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1. Introduction and the statement of results. Let X be a poly-
hedron. It is said to be totally m-dimensional if there exists a locally
finite triangulation K of X such that for each o€ K, an n-dimensional
simplex 7 exists in K satisfying ¢ < z or ¢ = 7. (See Akin [1].) A totally
n-dimensional polyhedron X is an n-dimensional k-Euler space if there
exist a locally finite triangulation K of X and a subcomplex L of K
satisfying the following:

(1) |L| is a totally (m — 1)-dimensional polyhedron or empty.

(2) The cardinality of {re K|o < z} is even for every ¢ in K — L,
whenever dimo = n — k.

(8) The cardinality of {r€ K|o < 7} is odd for every ¢ in L, when-
ever dimo = n — k.

(4) The cardinality of {r€ L|o < t} is even for every ¢ in L, when-
ever dimo=n — k — 1.

We usually denote 90X instead of |L|. If X is an n-dimensional
k-Euler space, then 90X clearly is an (n — 1)-dimensional k-Euler space.
An n-dimensional k-Euler space X is closed if X is compact and 60X is
empty. If &k = n, we said n-dimensional k-Euler spaces to be n-dimensional
Z,-Euler spaces. (See [10].)

Let X be an n-dimensional k-Euler space with a triangulation K.
Then the i-th Stiefel-Whitney homology class s,(X) in H™(X, 0X; Z,) is
the homology class determined as the i-skeleton K° of the first bary-
centric subdivision K of Kforn — k < i <m. Here H* is the homology
theory of infinite chains. The Stiefel-Whitney homology classes of k-Euler
spaces are well defined by Proposition 2.2.

Since an n-dimensional differentiable manifold M has a triangulation,
the 7-th Stiefel-Whitney homology class s,(M) can be defined as above for
0 £ 4 < n. Whitney [16] announced that the i-th Stiefel-Whitney homology
class of an m-dimensional differentiable manifold M is the Poincaré dual
of the (n — 7)-th Stiefel-Whitney class w" *(M). Its proof was outlined
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by Cheeger [5] and given by Halperin and Toledo [6]. Blanton and
Schweitzer [2] and Blanton and McCrory [3] gave the proof by using an
axiomatic method. Taylor [15] generalized it to the case of Z,-homology
manifolds by using the method as in [2]. Matsui [10] studied the case
of Z,-Poincaré-Euler spaces in another method.

In this paper, we study the case of k-Poincaré-Euler spaces as in [10].
An n-dimensional k-Euler space X is said to be an n-dimensional k-Poincaré-
Euler space if the cap products [X].: H{(X, Z,) — H®Y(X, 0X; Z,) are iso-
morphisms for 0 <% < k. Let X be an n-dimensional k-Poincaré-Euler
space. Then there exists a proper embedding ¢: (X, 0X) — (B>, 0R"™)
for a sufficiently large, where R = {(@, & ***, Tnia)|Tusa = 0}. (See
Hudson [8].) Suppose that R is a regular neighborhood of X in R»**.
Put R =RNoR™™ and R = cl(3R — R). Regard ¢ as an embedding from
(X, 0X) to (R, B). We also call (R; R, R; ») a regular neighborhood of
X in R%**. Define U(p) in H*(R, R; Z,) as the Poincaré dual of ¢,[X].
Then the cup products U(p)V: H(R; Z,) — H***(R, R; Z,) are isomorphisms
for 0 <4<k We call Ugp) the Thom class of (R; R, B; ). Define
cohomology classes wi(@) by w'(@) = @* o (U(@)') o Sq*U(p) for 0 <7 < k.
Put w®(@) =1+ w'(®) + --- + w**(@). Then there exists a unique
cohomology class @W(X) such that #(X)Uw*(p) =1. Let w(X)=1+
WX + -« + @(X), where @w(X) is in HYX; Z,). Define wi(X) by
wi(X) = W4(X) for 0 <1< k. We call w(X) the i-th Stiefel-Whitney
class of a k-Poincaré-Euler space X for 0 < ¢ < k. Define w*(X) by
w¥(X) =14+ w'(X) + --- + w(X).

