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1. Introduction. Let / be a smooth map of a compact Riemannian
manifold M into another Riemannian manifold N. The energy functional
E(f) for / is defined by

E(f) = (1/2) \ \\df\\*dvM.

A smooth map / of M into N is called a harmonic map if / is a critical
point of the energy functional E. A harmonic map / is called stable if
every second variation of E at / is nonnegative. Let Sn be an -̂ -dimen-
sional Euclidean sphere. Then the following remarkable theorems are
known.

THEOREM (Xin [22]). For n^3 there exists no nonconstant stable
harmonic map from Sn to any Riemannian manifold.

THEOREM (Leung [5]). For n^S there exists no nonconstant stable
harmonic map from any compact Riemannian manifold to Sn.

It is natural to ask what kind of a compact Riemannian manifold M
has the property that there exists no nonconstant stable harmonic map
from M to any Riemannian manifold nor from any compact Riemannian
manifold to M. We call such an M harmonically unstable. We know
topological restrictions on harmonically unstable Riemannian manifolds; if
M is harmonically unstable, then by a classical result on closed geodesies
we have πλ(M) = {1} and by the theorem of Sacks and Uhlenbeck [15]
π2(M) = {1}.

The purpose of this note is to classify harmonically unstable compact
symmetric spaces.

THEOREM 1. A compact symmetric space M is harmonically unstable,
if and only if M is a product of simply connected compact irreducible
symmetric spaces belonging to the following list;

( i ) simple Lie groups of type An (n ^ 2), B2 and Cn (n ^ 3),
(ii) SU(2n)/Sp(n) (n ^ 3),
(iii) spheres Sn (n >̂ 3),
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(iv) quaternionic Grassmann manifolds Sp(p + q)/Sp(p) x Sp(q) (p ;>

(v)
(vi) Cayley protective plane FJSpin(9).

The method of Xin and Leung was to deform a harmonic map along
conformal vector fields of Sn and take the average of the second varia-
tions. Our method generalized theirs. We deform a harmonic map along
gradient vector fields of the first eigenfunctions for the Laplacian of a
compact symmetric space, and use the standard immersion of the compact
symmetric space into the first eigenspace in order to compute the average
of the second variations. In [11], using the same method, we investigated
the stability of minimal submanifolds in compact symmetric spaces.

Theorem 1 is proved in Section 3. In Section 4 we study the harmonic
instability of convex hypersurf aces of a Euclidean space and isoparametric
minimal hyper surf aces in a unit sphere.

2. Trace formulas and standard minimal immersions. Let M be
an ^-dimensional compact Riemannian manifold and Φ an isometric immer-
sion of M into the Euclidean space EN with the inner product < , >. We
denote by R and B the curvature tensor of M and the second fundamental
form of Φ, respectively. The equation of Gauss is given by

, Y)Z, W) = (B(X, W), B{Y, Z)) - (B{X, Z\ B(Y, W))

for X, Y,Z, We TX(M). Let {v19 , vn) be an orthonormal basis of TX(M).
The Ricci tensor of M is defined by

Y) = t <R(X, vt)vt, Y> > for X, Ye TX{M) ,

and the mean curvature vector of Φ is defined by

V = (Vn) Σ B(vif vt) .
ΐ = l

For a vector v in EN we consider a vector field V — grad/v on M,
where fv(x) = (Φ(x), v) for xeM. We denote by ψt the flow generated
by V.

Let f:N->Mbe a harmonic map, where N is an m-dimensional com-
pact Riemannian manifold. We now define a quadratic form Qf on EN by

Then the trace of Qf on EN is given as follows (cf. Leung [6]):
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(1) T r Q ^ ί Σ Σ (2||B(df(ea), Oil2

JiV α=l i=l

- (βWfia), df(ea)), B{vίr vi)))dvN ,

where {elf ,ew} is an orthonormal basis a t xeN and {vlf -—,vn} is an
orthonormal basis a t f(x) e M.

On the other hand, let h:M-^Nf be a harmonic map, where iV' is
a Riemannian manifold with the metric < , >'. We define a quadratic
form Qh on EN by

Then the trace of Qh on EN is given as follows (cf. Pan [14]):

(2) T r Q f t - j Σ Σ (2<B(ι;<, v,), 5(v4> v,)>

- <B(V<> vy), Bfo , vk)))(dh{v%), dh(vj)YdvM ,

where {î , , vn} is an orthonormal basis at xeM.
Next we consider the case where M is a product submanifold of EN.

