
Tδhoku Math. Journ.
37(1985), 323-332.

GLOBAL ASYMPTOTIC STABILITY IN A PERIODIC
INTEGRODIFFERENTIAL SYSTEM

KONDALSAMY GOPALSAMY

(Received April 18, 1984)

A set of easily verifiable sufficient conditions are derived for the ex-
istence of a globally stable periodic solution in a system of nonlinear
Volterra integrodifferential equations with periodic coefficients.

1. Introduction. The purpose of this article is to derive a set of
"easily verifiable" sufficient conditions for the existence of a globally
asymptotically stable strictly positive (componentwise) periodic solution
of the integrodifferential system

ί = l J—oo )
jφi

i = 1, 2, ••-,%;« > ί o ; ί o e ( - 0 0 , 00)

where 6ίy α<y (ΐ, j — 1, 2, •••,%) are continuous, positive periodic functions
with a common period α> and KiS: [0, 00) -> [0, 00), (i, j = l,2 ,n;i Φ j)
denote delay kernel about which more will be said below. In mathe-
matical ecology (1.1) denotes a model of the dynamics of an ^-species
system in which each individual competes with all others of the system
for a common pool of resources and the interspecific competition involves
a time delay extending over the entire past as typified by the delay
kernels Ktj in (1.1). The assumption of periodicity of the parameters
bi9 aiS (ΐ, j = 1, 2, •••,%) is a way of incorporating the periodicity of the
environment (e.g. seasonal effects of weather, food supplies, mating habits
etc.). We will need the following preparation.

LEMMA 1.1. Assume that the delay kernels Ktj (i, j = 1, 2, , n; iφj)
are pίecewise (locally) continuous such that the series Σ?=o Kti(u + rw)
converges uniformly with respect to u on [0, α>]. Then any ω-periodic
solution of (1.1) is also an co-periodic solution of

(1.2) —ϊίLL = χt(t)\bt(t) — au(t)Xi(t) — ΣaijψΛ Hiά(t — u)xβ(u)du\ ,
dt i 3=1 Jt-ω )

lΨί ί = 1,2, '•-,%,
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where

(1.3) H t i ( u ) = Σ Kisfa + ra>y> i , j = 1 , 2 , - - - , n ; i ^ j
r=0

and conversely any co-periodic solution of (1.2)-(1.3) is a ω-periodic
solution of (1.1).

PROOF. The proof follows immediately from the fact that if (x19 x2,
•••, xn) is any periodic solution of period ω of (1.1) then we have

Γ'(1.4) [ Kti(t - s)xά(s)ds = Σ Γ κ<s<t - s)xά(s)ds
J-oo r=0 Jt-(r+l)ω

oo Ct Ct

= Σ \ Ku(t — 8 + rω)Xj(s — rώ)ds = \ HiS(t — s)xj(s)ds ,
r=0 Jt-ω Jί-ω

implying that the cw-periodic solution (xίf , xn) of (1.1) is also a solution
of (1.2)-(1.3). The converse is similarly proved by retracing the steps
backwards and the proof is complete.

Now let R and Rn denote respectively the set of all real numbers and
the real w-dimensional Euclidean space; Ri will denote the nonnegative
cone of Rn under a componentwise ordering. Define the constants bι

i9 bt,
alij, CLii (if 3 = If 2, , n) by the following:

inf bt(t) = min bt(t) = b\
teR ίe[0,ω]

inf α<, (ί) = min aiS(t) = a\ά
teR te[0,ω]

sup bt(t) = max bt(t) — bt
teR ίe[0,ω]

sup atj(f) = max aiά(t) = a*s i, j = 1,2, , n .
teR te[0,ω]

We will study the system (1.1) under the following assumptions on
the coefficients of (1.1):

( i ) the delay kernels are normalized and are such that

(1.5) \ KtJ(8)d8 = 1; I sKiS(8)ds < °° , i, j = 1, 2, , n; i Φ j ,
Jo Jo

(1.6) (ii) 6{>0 and at

u>0; * = 1,2, ••-,»,

(1.7) (iii) 6̂  > Σ aUWah) > t = 1, 2, , » .

is
Since solutions of (1.1) corresponding to initial conditions of the form

(1.8) x<(8) = <pt(8) ̂  0; sup <pt(s) < oo ^ ( 0 ) > 0

Ψi is piecewise (locally) continuous on (—<χ>,0]
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remain nonnegative, it will follow that

(1.9) Jg, ^ Xi{bΐ - ciA}; t >0 , i - 1, 2, ., n ,

325

as a consequence of which we will have

(1.10) 0 < xt(0) ^ h«\a\i = «?