Let (R; R, R; ») be a regular neighborhood of an n-dimensional
k-Poincaré-Euler space X in R»**. We will define homomorphisms (e£):
Rira(R, R) — Z, and (8%)%: N.,o(R, R) — Z, for i <k, where N, (R, R) is
the unoriented differentiable bordism group. We need the following:

TRANSVERSALITY THEOREM (Rourke and Sanderson [13] and Buoncris-
tiano, Rourke and Sanderson [4]). Let M and N be PL-manifolds. Sup-
pose that f:(M,oM)— (N,dN) is a locally flat proper embedding and
that X is a subpolyhedron in N. If fOGM)NX = @ or if ON,oNNX)
18 collared in (N, X) and 0NN X s block transverse to f|0M:o0M — 6N,
then there exists an embedding g: M — N ambient isotopic to f relative
to 0N such that X 1is block transverse to g.

Let f: (M, M) — (R, R) be in RN, (R, ). By Transversality Theo-
rem, there exists an embedding g: (M, oM) — (Rx D*? Rx D) for g suf-
ficiently large such that g = fx{0} and that (@pxid)(XxD? is block
transverse to g. Let Y = (pXxid)og(M) and let +: Y — X x D? be the
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inclusion. If 4 <k, then Y is a closed Z,-Euler space by (1) of Lemma
4.3. Define (e£)'(f, M) by the modulo 2 Euler number ¢(Y) of Y. Note
that 4 has a normal block bundle v in Xx D from (1) of Lemma 4.3.
Define (€%)'(f, M) as (€%)(f, M) = {y*w* (X x DP)U @), [Y]), where w(v)
is the cohomology class determined by w*(»)U@(v) = 1. Now define a
homomorphism (0%)%: RN,..(R, R) — Z, by (ok)* = (&%) — (k). We can state
the main theorem of this paper as follows:

THEOREM. Let X be an &-d’imensional k-Poincaré-Euler space. Take
a regular mneighborhood (R; R, R; ) of X in R%**. Then [X]Nw(X) =
8,_«(X) for 1 £ m if and only if (08)* =0 for 1 = m, where m < k.

We can apply this theorem to k-regular spaces. Let R be a com-
mutative ring with unit. An n-dimensional 1-Euler space X is an n-di-
mensional k-regular space over R if a triangulation K of X satisfies the
following:

(1) For each ¢ in K — 0K, if dim o =4, then H;,(Lk(s; K); R) =
H; (S R) for j <k — 1.

(2) For each ¢ in 0K, if dim ¢ = 4, then H;(Lk(o; K); R) = H,;(pt; R)
for j <k —1. ’

(8) For each o in 6K, if dimo =4, then H;(Lk(s; 0K); R) =
H(S"** R) for j <k — 1.

An n-dimensional k-regular space over R is R-orientable if H.*(X,,
0X,; R) = R for each connected component X, of X.

In order to apply our theorem to k-regular spaces, we need the
following:

PARTIAL POINCARE DUALITY THEOREM (Kato [9]). Let R be a com-
mutative ring with unit. Let X be an mn-dimensional k-regular space
over R. Suppose that X is R-orientable unless R = Z,. Then the cap
products [X],: H(X; R) — H,_/(X, X; R) and [X].: H'(X, 0X; R) — H,_(X;
R) are epimorphisms for all 1 <k —1o0ri=n — k and monomorphisms
forallt<kori=mn—Fk-+ 1. Here H, is the homology theory of infinite
chains whenever H* s the ordinary cohomology theory, or H, is the
ordinary homology theory whenever H* 1is the cohomology theory of
cochains with compact support.