Suppose that M is a product manifold il^ x x Mr and Φ is a product
isometric immersion Φxx χ φ r , where, for each s with 1 <; s ^ r, M8

is an w(s)-dimensional compact Riemannian manifold and Φ8 is an isometric
immersion of M8 into EN{8). We denote by B8 the second fundamental
form of Φ8. Then the formulas (1) and (2) are written as follows:

(1) ' Tr Q, = Σ ( Σ Σ (2\\Bs((dmea),vk{8))\\2

8=1 JN α = l fc(s)

- <Ba((df),(ea), (df),(eα)), B,(vhw, vkω)))dvN ,

and

( 2 ) ' Tr Qft = Σ ί Σ Σ (2<Bί(vU!), vkw), B.(vkw, vJW»
8 = 1 J j f ϊ(8),j(8) k(8)

- (B.(vil9), vίw), B8(vk{8), vk[8))))(dh{vU8)), dh(vj{8))YdvM ,

where (df), denotes the !Γ(ikfβ)-component of df, {vk{8); k(β) = n(ϊ) + +
n(s — 1) + 1, , n(l) + + n(s — 1) + n(s)} is an orthonormal basis of
TX(M8), and each of the indices i(s), j(s) and k(s) runs from n{V) + •• +
n(s - 1) + 1 to n(X) + + n(s - 1) + n(s).

We shall review quickly the definition of the standard minimal immer-
sions of compact irreducible symmetric spaces.

Let M — G/K be an w-dimensional compact irreducible symmetric space
and g0 a G-invariant Riemannian metric on M induced by the Killing form
of the Lie algebra of G. We should note that the scalar curvature of
(Mf g0) is equal to n/2. Let Δ be the Laplacian of (M, g0) acting on
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functions. For the fc-th eigenvalue λ̂  of Δ, we choose an orthonormal basis
{fo> * >/m(fc)} of the k-th. eigenspace with respect to the IΛinner product
defined by g0. We consider the mapping Φk of M into Em{k)+1 defined by

Φk:M3x^ C-(/o(a0, •,/.(*,(*)) e2?^ ) + 1 ,

where C — (Vol(M, go)/(m(k) + 1))1/2. Then Φk is a full G-equivariant mini-
mal isometric immersion of (M9 (Xk/ri)g0) into the unit sphere Sm(fc)(l) (cf.
Takahashi [20], Wallach [21]). This Φk is called the k-th standard mini-
mal immersion of M. In [10] we studied some properties of the first
standard immersions of compact irreducible symmetric spaces.

3. Main Results. First we shall show the following.

THEOREM 2. Let M be an n-dimensional compact minimal submani-
fold immersed in a unit sphere SN~\1). If the Ricci curvature p of M
satisfies p > n/2, then M is harmonically unstable.

PROOF. We use the same notation as in Section 2 and denote by p
the minimum value of the Ricci curvature of M. Let f:N-+M be a
nonconstant harmonic map. By the equation of Gauss, (1) becomes

Tr Qf = \ Σ Σ «B(df(ea), df(ea)), B(vi9 vt)> - 2(R(df(ea), vt)vi9 df(ea)))dvN

= \ Σ (n(B(df(e«), df(ea)), φ - 2p(df(ea), df{ea)))dvN .

Since the minimality of M in SN~\1) implies (B(X, Y), η) = (X, F>, we have

Tr Qf ^ 2{n - 2p)E{f) .

Since p > n/2 and E(f) > 0, we get Tr Qf < 0. Thus / is unstable. Next
let h: M —> N' be a nonconstant harmonic map. In the formula (2) we
choose an orthonormal basis {v19" ,vn} at xeM such that (dh(vt),
dh(v3)Y = atδφ where each at is nonnegative. By the equation of Gauss
and the minimality of M in S^-^l), (2) becomes

Tr Qh = \ Σ (?<B(vi9 vk), B{vk, v,)) - (B(viy vt), B(vk, vk)})a4vM
JM ϊ,fc=l

= \ Σ (n(B(vi9 vt), η) - 2p(vi9 vt))aidvM
JM ϊ = l

^ 2(n - 2p)E(h) .

Thus h is unstable. q.e.d.

COROLLARY 3. Let M be an n-dimensional compact minimal sub-
manifold immersed in a unit sphere SN~\1). If the Ricci curvature p
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of M satisfies p>n/2, then πλ{M) = {1} and π2(M) = {1}.

REMARK. The result is sharp; M satisfies p = n/2 and π2(M) Φ {1},
if M is an ^-dimensional compact irreducible Hermitian symmetric space
isometrically imbedded in a unit sphere by its first standard minimal
immersion or if M is the Clifford minimal hypersurface S2(i/l/2) x S2(i/ϊ/2)
of the unit sphere S5(l).

Applying Theorem 2 to the first standard minimal immersions of com-
pact irreducible symmetric spaces, we obtain the following theorem.

