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1. Introduction. In this paper we deal with the generalized
Littlewood-Paley, Marcinkiewicz and related square functions of spherical
sense in the ^-dimensional space. So our functions are different from
Stein's gf(x; f) [14. p. 99] and &a(f)(x) [15, p. 102].

In what follows, we shall use the following notations, JC, ξ, will
denote points in the Euclidean w-space Rn (n^2). In coordinate notation
we write JC = (xlf x2, , xn); \x\ denotes the length of the vector ΛΓ, i.e.,
|Λ:|2 = xl + χ\ + + xl; x' = (χ[, x2, , χ'n) denotes the unit vector in
the direction of JC, i.e., JC' = JC/|JC|; Σ is the unit sphere, |JC| = 1; and dσ is
the Euclidean element of measure on Σ, hence I dσ = 2πn/2/Γ(n/2) .

For / e ^CRπ), the Schwartz space of rapidly decreasing C°°-functions,
the Fourier transform of / is defined by

/(f) = ( f(x)e-™*'ξdx ,

where x ξ = x^ + x2ξ2 + + xnξn- Throughout this paper, we assume
/ 6 S^{Rn) unless otherwise specified.

If K{x) = Ω(x')/\x\n is the Calderόn-Zygmund kernel, then

Λ(ΛΓ) - lim ( K{y)f{x - y)dy

exists almost everywhere and

ll&ll,^4,11/11, ( K p < - ) •
fΩ is a conjugate integral in ^-dimensions.

The spherical mean of order a > 0 of / is

(1.1) (MSf)(x) = catA (1 - I y \ηtr~ιf{x - V)dy ,
j\j\<t

where ca = Γ(a + n/2)/πn/2Γ(a). Also we define
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(1.2) (M"Ωttf){x) = cat~Λ (
JllfKί

'mx - y)dy(1 - lyWr
ί

for a > 0. We need (M?f)(x) and (M%ttf)(x) with negative order α.
More generally, M?f and MfJttf can be defined for complex a as distri-
butions (the finite part in the sense of Hadamard or the canonical
regularization of Gel'fand-Shilov [6, vol. 1, §3.7]). Then this M?f is
identical with Stein-Wainger's [20, p. 1270] which was defined by the
analytic continuation of its Fourier transform (cf. [6, vol. 1, Ch. II]).

Mtf was studied in Chandrasekharan [2]. See also Stein [17] and
Stein-Wainger [20].

Corresponding to these, let the Riesz-Bochner means of order β > —1
of the Fourier integral and the conjugate Fourier integral of / be

(1.3)

and

(1.4)

(S4/)(x) = t (1 - \ξ\2/R2)βf(ξ)e2«ix'*dξ
J\ξ\<R

(
\ξ\<R

respectively. From these means, we can define several square functions,
see Stein [18]. For example,

(1.5)

=[JΊ - 2β{(Sif)(x) - (SξΓWx
11/2

is the generalized Littlewood-Paley function defined by Stein [12, p. 130]
and one of the authors [22, p. 504]. Another example is

(1.6)

This is a generalized Marcinkiewicz function. In fact, if a = 1, then (1.6)
is equivalent to μ(f)(x) defined by Stein [13, p. 435], see §4.

We give more examples of analogous square functions. For examples,
set

(1.7)

and

JL (Sβ

ΩfRf)(x)

=[\:
2 ηi/2

dR/R\
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(1.8) (Wf)(x) =
ot

) 1/2

tdt\
)

= \[° -2(α + n/2 - l){(M?f)(x) - (MΓιf)(x)} *dtltV .
LJo J

One of the objects of this paper is to give pointwise relationship
among such square functions. For any two square functions Ff and Gf,
we shall write (Ff)(x) & (G/)(JC), if there exist two positive constants A
and B, independent of x and /, such that, for all xzRn, (Gf)(x) ^
A(Ff)(x), provided that (Ff)(x) is finite, and (Ff)(x) ^ B(Gf)(x)y provided
that (Gf)(x) is finite. If F and G have some parameters, then A and B
may depend on them. When both A and B are independent of some of
the parameters, we say that the relation (Ff)(x) & (Gf)(x) holds uniformly
in them. Our typical theorems are as follows.

THEOREM 1. If β = a + n/2 > 0 and Yk is any surface spherical
harmonic with degree k ^ 1, then

for f e ^(Rn), where 7 M = i-kπn/2Γ(k/2)/Γ((k + n)/2). This relation holds
uniformly in Yk and k.

THEOREM 2. If β = a + n/2 - 1 > 0, then

These theorems arose in connection with the Cesaro-Riesz summation
concerning a function and its Fourier transform. In an analogous way,
we can define some square functions associated with other summation
methods. In particular, the spherical Abel-Poisson summation yields the
original Littlewood-Paley function g(f)(x).