In [9], Kato prove this theorem in the case of compact k-regular
spaces over Z. But since we can prove this theorem by using the same
method as in [9], we do not repeat the proof here.

By our theorem and Partial Poincaré Duality Theorem, we have the
following:
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COROLLARY. Let X be an n-dimensional k-regular space over Z,.
Then [X]NwH(X) = s,_4(X) for all © < k.

In Section 2, we study the Stiefel-Whitney homology classes of k-Euler
spaces and prove a special product formula for the Stiefel-Whitney homology
classes. These are necessary to prove Lemma 5.1. The structure of the
bordism group of compact k-Euler spaces is given in Proposition 3.1.
Lemma 3.1 is necessary to prove Lemma 5.1. In Section 4, we give a
characterization of Stiefel-Whitney classes via the unoriented differenti-
able bordism group. In Section 5, we give a characterization of Stiefel-
Whitney homology classes via the unoriented differentiable bordism group.
Our theorem follows from Lemmas 4.1 and 5.1.

2. Stiefel-Whitney homology classes. The purpose of this section
is to show that Stiefel-Whitney homology classes of k-Euler spaces is well
defined and to prove a special product formula for Stiefel-Whitney ho-
mology classes.

In order to prove Propositions 2.2 and 2.3, it is convenient to define
k-Euler complexes for ball complexes.

A ball complex K (cf. [4]) is totally n-dimensional if for each ¢ in
K there exists an n-dimensional ball = in K such that 6 <7 or ¢ = 7.
A totally n-dimensional locally finite ball complex K is an n-dimensional
k-Euler complex if there exists a subcomplex L satisfying the same con-
ditions (1), (2), (8) and (4) as in the definition of k-Euler spaces in Section
1. We usually denote 0K instead of L. An m-dimensional k-Euler com-
plex K is said to be closed if K is a finite complex and 0K is empty.
A polyhedron X is an n-dimensional k-Euler space if there exists an
n-dimensional k-Euler complex K such that X = |K|. We usually denote
0X instead of [0K|. Such definition of k-Euler spaces clearly coincides
with that in Section 1.

Let K be a ball complex. The barycentric subdivision K of K is
defined by K = {(6y +++, 0,)|0, < +++ < 0,, 0;€ K}. Then K can be regarded
as a ball complex. Denote the p-skeleton of K by K?. We need the
following to prove that Stiefel-Whitney homology classes of k-Euler spaces
is well defined:

ProrosiTION 2.1. Let K be an n-dimensional k-Euler complex. Then
K are p-dimensional (p — n + k)-Euler complexes such that 0K? = 6K
for n —k<p<Zn.

In order to prove this proposition, we need the following:

LEMMA 2.1. Let K be a totally n-dimensional locally finite ball
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complex. If be K*™', then the cardinality of {a € K — K?|a > b} is even.

PrOOF. If p = m, then K — K” is empty. Thus we may assume that
p<n. Leta= g,  ++,0cK— Krandletb = (z, -+, 7,y € K*~'. Then
s>t + 1. Since the cardinality of {s€ K|o, < 0 < 0.} is even for each
{g,, 0 € K, the cardinality {a € K — K?|a>b} is even for be K*'. q.e.d.

PROOF OF PROPOSITION 2.1. Note that the cardinality of {b € K|a < b}
equals the sum of the cardinalities of {b€ K?|a < b} and {be K — K?|a < b}
for ae K. By Lemma 2.1, the cardinalities of {bcK|a <b} and {be
Krla < b} are congruent modulo 2 for ae K*'. Therefore K* is a
p-dimensional (p — n + k)-Euler complex such that 0K? = 6K~ for p >
n—k. q.e.d.