=>«i(ί) ^ α? for t > 0 , i = 1, 2, , n .

Now (1.1) and (1.10) together lead to

(1.11)

If 0 < xM ^ a?? (1.6), (1.7) and (1.11) lead to

(1.12) =>xt(t) ^x\ for t ^ 0 , i = 1, 2, , n .

From the foregoing preparation we have the following:

LEMMA 1.2. Let

be a solution of (1.2)-(1.3) with the initial conditions

%ί(to, t0, ψ) = <Pi(8), S 6 [t0 — ft), t 0 ] , t0 6 Λ ,

If

(1.13) 0 = max = min s e [ί0 - ft), t0] ,

i = 1, 2, ••

•, n .

; toeiϊ

(1.14) ^ ^(t, to, φ) ̂  x* /or ί ^ to; to 6 i ί , i = 1, 2, , n

2. Existence of a periodic solution. Our strategy for proving the
existence of a periodic solution of (1.2) is as follows; we show that a
class of solutions of (1.2) converge as t—>oo to an asymptotically almost
periodic function and then show that such an asymptotically almost
periodic function is itself a periodic solution of (1.2). For convenience
we note the following definitions:

DEFINITION 2.1. (Halanay [5], p. 343). Let φ, ψ:[t0- ω, to]-*Rn for
t o € i ϊ and let φ, ψ be continuous on [t0 — ft), t0]. If ψ = {φlf φ2, , φn}
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then a solution

%(t, ί0, φ) = Mt, ί0, φ\ , &n(t, ί0, <?)} , ί > ί0

of (1.2) with

(2.1) xt(tOf ί0, 9) = &(s) , s e [t0 - ω, ί0] , to e -B , i = 1, 2, , w

is said to be uniformly stable if for every ε > 0 there exists a δ(ε) > 0
such that

max Σ
se[<0-ω,ί0] ϊ = l

(2.2) =>ΣI»«(t, ίo,φ)-Vi(t, t0,
ΐ = l

where y(t, t0, ψ) = {^(t, t0, ̂ ) , 2/2(ί, t0, ̂ ) , , !/»(*, ô, ̂ )} (ί ̂  O is a solution
of (1.2) with

Vi(t0, t0, ψ) = fi(s) , 8 e [t0 - ω, t0] , i = 1, 2, , n .

DEFINITION 2.2. A function p = (plf p2, , pn): R-+Rn is said to be
almost periodic if for every ε>0 there exists a J = i(e)>0 such that within
any interval (α, a + ϊ(e)) of length ϊ there is a number /S for which

Σ | P i ( ί + / 3 ) - P i ( ί ) l < e for t e i ί .

A function p\R->Rn is said to be asymptotically almost periodic if it is
a sum of an almost periodic function f(t) and a continuous function g{t)
defined on R such that (Yoshizawa [6])

p(t) =f{t) + g(t),teR and ff(ί)->0 as ί-» «> .

The following result will be used in the proof of our existence
theorem below.

LEMMA 2.1. (Halanay [5], p. 486, Th. 4.37). Every bounded and
uniformly stable solution of a system of the form (1.2) converges asymp-
totically (as ί —• oo) to an almost periodic function.

Our main result on the existence of a periodic solution of (1.2) is
the following:

THEOREM 2.1. Assume that (1.5)-(1.7) hold. Furthermore, suppose
that there exists a positive constant m such that

(2.3) min ajό(t) > Σ ( max aiά{ty\ + m , j = 1, 2, , n .
ίe[0,ω] i=l \ίe[O,ω] /

Then (1.2) has a periodic solution of period ω say x*(t) = {x1{t)9 , xn(t)}
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such that

(2.4) x* ̂  χt(t) ^x* , i = 1, 2, , n; t e [0, ω] .

PROOF. Let

X(t, to, ψ) = {«i(t, tQ, φ), , Xn(t, to, <?)} ,

»(ί, 0̂, #) = {»i(t, to, #), ' , l/»(t, t0, #)}

be two solutions of (1.2) corresponding to continuous initial conditions
ψ and fy such that

(2.5) x* ̂  ^ί(s) ̂  x* , s e [t0 - α>, ί0]

x* 5̂  ̂ t(s) ̂  a?* , s e [tQ — ft), t0] , ΐ = 1, 2, , M; ί0 6 jβ .