The plan of this paper is as follows. In §§2 and 3 we prove Theorems
1 and 2. §4 is concerned with Marcinkiewicz function μ(J) introduced
by Stein [13]. §5 contains some theorems about square functions arising
as Riesz-potentials. We shall also give there a relationship between our
square functions and gf(f) of Stein [14]. In §6 we give some theorems
on Abel-Poisson and other summations. §7 is devoted to applications of
our theorems. In particular, we can deduce new and known results on
the Lp-boundedness of several square functions constructed from ZAfunc-
tions. In this case we can give an answer to a problem by Stein-Wainger
[20, p. 1289, Problem 6 (a)].

The method of proof comes from the same idea as in the one-dimen-
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sional case by one of the authors [23], that is to say, Wiener's trans-
formation method. However, we shall meet several subtle calculations
in the higher dimensional case.

2. Square functions arising from spherical Cesaro-Riesz means of
functions. (Mΐf)(x) and {M«ΩΛf)(x) are defined by (1.1) and (1.2), respec-
tively. We consider first a > 0. For the sake of simplicity we set, for
a fixed function / and a point ΛΓ, the average over sphere

(2.1) φ{t) = φ(t; x, f) = j f(x - ty')dσ{y') .

Then we can get

(2.2) (M°tf)(x) = ca

J

Analogously, set

(2.3) ψ(t) = ψ(t; x, f,Ω) = \ Ω{y')f{x - ty')dσ{y') .
Σ

Then

(2.4) (M«,tf)(x) = cXr
Jo

For the sake of calculation, we set

(2.5) θ(t) = θ(t; x, f) = t^φ(t; x, f) = - J ^ ' V/(JC - ty')dσ(y') .

Then we get

(2.6) t^(M?f)(x) = ~2(α + ± - ί){(M?f)(x) - {MΓιf){x)}

= ca[rn-\l - r*)a-le{tr)dr .
Jo

If we change variables by r = ey and t — e~x, then the square functions
(1.6) and (1.8) become the L2-norms of convolutions by (2.4) and (2.6)
i.e.,

(2.7) W)(*) = {\°

and

(2.8) (v«f)(x) = \^J (Ka*θ)(x) \2

where Ka, Ψ and θ are defined by the following formulae.
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cae
nx(l - e2*)"-1 (x < 0)

(2.9) Ka(x) = .
(0 (x ^ 0) ,

(2.10) Ψ{x) = Ψ(x; x, f, Ω) = ψ(e~x) and Θ(x) = 6>(z; Λ:, /) = 0(β-) .

When α Φ — n/2 — v (x> = 0,1, 2, •), the above relations are pre-
served in distributional sense (see the proof of Proposition 1).

We now take the Fourier transform of Ka as a distribution and
prove the following proposition.

PROPOSITION 1. If a > — n/2, then

(2.11) {μlf)\x) = Γ !*.(£){»•(•; x,f, ΩTφΐdζ
J_oo

and

(2.12)

n/2 - i«ξ)

is the distributional Fourier transform of Ka, and

(2.14) A{\ξ\ + 1)-" ^ Iκa{ξ)I ύ 5(|ξI + 1 ) -

j f o r _ Co < £ < oo .

REMARK. In the sequel, we write the formula such as (2.14) as

K ( f ) l ~ ( l f l + i)~ α (-<*> <ξ <<*>).

PROOF. Assume that a is complex. Since \ Ω(y')dσ(yf) — 0, we
evidently have i F e y ( ~ o o , oo), and ΘeS^(— °°, ©o) is evident. We can
establish convolutional rule for these convolutions. The distributional
Fourier tranform of Ka is gotten by analytic continuation. See GeΓfand-
Shilov [6, vol. 1, Chap. 2, §2], When R e α > 0 , the complex Fourier
transform of Ka is

Ka(ζ) = cX (1 - fγ-ywdx - 2-1cX(l -
J-°° Jo

= 2_χ Γ(«)Γ((ζ + n)/2) = Γ(g + n/2)Γ((ζ + n)/2)
T ( α + (ζ + n)/2) 2πn/T(α + (ζ + w)/2)

For Reα > — w/2, -Kα(ζ) is also equal to the last term by analytic continua-
tion, so we get
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K (-

Since /ca(ζ) Φ 0 (—°° < f < °°), the asymptotic formula of the gamma
function, i.e.,

Ae~πlyW2\y\χ-1/2 ^\Γ(x + iy)\ ^ Be~πlyl/2\y\χ-1/2

for sufficiently large \y\, gives us the conclusion. q.e.d.

3. Square functions arising from Bochner-Riesz means of Fourier
and conjugate Fourier integral. First we define the space of distributions
of which test functions are between the space S?(— °°, oo) and the space
i^(—oo, oo) following the method of Zemanian [25, Chap. 3]. We shall
prove that in this space the above mentioned functions Ψ and Θ are the
convolutes in the sense of GeΓfand-Shilov [6, vol. II, p. 137 and p. 148].
/ is the convolute in the space ^ of test functions, if the distribution
/ e &-' has the property that (f*φ)(x) = </(#), Φ(x + y)} e &~ for any φ e j r
and that the relation φv -* 0 implies f*φu —> 0 in the topology of ^~.