Let X be an n-dimensional k-Euler space with a ball complex struc-
ture K. Define the i4-th Stiefel-Whitney homology classes s;(X) by
s(X) = j,[|K‘|] for n — k < i < m, where j:|K‘| — X are the inclusions.
Let s4,)(X) =8, 1u(X)++-+s,(X). The Stiefel-Whitney homology classes
of k-Euler spaces are well defined by the following:

PrROPOSITION 2.2. Let K be an n-dimensional k-Euler complex and
let L be a subdivision of K. Then (Jp)| K]l = Gl L] for n — k <
1 = n, where jx and j, are the inclusions.

PROOF. Define an (n + 1)-dimensional k-Euler complex W and an
n-dimensional k-Euler complex U by W = (KxI — Kx{1})U(Lx{1}) and
U= @KxI—oKx{1)U@Lx{1}), where I={{0},({1},[0,1]}. We can
regard K and L as subcomplexes of W by the identifications K = K x {0}
and L = Lx{1}. Put U% = (U* — aU)UoU*"*. Then U" is an i-dimen-
sional (¢ — » + k)-Euler complex in view of Proposition 2.1. Note that
K¢ and L' are i-dimensional (i — n + k)-Euler complexes and that Wi+
is an (¢ + 1)-dimensional (¢ — n + k)-Euler complex such that oW =
K'UUYUL* and 00U = 6K*USL* by Proposition 2.1. Hence (j,).[| K‘|]] =
CPAMIPAIR q.e.d.

The product formula for Stiefel-Whitney homology classes (Halperin
and Toledo [7]) may not hold for k-Euler spaces, but we need the follow-
ing to prove Lemma 5.1.

PROPOSITION 2.3. Let X be an n-dimensional k-Euler space. Then
$i(X)X[D] = 8;4,(Xx D) for m — k <t =n, where D =[—1,1].

PROOF. Let L and L be ball complexes defined by L = {{—1}, {1},
[—1,1]} and L = {{—1), 1), {0}, {—1,0), <1, 0>}. Here (x1) = {{x1}),
) =<[-1,1]) and (+£1,0) = {{=*1},[-1,1]). Then |L|=D=[-1,1]
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and L is the barycentric subdivision of L. Let K be a ball complex such
that X = |K|. Let D, ¢;, ¢.4, and d,,, be chains with Z,-coefficients defined
as follows: D=3, 0, ¢ =300 00, Cn=30ye), ",
(apr 8), (apv O)r ttty (o-i’ 0)> + Z <(T0, 5)9 ) (fpr 8)9 (Tp+1! 0)7 ] (T'l+v O)> and
dive =2 [PIK(zy, €), - T (Tpr €)y (Tpy 0), %+ =, (Tinsy 0)), where {g,,* -, 0,) ranges
over all 7-balls of K* while {(z,, ---, 7;4,» ranges over all (¢ + 1)-balls of
K*, 0<p=<i+1 and ¢ = £1. Here [p] is the class of p modulo 2.
Then d.., — @i — ¢;X D) = X [il(zey &), =+ +, (Tissy €)).  Since .., {(z,
g), +++, (Tisy, €)) is exact for each (z,, ---, 7.y,), it follows that &, ,—e,xD
is exact. Note that s,(D), s,(X) and s,,,(X x D) coincide with the homology
classes defined by chains D, ¢, and ¢,,,, respectively, for n —k <1 < m.
Thus s, (XX D) = s(X)X[D] for n — k<t = n. g.e.d.

3. Bordism groups of k-Euler spaces. Let {8} 6} be the bordism
theory of compact k-Euler spaces for k& > 0. Then {®B% 4} is a homology
theory (See Akin [1].). If k = o, then {®B 5} is the bordism theory of
compact Z,-Euler spaces. (See Akin [1] and Matsui [10].) Let (A, B) be a
pair of polyhedra. Define a homomorphism s,: 8%(A, B)— H,_,..(4, B; Z,) +
<o +H,(A, B; Z,) by s4)(P, X) = Xiien_i+1 Px8i(X). Then s, is well defined
by Proposition 2.1. Define a homomorphism j, ,: B%(4, B) — B4, B) by
Jwo@ X) = (p, X) for p = q. Then the following holds:

PROPOSITION 3.1. The homomorphisms su,: B(A, B) — H,_,..(A, B;
Z) + --- + H,(A, B; Z,) are isomorphisms for 0 < k < n. The homomor-
phisms j, o: B2(A, B) — BYA, B) are surjective for p = q.