THEOREM 4. Let M be an n-dimensίonal compact irreducible sym-
metric space and denote by λx and c the first eigenvalue of the Laplacian
on functions and the scalar curvature of M respectively. Then the fol-
lowing four conditions are equivalent:

(a) λi < 2c/n.

(b) There exists no nonconstant stable harmonic map from M to
any Riemannian manifold.

(c) There exists no nonconstant stable harmonic map from any
compact Riemannian manifold to M.

(d) The identity map of M is unstable as a harmonic map.

PROOF, (b) => (d) and (c) => (d) are trivial. Since the first eigenvalue
for the Jacobi operator of the identity map as a harmonic map is Min{0,
λx — 2c/n}f we have (a) <=* (d) (cf. Smith [16]). We have only to show
(a) ==> (b) and (a) ==> (c). We may assume that the Riemannian metric on
M is the metric g0 defined in Section 2. Since the scalar curvature of
CM, g0) is n/2, we suppose that λx < 1. Let Φx\ (M, (Xjn)g0) ^S m ( 1 ) (l) be
the first standard minimal isometric immersion of M. Since M is an
Einstein manifold and the scalar curvature of (M, (Xjn)gQ) is equal to
n2/2xlf we have p = p = n/2xly where p is the minimum of the Ricci
curvature p of (Λf, (xjri)go). Hence we get n — 2p — n — n\Xγ = n(l —
1/λi) < 0. By Theorem 2 we obtain the conditions (b) and (c). q.e.d.

From Theorem 4 we see that a compact irreducible symmetric space
is simply connected if its identity map is unstable. The eigenvalues of
the Laplacian on a simply connected compact symmetric space can be
computed by using the formula of Freudenthal and the theorems of
Sugiura [17], [18]. Simply connected compact irreducible symmetric spaces
with the unstable identity map were determined by Smith [16] and Nagano
[9] as follows. (There seem to be inaccuracies in [9].)

PROPOSITION 5. Let M be a simply connected compact irreducible
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symmetric space. Its identity map is unstable if and only if M belongs
to the following list;

( i ) simple Lie groups of type An (n^2), B2 and Cn (w ;> 3),
(ii) SU(2n)/Sp(n) (n ^ 3),
(iii) Sn (n^3),
(iv) Sp(p + q)/Sp(p) X Sp(q) (p ^ q ^ 1),
(v) EJF4,
(vi) FJSpin(9).

PROOF OF THEOREM 1. Suppose that M = M,x xMr is a product
of compact irreducible symmetric spaces belonging to the list of Theorem
1. , We isometrically imbed each Mt into some Euclidean space EN(i) by
using the first standard minimal immersion of Mt. Thus we get a product
isometric imbedding of M = M1 x x Mr into EN = EN{1) x x EN(r).
Applying (1)' and (2)' to this product isometric imbedding, we obtain the
harmonic instability of M.

Conversely, suppose that a compact symmetric space M is harmonically
unstable. Since M is simply connected, M is a product MiX xΛf,,
where each Mi is a simply connected compact irreducible symmetric space.
Without loss of generality, we assume that the identity map of some
Mi is stable as a harmonic map. Fix a point (y19 , yr) in M. We define
a mapping f:M—>M by

/ : Jlf 9 (a?!, x2, , αr) H+ fo, j/2, -. , yr) e M .

Then / is a nonconstant stable harmonic map, a contradiction. Hence
each Mi has the unstable identity map. By Proposition 5 M is a product
of compact irreducible symmetric spaces belonging to the list of Theorem
1. q.e.d.

4. Other Examples. By virtue of the formulas (1) and (2) we can
find many examples of harmonically unstable Riemannian manifolds. We
look at convex hypersurfaces of a Euclidean space and isoparametric
minimal hypersurfaces of a unit sphere.

PROPOSITION 6. Let M be an n-dimensional compact convex hyper-
surface in the Euclidean space En+1. If the principal curvatures κt > 0
(i = 1, , n) of M satisfies

for each i with 1 <. i <^ n, the M is harmonically unstable.

PROOF. Let f: N-+M and h: M-> N' be nonconstant stable harmonic
maps, where N is a compact Riemannian manifold. By simple computa-
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tions, (1) and (2) give

Tr Qf = \ Σ Σ **(** ~ Σ κi)<df(fia), v<γdvN
JN α=l i=l j=i, j^i

and

Tr Qh = \ Σ */*i - Σ tcMdhM, dh(vί)YdvM . q.e.d.
J3f i=l \ J=l, jφi /

EXAMPLE. (1) Let M be a compact convex hyper surf ace in En+1

9

n ^ 3, such that its principal curvatures κi > 0 (i = 1, , n) satisfy
l/(n — 1) < iCi ^ 1. Then ilί is harmonically unstable.