Let m be a large positive number defined in a moment, {α̂ } and {bp}
are positive decreasing sequences such that

(3.1) m < ap < m + 1 , 1/2 < bp < 1 ,

lim ap = m and lim bp = 1/2. Set

For any φeC°°(— oo, oo), set

(3.3) τ M (0)

(g = 0, 1, 2, •). The class of functions φ e C°°(— oo, oo) such that

(3.4) yP>q(Φ)<oo ( g - 0 , 1 , 2 , . . . )

is denoted by £fv = ^ p , 6 3 ) and its topology is defined by the method
of Zemanian [25, p. 50]. Set ^rm = Όp=1£fp. Then the fundamental
space ^ ^ of test functions is contained in ^ ( — o o , oo) and the conver-
gence of ^rm implies that of ^ ( — o o , oo); see [25, p. 55]. In ^ i ' , the
distributional space defined on , J ^ , we have the following lemma.

LEMMA 1. The function Φ such that

is a convolute in the space
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PROOF. For any φe£?p, set ψ(x) = \ φ(y)φ(x + y)dy. We must
J_oo

estimate I(x) = (Dgψ)(x), where

(3.6) I{χ) = (°° φ(y - x){D*φ){y)dy .

Since 7P,9(0) < oo by (3.3) and (3.4), we have

say. Then, by (3.2),

ii

and

S oo

|Φ( - α +
0

If a? ̂  0, then by (3.5) and (3.1)

I, ^ Ce-{m+1)m[°°exv{-(m +
Jo

and

I2 ^ cΓe-(w+1)*Γexp{(m + 1 - ap)y}dy

^ C'exp(—αpx) ,

because m + 1 — ap > 0.
If x < 0, then

/i ^ cΓe Γ"exp{(i - 6p)»}d» + e'{m+1)x^ exp{~(m + 1 + bp)y}dy]

^ Cf exp(6pi»)

by 1 - bp > 0, and

J2 ^ Ce35 S°°exp{-(1 + ap)y}dy ^ C exp(6pa?) .
Jo

Hence by (3.6) 7,,g(t) = sup{fcp(a?)|/(a?)| -oo < x < oo} ^ C'ΊPΛ(Φ).
q.e.d.

In (1.4) we set K(x) =Yk(x')l\x\n, where Ffc is the surface spherical
harmonic of degree fc(^l). Then by Stein-Weiss [21, p. 164],
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where 7 M = ί-kπn/2Γ(Jc/2)/Γ((k + ri)/2). Hence (1.4) becomes

(3.7) (SβrktBf)(x) = 7 M ( (1 - \ξ\W)βYk(?)M)e2πix'*dξ

= yk,o \ fix - R-Xy)dy \ (1 - I ξ \Ύ Yk(ξ')e2«ίy ξdξ
JRn JltKl

where

(3.8) 7^ k(t) = (2π)n/2tn[un-1(l -
Jo

Vμ(t) = Jμ(t)/tμ and Jμ is the Bessel function of order μ; see Stein-Weiss
[21, p. 158].

Now we set as in (2.3)

(3.9) ψ(t) - ψ(t; x, f, Yk) = \Σ Yk(y')f(x - ty')dσ{y') .

Then

(3.10) (Sβ

Yk,Rf)(x) = Ύk,o

For k = 1, 2, , if β < (n - l)/2, then

(3.11) ϊfιk(t) ~ t-^~l)/i

for large ί; see Chang [3, p.p. 17-18, Lemma 7].
If we change variables by r = ev and R = ex, and set

(3.12) Ψ{x) = Ψ{x;x,f,Yk) = ψ{e-*) and

φ,,(aθ = -2βykiO{jβfk(e*) - γ^,^*)} ,

then the square function (Λ^/Xx) becomes

(3.13) (

by (1.7), (3.10) and (3.12). Now we can prove the following.

PROPOSITION 2. For β > 0,

(3.14) (PYkfY(x) = ί~ I λJU(e)flΓ(- x, /, Ffc)Γ(f) |2df ,
J_oo

where Xf>k is the distributional Fourier transform of Kfιk,

(3 15) λ* (£) = Γ { β + 1)Γ( f c/ 2) π ^ Γ ( l + iπξ)Γ((k + w)/2 -
"' Γ((k + n)/2) Γ(β + 1 + iπξ)Γ(k/2 + iπξ)
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and

(3.16) I λ ί ^ l - d f l + l ) - ^ ^ ( - o o < ί < o o ) .

PROOF. By the formulas (3.8), (3.11) and (3.12), we have

\Kβ,k(x) I ̂  Cmax{l, exp([-/3 + (n + l)/2]a?)}

for « ^ 0. If we take a positive number m such that m > (n + l)/2 — /3
in ^ ^ of Lemma 1, then K*tk e j^~ΰ and the convolution rule is established,
because Ψ satisfies the condition (3.5). Hence

where (Kf,kY is the distributional Fourier transform of Kfik. However,

0 (
Jo

_Γ{β + l)Γ(fe/2) Γ( - (ζ/2) + l)Γ((ζ + k + n)/2)
Γ((k + n)/2) ττζΓ(-(ζ/2) + /9 + l)Γ((-ζ + fc)/2)

for -(fc + n) < Reζ < - ( n + l)/2 by Watson [24, p. 391, (1)]. The last
formula is analytic in a broader domain which contains the imaginary
axis. Hence by the argument of GeΓfand-Shilov, we get (#*,*)"(<£) by
letting ζ = —2πiξ in the last formula. We denote this by λ*,fc(£) as in
(3.15). Since λ*,fc has no zero and the asymptotic formula for Γ-function
is applicable, we get (3.16). q.e.d.