Proor. Put w¥®A4,B)=H, ,.(A B; Z,)+ --- + H,(A, B; Z,) for
k > 0. Define the boundary operator o%¥: r%* (A, B) — h{® (B) as that of
the ordinary homology theory. Then {r{, 6%} is a homology theory with
compact support for k > 0. Note that {8¥%, 9} is also a homology theory
with compact support and that s, is a homomorphism from 8B%(4, B) to
h¥(A, B) such that 0% os, = s; 0. Since h¥(pt) = Z, and BE(pt) =
B,(pt) = Z, (cf. [10]) for n =0, ---, &k — 1, and k¥ (pt) = 0 and BE(pt) =0
for n = k, where pt is the space of one point, the homomorphism s, is
an isomorphism. (See Spanier [14].)

Let n: hP(4, B) — h{"(A, B) be the canonical projection. Note that
8@°Jma = ToSy. Since m is surjective, so is J, 4. q.e.d.

Let &£ = (E(g), A, ¢) be a p-block bundle over a polyhedron A. Define
E(g) as the total space of the sphere bundle associated with &. Then we
will define a homomorphism (e¥)': B:,.(E(), E(¢) — Z, for © < k, where
BE,(E(E), E(g)) is the bordism group of compact k-Euler spaces. Let R
be a regular neighborhood of A in R*. Let j: ACR be the inclusion and
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p: R— A be a deformation retraction. Suppose that p*z = (E(p*¢), R, ¢z)
is the induced bundle. Then there exist bundle maps (7, 7): (E(), 4) —
(E(p*¢), R) and (P, p): (E(p*&), R) — (E(£), A). (See Rourke and Sanderson
[12].) For each (@, X) in Bt (E(), E()), there exists an embedding
@: (X, 0X) — (E(p*g), E(p*e)) such that §=jop. By the transversality
theorem (see [12]), we may assume that $(X) is block transverse to
tz: R — E(p*g). Let Y = @ 'o¢y(R). Note that the inclusion YCX has
a normal block bundle, the total space of which is an n-dimensional
k-Euler space. Then Y is a closed i-dimensional k-Euler space. Hence
Y is a closed <¢-dimensional Z,-Euler space whenever 7 < k. Define
(eH(p, X) by the modulo 2 Euler number ¢(Y) of Y.
To prove Lemma 5.2, we need the following:

LEMMA 3.1. Let v = (E, M, ¢) be a normal p-block bundle of a proper
embedding from a compact q-dimensional triangulated differentiable
manifold M to D*** = [—1, 1]**%. Let U, be the Thom class of v. Then
(O U ) w*(M), Pusu(X)) = (€, X) for every (p, X) in Bi.(E, E)
for © < k. Here $4)(X) = 8pyirpir(X) + ¢+ + 8,04(X).

ProOF. The case k = - was proved in [10]. By Proposition 3.1, we
may assume that X is a Z,-Euler space. Note that ()@, X) = (e (p, X)
for (p, X) in B2 (E, E) for ¢ < k. Then (U, U(*) w*(M), P84 (X)) =
(e"(p, X) for i < k, in view of the case k = . q.e.d.

4. A characterization of Stiefel-Whitney classes. The product
formula for Stiefel-Whitney classes (see Milnor [11]) may not hold for
k-Poincaré-Euler spaces, but we need the following to deduce Lemma 4.1
from Lemma 4.2:

ProroSITION 4.1. Let X be an n-dimensional k-Poincaré-Euler space.
Then w' (XxD) = wi(X)x1 for 0 <1 <k, where D =[-—1, 1].

