 lpmm = Byoll £l -

COROLLARY 2. For a>n/p—n+1/2 0<p=2) and a > —(n—1)/p

2=p< ),
Ap,a,k ” f~Yk||p é “ #?’kf “LP(R") é Bp,a,k || fYk “P .

Since || fy,ll, < Cor, || fll,,» we have

(7.1) | 5. f lprm = Cp,a,Yk“f”P

for the above range. By Theorem 3, we can replace ¢§, f by pf f = ,u;:"f
in (7.1) for « > —1/2. In particular for a = 1/2, we get

|t f llomm = Coap, I Fll, (L <p < o0).
So the case a =1 is true. This case was studied by Stein [13] and

Hormander [8]. Their operators are more general than ours, but the
methods of proofs are different.

In order to get converse inequalities for pf,.f, we need | f|, =
C|| fr,ll,» From this point of view, if ¥, is the j-th component of the
Riesz transform, i.e., Y, (x") = x;/|x]|, then

Aol Fll, = g 45 Nl zoam < Byollf |l

for the same range as in Corollary 2, where pif means p3f for 2(x’) =
z;/|x|. This was also given by Stein and Hormander.
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COROLLARY 3. For 1>a>n/p—n+1/2 2n/@2n + 1) < p < 2n/(2n —1))
and 1 >a >0 2n/2n — 1) < p < ),

Ayl fllp S NI DL o < Byl f I
and
Apeill Frills S 11D5, (L) llzvn S Byl iyl »
where Y, 1s a surface spherical harmonic of degree k = 1.
COROLLARY 4. When m = 0 and a = (m — 1)n/2, the relation
Ayl Fllp S 10™f o < Bpm1F 1l
holds for 0 < p < oo.

Stein-Wainger’s “Problem 6 (a)” in [20, p. 1289] is concerned with
g(f)(x) and (»*f)(x) for « = 0. However, g,(f)(x)~ (6>*f)(x) is concerned
with the Abel means and (»*f)(x) with the Cesiaro means. These facts
and Corollaries 1 and 4 may be an answer to the problem.

Let _#Z°%f be the maximal function for (M%f)(x) of (1.1), i.e.,

(A °f)(x) = sup{| (Mg f)(x)]; 0 <t < oo} .

COROLLARY 5. Fora>n/p—n+10<p=2)and a>(—n + 2)/p
2=p <o),

| A2 f v < Coall FlIs -

PrOOF. For 0 < p <2, we can deduce the conclusion by a routine
argument from Corollary 1. The other case is immediate from interpola-
tion between the case p = 2 and p = ~, which is obvious. q.e.d.

Stein-Wainger [20, p. 1283, Th. 14] and Stein-Taibleson-Weiss [19, Th.
II] gave this result. In particular, for n/(n — 1) < p < o, n = 38,

“-/%f”u’(n") = Cp”f“wm") ’
where (.7 f)(x) = (#°f)(x). This had already been proved by Stein [17].
Let ¢ be a Cy(R™)-function with $(0) = 1 and set ¢,(x) = t~"¢(tx).

Then Stein-Wainger [20, p. 1271] gave the following definition:

o 1/2
7.2 @@ = {108 — (Fro000) Pt}
and proved for a > (1 — n)/2,

lgafll: < Call fl2 -

To avoid confusion of this notation (g.f)(x) in (7.2) with (6.4), we
denote (7.2) by (N*f)(x) instead of (g.f)(x).

COROLLARY 6. Fora>n/p—n+120<p=Z2)and a > —(n — 1)/p
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2=p< ),
| Nfllzowm = Cpull fll5 -
Proor. Take N so that ¢ + N > 2. Then

@3 @ s S {TeErnw - o)
+ [1apyorate}”,

where K,(x) = t"K(t"'x) and K(x) = ¢,.x(1 — |x|)5¥ 1 — ¢(x). If we apply
Corollary 1 for the first term in (7.3) and apply a multiplier theorem in
Stein [16, p. 46, Th. 5] for the last term, then we have the conclusion in
the case 1<p< . For 0<p<1, it is obtained, if N is taken sufficiently
larger and the atomic decomposition of f is applied to the last term on
the right hand side of (7.3). q.e.d.

Analogously, if we use Theorem B instead of Corollary 1, then we
get the following.

COROLLARY 7. For B>n(l/p—1/2) —1/2 0<p=<2) and B>
mn—11A/2—-1/p) —1/2 2= p < ),

G2 S Nlzorm = Copll S5 »
where

@@ = {{ 1851 — (Frouao)aRIR}
and (S%f)(x) is given by (1.3).
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