For (hβf)(x), we can proceed in an analogous way. Since

(Sβ

Rf)(x) = \ (
\$\<R

by (1.3), we get

(3.17) (Sβ

Rf)(x) = \\(r)φ(rlR; JC, f)dr/r ,
Jo

where φ(t; ΛΓ, /) is the same as in (2.1) and

7,(ί) = 2t(2π)n/2Γ(β + l)tnVβ+{n/2)(2πt) ,

see Stein-Weiss [21, p. 171]. Differentiating (3.17) with respect to R, we
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get

λ ί ° \ i 2 ; x,f)dr/r ,
dR

where θ is defined by (2.5). If we set r = ey and i2 = e , then the square
function (hβf)(x) defined by (1.5) becomes

(3.18) Wf)\x) = (°J (Kϊ*θ)(x) \2dx ,

where

(3.19) #;(αθ = Ύβ(e*) = 2β(2π)n/2Γ(β + l)en

and θ(x) = θ(e~x) as in (2.10). Since the order of yβ(t) is t-β+{n~1)/2 as t
tends to infinity, X? g ̂ ' ( — oo, ©o), if /3 < (π — l)/2. Now we take m >
(n — l)/2 — /3 in Lemma 1 and consider the test function space ^~m. Then
Kf e ̂  '. Evidently |θ(a;)| ^ Ce~2a; ̂  Ce"35 (a? ̂  0), ^Ce ( w + 1 ) a ? (a? < 0). There-
fore, Θ is a convolute of this space. Hence the convolution rule is true
for Kf*Θ. The complex Fourier transform of Kf is

Γ e' Kf(x)dx =

= Γ{β + l)Γ((ζ + n)/2)
2πc+("/M/X-ζ/2 + /3 + 1) '

and is analytic in — % < Re ζ < m — {(n — l)/2 — /3}. Hence we get the
following.

PROPOSITION 3. For β > 0,

(3.20) ( W ( * ) = (" ! «ί(f){θ( x, /)}Λ(g) |2<ίί ,
J_oo

where Kf is the distributional Fourier transform of K*>

- iπξ)(3.21) rf(f) =

and

(3.22) k ί t e J I - d f l + l ) - ^ " ^ - 1 ( - o o < f < o o ) .

From Propositions 1, 2 and 3, we get Theorems 1 and 2, because any
bounded function is an ZΛ multiplier. To prove the uniformity in Theorem
1, it is sufficient to note that (3.16) holds uniformly in k, if λ*ffc(£) is
replaced by λ

4 Other square functions associated with the Marcinkiewicz func-
tion. Stein [13] introduced the square function μ(f):
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(4.1) μ(f)(x) = \\
Uo

\
l. \<t

\y\-n+ιΩ(y')f(x - y)dy

This is a generalization of the classical Marcinkiewicz function to the
higher dimensional case. Hormander [8, p. 136] generalized this. We
consider now more general square function μ*a'δf. We set first

(4.2) (tt*Ω\\f)(x) = c'aJ-δ\ (1 - \y\2ltΎ-ι\υ\-n+δΩ{yr)f{x - y)dy

for δ > 0, where c'a,s = Γ(n/2)Γ(a + δ/2)/πn/Ψ(a)Γ(δ/2) and define μtf 'f by

(4.3) {μ%a'°f)(x) = [\

Obviously (μ*1 'f)(x) coincides with the one defined by Hormander
(μ*a

1 1f)(x) = {Γ(nl2)l2πn'*}μ(f)(x). Furthermore, (μlf)(x) = (^α ' n/)(*).
Tracing the proof of Proposition 1, we have the following.

PROPOSITION 4. Let

~ (ή _ Γ(n/2)Γ(a + δ/2) Γ(δβ - iπζ)
°.tw 2πn/Ψ(δl2) Γ(a + δ/2 - iπζ) '

If a> -δ/2 and δ > 0, then

(4.4) {μf !fY (x) = (" i κa,}(ξ){Ψ(- x, f, Ω)Γ(ζ) \*dξ
j-oo

and

(4.5) l ^

Taking (2.14) and (4.5) into account, we have the following from (2.11)
and (4.4).

THEOREM 3. If a> - δ/2 and δ > 0, then

for feS^(Rn), and the relation holds uniformly in Ω.

We set further

{Tίj){x) = A t-nVβ+{n/2)(2π\y\/t)Ω(y')f(x - y)dy

where c'β = 2β(2π)n/2Γ(β + 1), and
1/2

Then
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(Tβ

ΩJ){x) = {#/•*•(.; x,f, Ω)}{x) (t = e~η ,

where Kξ is defined by (3.19). As shown in §3,

lΦ(£)l = k?(ί)l ~ (If 1 + l ) - ^ ^ " 1 (-00 < ς < oo) .