ProOOF. Let (R; R, R; ¢) be a regular neighborhood of X in R»*e.
Let U(p) and U(p xid) be cohomology classes such that [R]N U(p) = @,[X]
and [Rx DN U(p xid) = (@ xid),[X x D], where id: D — D is the identity.
Then U(pxid) = U(p)x1. Note that U(p)U (p*)'wi(p) = Sq¢*U(p) and
Ulp xid) U [(p xid)*]"'wi(e x id) = Sq*U(p xid) for 0 < 7 < k. Then U(p X
id) U [(p xid)*]"'(wi(@) x 1) = Sq*U(p xid) for 0 < ¢ < k. Hence wi(p xid) =
wi(@)x1 for 0 < i < k. Thus wi(XxD)=w"(X)x1for 0 =7 <k. qe.d.

Let (R; R, R; ») be a regular neighborhood of an =-dimensional
k-Poincaré-Euler space X in R»**. Suppose that (&%)': N, (R, R) — Z, is
the homomorphism defined for 7 < k in Section 1. We need the following
to prove our theorem:
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LEMMA 4.1. For every (f, M) in N_.(R, R), we have {(Ulp)U
(@*) " w®(X), f((M]Nw*(M))y = (@¥)(f, M) whenever 1 < k. Herew™(X) =
1+ - +w(X).

In order to prove Lemma 4.1, we need the following:

LEMMA 4.2. Let f:(M,oM)— (R, R) be a PL-embedding with a
normal block bundle & where M is an (¢ + a)-dimensional triangulated
differentiable manifold. If o(X) is transverse to & and 1 <k, then
(Ul@) U (@*) " 'w™(X), f((M]Nw*(M))y = (€4)(f, M).

In order to prove Lemmas 4.2 and 5.2, we need the following:

LEMMA 4.3. Let (R; B, R; ) be a regular meighborhood of an
n-dimensional k-Poincaré-Euler space X in R>**. Let M be an (1 + a)-
dimensional triangulated differentiable manifold, where 0 < 1 < k. Given
o PL-embedding f: (M, M) — (R, R) with a mormal block bundle & =
(E, M, fz), suppose that ¢(X) is transverse to & Let U, be the Thom
class of & and jz: E— R be the inclusion. Define Y = @~'o f(M) and
Xg =@ 'ojg(E). Let z: Xy — E and +y: Y — M be embeddings defined
by ¢z = jite® and Yy = fo(@|Y). Then the following hold:

(1) Y s a closed Z,-Euler space with a normal block bundle.

(2) (fo(M]INf*UP)) = (Pr)[Xel N Ue.

(3) [MINf*UP) = (va) Y]

Proor. (1) Clearly +}¢ is a normal (n — ¢)-block bundle of Y in
X. Note that E is an n-dimensional k-Euler space. Then Y is an i-
dimensional k-Euler space. Hence Y is a Z,-Euler space, since 7 < k.
Since M is compact, Y is closed.

(2) Note that jzofy = fand [E]NU; = (fo)«[M]. Thus (fo)(M]N
F*U@) =(EINj U@)NU. If[E]1NjiU(P) = (Pz)«[Xz], then (fe)(M]N
fU@) = (5)«[Xz]N U.. Hence we have only to prove [E]NjiU(p) =
(@)4[X:]. Let B =cl(R— jg(E)) and let jn:(R; R, R)— (R; R, R) be
defined by the inclusion. Regard j, as a map j,: (E; B, E) — (R; R, R),
where E = cl(E — E). Note that (j,).[E] = (jo)«[R] and [R]N Ulp) =
P«[X]. Then (jo)«([E1N(G)*U(P)) = (Ga)x° P+[X] = (Gp)x © (Pu)«[Xe]. Since
Go)s: H(E, E, Z,) > H. R, R; Z,) is an isomorphism, we have [E]N
(U)*U(@) = (Pr)«[XE]

(3) Note that [X;]N(Pr)U: = (4z)[Y], where +z: Y — X, is the
inclusion. By (2), we have (fp).(IM]Nf*U(P)) = (Pr)x°(Wa)«[Y]. Note
that @zoqrs = frodry and that (fy).: H.(M, oM; Z,) — H,.(E, E; Z,) is an
isomorphism. Then [M]N f*U(p) = (Y)Y ]. q.e.d.