Consider a Lyapunov-functional v(t) = V(t, x, y) defined by

(2.6) vit) = V(ί, xfy) = Σi (llog xt(t, t0, φ) - log y <(t, t0, t ) I

+ Σ \ _ {α<j( s)(j Hv(8 + ω ~ ^ ) l ^ ( ^ *o, φ) — Vi(v>9 t0, ψ\)|cZwj|eZs ,

t ^ t o '

Since

X* ^ ^ i(t , to, 9 ) ^ OJ*

^* ^ 2/i(ί, t0, φ)^x* i = 1, 2, , %; t ^ t0

we have (by the elementary mean value theorem)

(2.7) I log χt(t, t0, φ) - log yt(t, t0, ψ) \ ̂  | ̂ (t, t0, φ) - ^(t , t0, ψ) \/x*

and hence

(2.8) v{Q ^ [α(ίo)] max Σ | ̂ (s, t0, ̂ ) - ^(s, t0, t ) h
e[ίo-β>,to] i=l

where

(2.9) [α(t0)] = — + max Σ α?/('° fί'0 ^ ( e + ω - u)du\ds) .

We have from

(2.10) Γ° \[to HH(s + ω - w)dw}ds ^ Γ° d^|Γ° fly^s + ft) - %)
Jίθ-ωUβ " ) Jto-ω U<0-ω

S ί0 (Ct0 ) Ct0 (Cto+ω-u \

du\\ Hit(β + ω - u)ds ^ \ dtt]\ i ϊ ^ ) ^
ίo-ω Uί o-ω ) J«0-ω iJ<o-tt '

a)
Jo
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that

v{Q ^ ε

for arbitrary ε > 0 whenever

(2.11) max Σ \xt(s, t0, φ) - yt(8, t0, φ)\ ^ δx(ε) ,

where

(2.12) ^(ε) = εΓmax Σ a]tω Γ' Hit(η)dη + (l/α*)Ί * .
Llύi^n j=l JO J

Calculating the right derivative D+v of v and simplifying,

(2.13) D+v(t) ^ - m Σ I «*(«, «o, 9) - »i(*, ίo, f ) I , it ^ ίo; t, ίo 6 Λ)Σ
ΐ = l

showing that

(2.14) v(t) ^ ( ί 0 ) f o r t ^ t 0 ,

which implies that v{t) is nonincreasing for t 2; to; furthermore we have
from

(2.15) v(t) ^ Σ I log χt(t, t0, φ) - log yt{t, t0, ψ) \

i=l

S ( I ; \Xt(t, t0, φ) - yt(jt, ίo, ψ)\)/x*

that

(2.16) Σ I xt(fi, ίo, ̂ ) - y«(ί, ίo, t ) I ̂  as «W < s
i=l

whenever

(2.17) max Σ I &,(β, ίo, ̂ ) - y«(β, «o, t ) I ̂  δ(ε) ,
ί6[to-ω,<o] i = l

where

(2.18) 0 < δ(ε) < δ&yx* .

It follows from (2.16)-(2.17) that all solutions of (1.2) having components
of initial values in the interval (χ+, x*) are uniformly stable. Now by
Lemma 2.1 such solutions converge as ί->oo to almost periodic functions,
that is, there exists an almost periodic function p = (p1,p2,

 β ,3>n) such
that

(2.19) Xt(t,to,φ)-pi(t)-+O as ί-> oo , i = 1, 2, « , n ,

and
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(2.20) x* ^ pit) ^X* for t^to,toeR , i = 1, 2, . , n .

Our task is now to show that p = (plf p2y •••, pn) is itself a solution of
(1.2). Since toeR is arbitrary, we can consider p to be defined on R.

We can write (2.19) in the form

(2.21) Xi(t, t0, φ) = pit) + qlt) , i = 1, 2f , n; ί ^ ίo e Λ

for some qt continuous for t^to£R such that qlt) —>0 as £ —• °°, i =
1, 2, « ,w. By means of arguments similar to those in the proof of
Theorem 16.1 on p. 182 of Yoshizawa [6] one can show that the almost
periodic limit p is itself a solution of (1.2). To show that p(t) Ξ= p(t + ft))
on JR, we replace x and y in the Lyapunov functional V by p(t) and
p(t + ώ) respectively. As a consequence of Theorems 1.7 and 4.1 of
Corduneanu [1] it will follow that v(t) = V(t, p(ί), p(t + ft))) is itself almost
periodic in t e R. We have already seen that v is nonincreasing in t (see
(2.13)) and hence the convergence of v(t) as t-+°° to a limit say v(oo
follows, i.e.

lim v(t) = I im7(ί, p(t), p(t + ω)) = v(<χ>) m
t t

By the almost periodicity of v in t, it will follow that for any ε > 0 and
for any integer m exists a σm e (m, m + ϊ(ε)) such that

(2.22) 0 ^ v(t) - v(t + σm) < e for t e R .