Comparing this with Proposition 1, we have the following.

THEOREM 4. If β = a + n/2 - 1 > 0, then

(Tβ

Ωf)(x) ~ (#/)(*)

for fe^(Rn), and the relation holds uniformly in Ω.

5. Spherical square functions arising as Riesz potentials. In this
section we assume f(ξ) — 0 near the origin for / e S?{Rn) and denote the
class of all such / by S^0(Rn). The Riesz potential of / is defined by

(5.1) (/*/)(*) = ( If \-aM)e2πίx'fdξ .

Set

(5.2) (/"/)(*) = { \ξ\aM)e™x'ξdξ .

Now we will define such a spherical square function as

(5.3) (Daf)(x) =
-jl/2

ίjdt/t .
J

Then (D"f)(x) is essentially smaller than
I V2

(5.4)

of Stein [15, p. 102], because

We will prove the following.

THEOREM 5. If β = a + n/2 αwd 0 < α < 1,

(5.5) (fc^/)(x) « D*(Iaf)(x)

for any fe^0(Rn).

For the proof of Theorem 5, we give the following two propositions.
First we consider

Then elementary calculation yields
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(5.6) U

x φ(tr; x, f)dr ,

where φ{t) = φ(t; x, f) is given by (2.1). Set

(5.7) Γ,(ί) = Γr-'dr ( V + π + 1 ( l - u'Y'1 V{nn)

Jo Jo

= t« (V + t ι + I ( l - tt2)^1FW2(2πίtt)dw .
Jo

Then by integration by parts we have

(5.8) τβ

1/t(Iaf)(x) = (2πy/2t-λ~ΓQ(r)θ(tr; x, f)dr/r ,
Jo

where θ(t) = θ(t; x,f) is given by (2.5). Moreover, we set

(5.9) 0_β(i) = θ_a(t; x, f) = t~aθ(t; x, f) .

As in the preceding sections, putting K*(x) = K*,β(x) = (2π)n/2eaxΓ0(ex) and
θ_a(x; x,f) = θ_a(e-χ), (5.8) becomes

The complex Fourier transform of if* is

= (2τr)"/:

Γ(/3)Γ(-ζ/2 + l)Γ((ζ + a + ro)/2)
4π c + α + (" / 2 )Γ(-ζ/2 + /3 + l)Γ(-ζ/2 - α/2 + 1)

for — (α + n) < Reζ < — α — (ίi — l)/2. By an argument analogous to
that in Proposition 2, we have:

PROPOSITION 5. For —% < α <Ξ 1 and β > 0,

(5.10) mi"f)(x)Y = Γ I #,,(£){©_„( Λ;, f)Γ(ξ) \2dξ ,
J—°°

where 7]*iβ is the distributional Fourier transform of K*tβ9 that is to say,

77* (&) = Γ(P + V. π2* i gΓ(l + iπξ)Γ((a + n)/2 - iπξ)
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and

(5.11) \7]Uξ)\ ~ (|f I + i)«-*+< /«-i ( - 0 0 < ξ < 00) .

Concerning (Daf)(x) defined by (5.3) we proceed analogously. By (2.1),
(2.5) and (5.9), we have

φ(t; xj) - 0(0; x, /) = [θ(tr; x,f)dr/r
Jo

and

(5.12) t-{φ(t; x, f) - φ(0; JC, /)} - [r"θ__a(tr; x, f)dr/r .
Jo

Hence, if we set K(x) = eax (x ^ 0) and = 0 (x > 0), then (5.12) becomes

{K*Θ_a(.;x,f)Kx)

with t = e~*. Hence we get:

PROPOSITION 6. If 0 < a < 1, then

where ιc(ς) = (α — 2ττi£)~1

i ) - 1 ( - 0 0 < f < 0 0 ) .

Theorem 5 follows, if we take Iaf as / in Propositions 5 and 6.
For (hγkf)(x), we get analogous one. For a surface spherical harmonic

Yk of degree fc(^l), set
ffoo f 2 N 1/2

(5.13) (Dϊkf)(x) = jjo t-β^/(x-ί|f')y*to f)^(if0 dί/tf .

THEOREM 6. If β = a + n/2 and 0 < α < 1, ίΛen ίAe relation

(hβ

Ykf)(x)l\7k,o\~Dϊk(IJ)(x)

holds uniformly in Yk and k for any fe^0(Rn), where the constant ΎkyQ

is the same as in Theorem 1.

The method of proof is the same as that for Theorem 1 and the one
above. If we set

ψ-a(fi; x,f, Yk) = t-«ψ(t; x,f, Yk)

and

Ψ-a(x; *,/, Yk) = Ψ-«(e-*; x,f, Yk) ,

then we have
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(5.14) Wkf)\x) = (°° J Ψ.a(x; JC, /, Yk) \2dx

by definition. On the other hand, by an argument parallel to that in the
proof of Proposition 2, we have

k .,.k(r)ψ-.<r/R; x,f, Yh)dr/r
Jo

and

{hβyk(I"f)(χ)Y = \°°_J{KZβ,k*Ψ-a( ; x,f, Yk))(x)\2dχ ,

where K*,β,M = -2/37*,0{γα,M(e*) - 7β.,_1|4(β )} and

(l - u')'(2πitu)>Vk+lu/tl_1{2πtu)du .