PrROOF OF LEMMA 4.2. We use the notation of Lemma 4.3. By (2)
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of Lemma 4.3, we have <(U(@)U(@*)w®(X), f((M]Nnw*(M))> =
o (@) wB(X)Uw*(M), (vau)«[Y]). Let 4z: Y — X be the inclusion.
Note that foyy = @oyy. Then (U(@)U(p*) " 'w?(X), fL((M]Nw*(M))) =
{pFwP(X) U™ (M), [Y]) = {PpFw(X) Uy (), [Y ) = (yiw®(X) U D (yé),
[Y]. Thus (Ulp)U(e*) w*®(X), fu((M]Nw*(M))) = @)f, M) by the
definition of (g%)’. q.e.d.

PrOOF OF LEMMA 4.1. Let (f, M) be in R,, (R, R). By Transversality
Theorem, there exists an embedding g: (M, M) — (Rx D?, R x D?) such
that g = fx{0} and (@ xid)(Xx D?) is block transverse to g. By Lemma
4.2, it follows that {(U(p)x 1) N[(p xid)*]"'w*® (X x D?), g, . ([(M]Nw*(M))) =
@*)i(f, M). Note that w* (X x D) = w*(X)x 1 by Proposition 4.1. Hence
CU@)U(p*) " w®(X), f([M]Nw*(M))) =<{(U(@)x 1) U[(pxid)*]"w® (X x D?),
9([M]INnw*(M))). Thus (Ulp)U(p*)w®(X), fu((M]INw*(M))) = @5)/f,
M). q.e.d.

A characterization of Stiefel-Whitney classes is given by Lemma 4.1
and the following:

LEMMA 4.4. Let (A, B) be a pair of polyhedra. Let @ be in H(A,
B, Z)fori=0,1, -+, k—1. Put®® = @° + ... 4+ @, If(@%, f (IM]N
w*(M))) = 0 for every (f, M) in N,(A, B), then ®* = 0.

PRrROOF. Since (0%, f . (IM]Nw*(M))) = (@, f.[M]) for (f, M)eNR,(A,
B), the assumption (@%, f.(IM1Nnw*(M))> = 0 for every (f, M) implies
@ =0. Suppose that @ =0, o' =0, .-+, 9 =0. Then (D%, f (M]N
w*(M))) = L@i*, [ [M]) for (f, M)eN;,.(A, B). Hence, if (2%, f (IM]N
w*(M))> = 0 for every (f, M), it follows that @** = (0. By induction on
7, we have @% = (. q.e.d.

5. Characterizations of Stiefel-Whitney homology classes. Let
(R; B, R; ) be a regular neighborhood of an n-dimensional k-Poincaré-
Euler space X in R%**. Suppose that (et): N,, (R, R) — Z, is the homo-
morphism defined for ¢ < k in Section 1. We need the following to prove
our theorem:

LEMMA 5.1. For every (f, M) in RN,..(R, R), we have {U(@)U (@*) o
([X10)80(X), fx((M]Nw*(M))Y = (eb)'(f, M), whenever 1 <k. Here
S (X) = 8, 4a(X) + - -+ + 5,(X).

In order to prove this, we need the following:

LEMMA 5.2. Let f:(M,oM)— (R, R) be a PL-embedding with a
normal block bundle & where M is an (1 + a)-dimensional triangulated
differentiable manifold. If @(X) is transverse to & and i <k, then
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U@)U(@*) ™o ([X]n)"83(X), fx(M]Nw*(M))) = (es)'(f, M).