Considering the limit in (2.22) as m-^oo and ε —>0 we have

(2.23) v(t) ΞΞ v(oo) on Λ .

We have from (2.6) and (2.13) that

implying

(2.24) v(t) + Σ Γ I Pi(s) - P,(8 + ω) I ds ^ v(0)
ί=l Jo

and hence

(2.25) Σ I P*(«) - P*(« + ω) I + ^ Σ ί°° I Pi(s) - p t(β + ft)) | ds ^ a?*t;(O) .
i=l i=l Jo

The uniform continuity of | pt(t) — pt(t + ft)) | on R and its integrability
on [0, oo) as in (2.25) will imply that

(2.26) pit) - pit + ω) -> 0 as t -* oo .

A consequence of (2.26) is that lim^α, v(ί) = v(oo) = 0; then v(ί) = v(oo) = 0



330 K. GOPALSAMY

shows that v(t) = 0 on R and hence Pi(t) = pjj, + ω) on R, i = 1, 2, , n
and the proof is complete.

3. Global asymptotic stability. Let p(t) = {Pl(t), , pn(t)} be a
strictly positive (componentwise) periodic solution of (1.2)-(1.3) such that

(3.1) x* ^ Pί(t) ^ x*; 1e R; i = 1, 2, , n .

Such a solution p(ί) is by Theorem 2.1 a periodic solution of (1.1) and
we say p(t) is globally asymptotically stable (or attractive) if any other
solution x(t) = {xtf), •••, xn(t)} of (1.1) such that

(3.2) Xi(8) = φls) ^ 0; a 6 ( - oo, to]; φ^Q > 0; sup φls) < oo

where φi is continuous on (—©o, t0], ίo^-R has the property

(3.3) l i m Σ I ^ ) - 3 9 , ( 0 1 - 0 .
ί

It is immediate that if p(t) is globally asymptotically stable then p(t) is
in fact unique.

THEOREM 3.1. Assume that the conditions of Theorem 2.1 hold. Then
any periodic solution p(t) of (1.1) with strictly positive components is
globally asymptotically stable.

PROOF. Let x(t) = {xλ(t), •••,»«(*)} be any solution of (1.1) and (3.2)
and let p(t) = (Pi(ί), , pn(t)} be a periodic solution of (1.1) with strictly
positive components. Consider a Lyapunov functional v(t) — V(t, x, p)
defined by

(3.4) v(t) = V(t, x, p) = Σ (\ log Xi(t) - log Pi(f) I

3-1

for any toeR. Since both α? and p are bounded and bounded away from
zero (componentwise) for t > tOf

(3.5) v{Q ^ Σ ί I log χt(to) - log ^(ίo) I
ϊ = l I

+ Σ (α?i)fsup I Xj(u) - pj(u) \)\ < oo for t0 e R .
j

iΦi

Also we have

(3.6) v(t) ^ Σ I log xm - log P i ( t ) \;s>t0.
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A direct calculation of the right derivative D+v of v(t) together with a
simplification leads to

(3.7) D+v(t) ^ ~ m Σ I &*(ί) - ft«) l < 0 if Σ I »<(*) - P/(«) I > 0; ί > t0 .

We claim that (3.7) implies (3.3). Suppose (3.3) is not valid; then there

exists a sequence say {t8}, (s = 0, 1, 2, •) such that {t8} —• °o as s —> °°,

*o < *i < *2 < * and

Σ l»i(* ) ~ Pj (ί )l > ε> f o r s o m e positive number ε, s = 0, 1, 2, ,
ί=l

i.e.,

(3.8) DMi.) < - m e ; 8 = 0, 1, 2, .

Since o5< and p* are bounded for t > ί0 with bounded derivatives (from
the integrodifferential equations satisfied by them), it will follow that v
is uniformly continuous on [ί0, oo). If we now choose ε sufficiently small
then we will have

(3.9) D+v{u) < -m(ε/2) for ue(t8- ε, ts); s = 0, 1, 2, . . .

and hence

v(ί.) - v(ί. - e) ^ ( β D+v(u)du ^ -m(ε2/2)

implying that

v(ί.) ^ v(ί. - e) - m(ε2/2) ^ ^(t.^) - m(ε2/2) ^ v(ί,_8) - m2(ε2/2)

— ms(ε2/2) -> — oo a s s —• oo

which contradicts the nonnegativity of v(t). Thus our assertion (3.3) is
valid and the proof is complete.

We conclude with a remark that the assumption of periodicity of the
environment and the sufficient conditions (1.6), (1.7) and (2.3) have all
some ecologically meaningful interpretations the details of which can be
found in [2], [3], [4].
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