Furthermore, the same calculation as in the proof of Proposition 2 yields
that the complex Fourier transform of K*tβtk is equal to

)Γ(k/2) π-<Γ(-ζ/2 + l)Γ(ζ/2 + (α + k + n)/2)
n)/2) Γ(-C/2 + β + l)Γ(-ζ/2 - α/2 + k/2) '

Let Xί,β,k(ζ) be in the form which we obtain by exchanging ζ by — 2πiξ
in (5.15). Then

(5.16) {hβ

Yk(I«f)(x)Y =

By the asymptotic estimate of Γ-ΐunction, we have

(5.17) | λ* M ( ί ) | / |7 M | - (|f I + l)w/*> (-co

uniformly in k. Replacement of / by IJ in (5.14) and (5.16), and the
relation (5.17) prove Theorem 6.

Now, we give a relation between hβf defined by (1.5) and the Littlewood-
Paley gf*-function g*(f):

(5.18)

defined by Stein [14], where % is the Poisson integral of /.
As remarked in the definition of 3fJJ) in (5.4), we have (Daf)(x) ^

C%3fa(f)(x). Theorem 5 shows (hβf)(x) ^ CβD
a(IJ)(x) (β = a + n/2, 0 <

α < 1). Stein [15] showed that 3tJJJ){x) ^ CaAgf(f)(x) (0 < α < 1, 0 <
λ < 2a). Therefore we have

(5.19) (hβf)(x) ^ Cβ>λgf(f)(x) (0 < λ < 2, λ + n < 2/3) .



358 M. KANEKO AND G. SUNOUCHI

Next we consider the relation between μ*af = l*taAf and g*(f). By-
Theorems 3, 1 and 6, we have

(μrkf)(x) ~ mk{IJ){x) (0 < a < 1)

uniformly in Yk. Hence, by the Schwarz inequality and the above result
of Stein,

D«Yk{IJ){x) <ς \\YhUkτ)3ΓjJJ)(x) ^ Ca,λ\\Yk\\L2{Σ)gUf)(x)

(0 < a < 1, 0 < λ < 2a) .

Therefore we have

(5.20) « / ) ( * ) ^ Cβi21| Yk |U.(̂ ,ff?(/)(x)

for 0 < a < 1 and 0 < λ < 2a. If we have any good condition for the
expansion Ω — Σ ^ , we shall be able to get

G"S7)(*) ^ Catl.Ωgi(f)(x) (0 < α < 1, 0 < λ < 2a) .

6. Square functions arising from the Abel-Poisson summation. We
define the spherical Abel-Poisson means of a function / by

(6.1) (A?>«f)(x) = cΛ \y\aexv(-\y\™+1)f(x - ty)dy ,

where cm>a = (m + l)Γ(n/2)/2πn/2Γ((a + n)/(m + 1)), m > - 1 and α > -w,
following Levinson [11]. The corresponding square function is

f f o

(6.2) (δ- β/)(x) =
Uo

B o

o

l/2

(α { ^ / ( A + + 1 / ) ( ) } | W J
o

We also define the square function from the spherical means of Abel-
Poisson type of Fourier transform. Let

(6.3) um(x,t) = e'Λ (\urm+ι) + l)-("+ι)/2f(x - ty)dy ,

where m > — l/(n + 1) and the constant c'ή is taken so that um(x, 0) =
f(x). Set

(6.4) ft.

When m = 1 and a = 0, (6.1) agrees with the Gauss-Weierstrass
integral of /, and when m = 0, (6.3) is the Poisson integral of / and
(6.4) is the "real part" of the original Littlewood-Paley function g(f)(x).
See Stein [16, p. 83], where it is denoted by flfi(/)(x).
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We can prove the following:

THEOREM 7. If m> —l/(n + 1) and a = (m — l)n/2, £/ιen

(δ β/)(x) ~ gm+ί{f)(x)

for fe^(Rn).

The proof uses the same idea as that in the preceding sections.

PROPOSITION 7. For m > — 1 and a> —nf

where Θ is defined by (2.10),

( ή _ Γ(n/2)
2πn/2Γ((a + w)/(m + 1))

+ 1))
(-OO < ξ < OO) .