PrOOF. We use the notation of Lemma 4.3. By (2) of Lemma 4.3,
we have (U(@)U(@*)7 o ([X]0) 'su(X), f((M]Nw*(M))) = <w*(M)U f*o
(@*) o ([X]10)7'80(X), (f)¥'(@e)«[Xe]l N Uy)y. Note that jyofy =f. Then
CU@)U (@*) " o ([X]0)"sw)(X), F(M]INw*(M))) = U U () w* (M), (Pe)«
[XzD)NgEe(@*) o ([X]0)"8w,(X)). Since there exists the following com-
mutative diagram

HX; Z) < H—® Z) -2 HE Z)
l[X]U ) . l ((‘PE)*[XE])Q
HI(X, 0X; 2) > HI"(R, (R — E); Z) 2% HI™(E, E; Z,)

and since [X],, ®* and (jz), are isomomorphisms for ¢ < k, we have
(@)« XD N JE o (P*) 7 o [X]0) 780 (X) = [([)s]7" 0 Pusw(X) = (Pp)x8u)(Xp).
Let (ef)': B,(E, E) — Z, be the homomorphism defined in Section 3. Then
(U U () w* (M), (Pr)x8w(Xz)) = (e8)(Pr, Xz) by Lemma 3.1. Note that
(e0)(f, M) = (e})(Pz, Xz) by definition. Thus (U(®) U(@*)™" o ([X]n) "84, (X),
H(M]INw*(M))) = (e)(f, M). q.e.d.

PrROOF OF LEMMA 5.1. Let (f, M) be in RN,,.(R, R). Then there exists
an embedding g: (M, oM)— (RxD?, RxD?) such that g = fx{0} and
(p xid)(Xx D?) is block transverse to g by Transversality Theorem. By
Lemma 5.2, we have {(U(p)x1)U[(pxid)*]™*o([X X D) su, (X x D?),
9« ([M]Nw*(M))) = (ef)(f, M) for © < k. Note that s,,(Xx D) = s4,(X) ¥
[D’] by Proposition 2.3. Then (U(@)U(@*)™o([X]1) " su(X), fu(lM]N
w*(M))) = {(U@)x 1)U [(pxid)*] ™ o ([ XX D?]0) 84 (XX DF), g ([M]1Nw*(M))).
Thus {U(@) U(*) o ([X]n) sy (X), fu([M]Nw*(M))) = (e5)'(f, M) for i <k.

q.e.d.

PrRoOF oF THEOREM. If [X]Nwi(X) =s,_:X) for 2 <m, then
b f, M) = (@%)'(f, M) for ¢ < m by Lemmas 4.1 and 5.1. This means
(o) =0 for 7+ < m. Conversely, suppose that (o)’ =0 for ¢ <m. By
Lemmas 4.1, 4.4 and 5.1, we have U(p)U (p*)wi(X) = Ulp)U(p*)o
([X10)8,_i(X) for 2 < m. Since U(p)U(@*)™* and [X], are isomorphisms
for m < k, we have [X]Nwi(X) = s,_(X) for i =< m. q.e.d.

PrOOF OF COROLLARY. Note that k-regular spaces over Z, are k-Euler
spaces by the consideration of the definitions. Then k-regular spaces over
Z, are k-Poincaré-Euler spaces by Partial Poincaré Duality Theorem. Let
Jr: Y — X x D? be the embedding used to define (ef) and (¢%)’. Note that
v has a normal block bundle v in XxD? Then Y is an i-dimensional
k-regular space. Since Y is compact and 7 < k, it follows that Y is a
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closed Z,-homology manifold. Hence y*w* (X x Df) = w*(Y)Uw*(»). Thus
(of): = 0 in view of the definition of (ek)* and (€¢*)’. Hence [X]Nw!(X) =

8,_«(X) for © < k by Theorem. q.e.d.
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