PROPOSITION 8. For m > -l/(n + 1),

(6.5) {gm+ί(f)(χ)Y = Γ

(6.6) P (ί) - CΓ(" n - ί2πt )r(m{n + D + l + i2πξ \
ζ V 2(m + 1) / V 2(m + 1) /

with C = Γ(n/2)/2πn/2Γ(n/2(m + l))Γ({m(n + 1) + l}/2(m + 1)),

(6.7) |Pm(ί) | - (|f I + l)^- 1 ) / 2exp(-π 2 | ί |/(m + 1)) (-«> < f <

PROOF OF PROPOSITION 7. Set

Then, by the change of variables t = e~x, we have

t±(A?>«f)(x) = {J^m,α*Θ( ; x,

at
as in the proof of Proposition 1. In this case, the convolution is ordinary
and we can prove Proposition 7 without the concept of distribution. It is
easy to calculate the Fourier transform j ^ > α of j ^ > α and we get Pro-
position 7. q.e.d.
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PROOF OF PROPOSITION 8. We set

Pm(x) = Cenx{e2{m+1)* + l } - ^ " *

Moreover, by the change of variables t — e~x, then

&u.(x,t) {Pmθ(;ot

The Fourier transform of Pm is (6.6). q.e.d.

REMARK. Except when m = 0, um(x, t) in (6.3) does not represent
the exact Abel-Poisson mean of Fourier transform of /. In fact, in the
case m = 1 and a = 0, (A?'"f)(x) is the Gauss-Weierstrass mean of function
/ and also that of its Fourier transform coincidentally. However, if we
take m = 1 and a = 0 in Proposition 7 and m = 0 in Proposition 8, then
we have

£)l ~ (If I + D(*-1)/2exp(-π2|f |/2) and

These show that the square function (<?M/)(JC) arising from the Gauss-
Weierstrass summation is not smaller than the classical Littlewood-Paley
function g^f^x). Hardy [7, p. 176] already observed that a summable
(W) Fourier series is certainly summable (A).

It may be natural to consider the square functions

for m > — 1 and a > —n, and
(Coo

fo,«+ι(/)(*) = |Jo l«k (*, t)

for m > — l/(w + 1), as the counterparts of (δm "f)(x) and gm+i(f)(x), where

(!?:?/)(*) = em,\ Ω{y') I y \" exp( -1 y \m^)f(x - ty)dy

and

UΩtJx, t) = c'A β(|ί')(l if Γw + 1 ) + l)-{n+1)/2f(x - ty)dy .

Between them, we have the following relation:

THEOREM 8. If m> —l/(n + 1) and a = (m — ΐ)n/2,
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for f 6 £f(Rn) and the relation is uniform in Ω.

The proof is similar to that of Theorem 7.
If we take Ωά{y) = yύl\y\ (j = 1, 2, , n) as Ω, then we have the

relation
ffoo W/2 n

g.(f)(χ) = {Jo I v.w(χ, t) | ίdt| ~ Σ («&?/)(*)

(a = — n/2 + 1), where u is the Poisson integral of/. The left hand side
in the above relation is another part of the classical Littlewood-Paley
^-function. See Stein [16, p. 83].

7. Applications. Let Hp(Rn), 0 < p < <*>, be the Hardy spaces in
the sense of Fefferman-Stein [4]. If 1 < p < oo, then Hp(Rn) coincides
with Lp(Rn) and its norms are comparable. So for any p, 0 < p < oo, we
assume that | | / | | p denotes the Hp(Rn)-noτm of/. Moreover, we denote
by ||ff |UP(JI») the L%β*)-norm of geLp(Rn), 0 < p< oo.

It is known that the class Sφtn) defined in §5 is dense in Hp{Rn),
0 < p ^ 1, and Lp(Rn) = Hp(Rn), 1 < p < oo. See Calderόn-Torchinsky [1,
II, pp. 104-105]. This is useful for extension of /.

The square function arising from the Cesaro summation is generally
greater than that arising from the Abel summation, except for a constant
factor (Flett [5, p. 116]). Thus concerning the inequality ||S(/)ILP(H»> ^
ApH/llp for any square function S(f), if S(f) is generated from a Cesaro
type summation, then it is better than the inequality whose S(/) is
generated from an Abel type summation.

The following two iϊp-boundedness theorems about square functions
are fundamental for our argument.

THEOREM A. For 0 < p < oo,

|| / 1 | , ^ Ap || OlIJ) \\LnRn) and || / 1 | , ^ A'p \\ gx(f) | | L W ) .

This was given by Fefferman-Stein [4, p. 185] and Calderόn-Torchinsky
[1, I, P. 55].

THEOREM B. For β > n(l/p - 1/2) + 1/2 (0 < p <: 2) and β > (n - 1)

(1/2 - 1/p) + 1/2 (2 ^ p < oo),

For 1 < p ^ 2, Theorem B was given by Sunouchi [22]. We cannot
find the case 0 < p ^ 1 in the literature, but it can be proved by the
atomic decomposition of Hp(Rn); see Latter [10]. Furthermore, when
0 < p < 1 and β = n(l/p - 1/2) + 1/2, hβ is weak type (Hp, Lp). For the
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case 2 ̂  p < oo, we can prove Theorem B as follows.
As proved in Theorem 5, for β = a + n/2, 0 < a < 1,

(Λ'/)(x) ~ D«{IJ){x) ^ Aagίa(IJ){x) .

However, for p ^ 2, Stein [15, p. 103, Lemma 1] showed that, for a > 0,

Hence, for n/2 < β < n/2 + 1 and p ^ 2,

So we can get the conclusion by interpolation between p1 = 2, β > 1/2
and p2 = P, β > n/2.

This result is better than that of Igari-Kuratsubo [9].
Combining these two theorems with our results in the preceding

sections, we have following Corollaries 1, 2, 3 and 4.

COROLLARY 1. For a>n/p-n + 3/2(0<p^2) and a>-(n-l)/p +1
(2 ^ p < oo),

COROLLARY 2. For a > n/p - n + 1/2 (0 < p <: 2) αwcZ α > - (w - l)/p

Since \\?rk\\PύCPtTh\\f\\p, we have

(7.1)

for the above range. By Theorem 3, we can replace μ£kf by μ*^f = μ$^}1f
in (7.1) for a > —1/2. In particular for a ^ 1/2, we get

\\μ$"kf lUw ^ Cp,a>Yk\\f\\p ( 1 < p < oo) .

So the case a = 1 is true. This case was studied by Stein [13] and
Hormander [8]. Their operators are more general than ours, but the
methods of proofs are different.

In order to get converse inequalities for μγkf, we need | |/| |p^?
C\\fγk\\p. From this point of view, if Yk is the j-th component of the
Riesz transform, i.e., Yk(x') = Xj/\x\, then

for the same range as in Corollary 2, where μ° f means μa

Ωf for Ω{x') =
Xjl\x\. This was also given by Stein and Hormander.
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COROLLARY 3. For l>a>n/p-n + l/2 (2n/(2n + 1)<p<2n/(2n-1))
and 1 > a > 0 (2n/(2n - 1) ̂  p < °°),

ApJf\\p ^ \\D«{Iaf)\\LnRn) <g BpJ\f\\p

and

APtatu\\?Yk\\p ^ II #?*(*«/) I U H > ^ Bp>a>k\\fYk\\p ,

where Yk is a surface spherical harmonic of degree k ^ 1.

COROLLARY 4. When m ̂  0 αwd α = (m — l)w/2, ίfce relation

/or 0 < p < oo.

Stein-Wainger's "Problem 6 (α)" in [20, p. 1289] is concerned with
g(f)(x) and (vaf)(x) for a = 0. However, gάf^x) ** (δ°'"n/2/)(Λr) is concerned
with the Abel means and Oa/)(jc) with the Cesaro means. These facts
and Corollaries 1 and 4 may be an answer to the problem.

Let ^?af be the maximal function for (Λff/)(x) of (1.1), i.e.,

Ur a /)(x) = supί|(Mf/)(x)|; 0 < t < -} .

COROLLARY 5. For a > n/p — n + 1 (0 < p <ί2) and a > ( — n + 2)/p

PROOF. For 0 < p ^ 2, we can deduce the conclusion by a routine
argument from Corollary 1. The other case is immediate from interpola-
tion between the case p = 2 and p = °°, which is obvious. q.e.d.

Stein-Wainger [20, p. 1283, Th. 14] and Stein-Taibleson-Weiss [19, Th.
II] gave this result. In particular, for nj(n — 1) < p < oo,^;>3,

where (^tf)(x) = ( ^ 0 / ) ( Λ Γ ) . This had already been proved by Stein [17].
Let ^ be a C0

TO(iΓ)-function with φ(0) = 1 and set φt(x) = t-nφ{t~ιx).
Then Stein-Wainger [20, p. 1271] gave the following definition:

(7.2) (gj)(χ) - {Jo I (Mΐf)(x) - (f*φt)(χ) \

and proved for α > (1 — n)/2,

To avoid confusion of this notation (gaf)(x) in (7.2) with (6.4), we
denote (7.2) by (N"f)(x) instead of (gj)(x).

COROLLARY 6. For a > n/p - n + 1/2 (0 < p <; 2) and a> —(n — ΐ)/p
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(2 ^ p< oo),

\\N'f\\L,um£C,,β\\f\\,.

PROOF. Take N so that a + N > 2. Then

(7.3) (Naf)(x) ^ Σ j ( Ί (Mf+*f)(x) ~ (M?+"-lf)(x) \2dt/t
u
IJo

where uTt(x) - t^K^x) and ΛΓ(x) = cβ+Λr(l - l * ! 2 ) ^ " 1 - φ(x). If we apply
Corollary 1 for the first term in (7.3) and apply a multiplier theorem in
Stein [16, p. 46, Th. 5] for the last term, then we have the conclusion in
the case l<p<oo. For 0 < p ^ l , it is obtained, if N is taken sufficiently
larger and the atomic decomposition of / is applied to the last term on
the right hand side of (7.3). q.e.d.

Analogously, if we use Theorem B instead of Corollary 1, then we
get the following.

COROLLARY 7. For β > n(l/p - 1/2) - 1/2 (0 < p <: 2) and β >

(n - l)(l/2 - 1/p) - 1/2 (2 ^ p < oo),

where
(Coo . \ 1/2

(C/)(x) = |Jo \(Sβ

Rf)(x) - {f*φ1/R){)\>dRIR\

and (SRf)(x) is given by (1.3).
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