(2) Let M be an ellipsoid in En+1 defined by an equation axl +
x\ + + xl = 1, a > 0. If n ^ 3 and 0 < a < n - 1, then M is har-
monically unstable.

PROOF of (2). It is easy to check that M has at most two distinct
principal curvatures κ1 = {a(a — l)x2

0 + 1}~1/2 and κ2 = α{α(α — l)x\ + 1}~3/2

with multiplicities τι — 1 and 1, respectively. Hence we have /c1 ^ ιc2 ̂  α/Ci
for α ^ 1, and α/ŝ  ̂  /c2 ^ ^ for α ^ 1. The rest of the proof is im-
mediate, q.e.d.

The above example (2) is a slight extension of the result of Leung
[6].

Next let M be an isoparametric hypersurface in an (n + l)-dimensional
unit sphere with g distinct principal curvatures. Let κ0 > κx > > κg_γ

be the distinct principal curvatures of M and denote by m{ the multiplicity
for ΛV Mϋnzner [7], [8] showed the following;

( i ) ma — ma+2 (indices modulo g) for any ae{0, • , g — 1},
(ii) g = 1,2, 3, 4 or 6,
(iii) if g = 3 or 6, then m0 = mt.

Recently Abresch [1] showed that if g = 6, then m0 = mγ = 1 or 2.
Assume that Jlf is a minimal submanifold in the unit sphere. Then,

using the result of [7], we can show that in each case /coy , irιr_1 are
given as follows:

PROPOSITION 7.

(1) // g = 1, then κ0 = 0.
(2) If g = 2, then /c0 = \/mJm0 and κγ = —λ/mjm1.
(3 ) // g = 3, then ιc0 = \/Ύ, ιcλ = 0 ami /c2 = — i/ΊΓ.
(4) // fir = 4, £&ew /c0 = (/m 0 + mλ + V/mΓ)/v/m0, /C! = (τ/m0 + m

i, Λ:2 = (l/m1--v/mo + m1)/i/m^an(Z /c3 = — (v/m0 + m1 + V/m0)/v/m1.
(5 ) Ifg = 6, then κ0 = 2L+V/Ύ, κx = 1, κ2 = 2 - ι / T , /c3 = -(2-i/ΊΓ),

Λ:4 = — 1 and κδ= — (2 + V 3 ).

By Proposition 7 and the equation of Gauss we can compute the Ricci
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curvature p of M. The following isoparametric minimal hypersurfaces
satisfy p > n/2;

(1) g = 1, m0 = n ^ 3,
(2 ) # = 2, ra0 ^ 3 and mx ^ 3,
( 3 ) g = 3, m0 = mj ^ 3,

(4 ) # = 4, m0, mι ^ 4,
( 5 ) βr = 6, m0 = mx ^ 5.
By Theorem 2 we obtain the following:

PROPOSITION 8. If M is an isoparametric compact minimal hyper-
surface in a unit sphere belonging to the above list} then M is harmonically
unstable.

We consider each of the five cases. Let M be an isoparametric
compact minimal hypersurface in a unit sphere with g distinct principal
curvatures.

(1) g = 1: M is a great sphere Sn.
(2) g = 2: M is a Clifford minimal hypersurface Sp(\/p/n) x Sq{λ/qjn)

(n — p + q, 1 <^ p, q <^ n, m0 = p, mL = q) (cf. Cartan [2]).
(3) gf = 3: According to Cartan [3], all the isoparametric compact

minimal hypersurfaces with g = 3 and m0 = m^S are homogeneous
hypersurfaces Sp(3)/Sp(lf ((m0, mx) = (4, 4)) and FJSpin(8) ((m0, mx) =
(8, 8)), which appear as principal orbits of the isotropy representations of
the symmetric spaces SU(6)/Sp(3) and EJFA, respectively (cf. [19]).

(4) g = 4: According to Takagi and Takahashi [19], all the homo-
geneous compact minimal hypersurfaces with g = 4 and m0, mx ^ 4 are
(Sp(2)xSp(p))/(Sp(l)2xSp(p-l)) (p^3 f (m0, mj = (4, 4p-5)), U(5)/(SU(2)x
SU(2)xT1) ((m0, mj = (4, 5)) and (IKDxSpinilOMFxSUi*)) ((m0, mx) =
(6, 9)), which appear as principal orbits of the isotropy representations
of the symmetric spaces Sp(p + 2)/Sp(2)xSp(p), SO(10)/Ϊ7(5) and EJU(l)x
Spin(10), respectively. There are many inhomogeneous isoparametric
compact minimal hypersurfaces satisfying g = 4 and m0, m1 ^ 4 (cf. Ozeki
and Takeuchi [12], [13], Ferus, Karcher and Mϋnzner [4]).

(5) g = 6: By the result of Abresch there exists no isoparametric
hypersurface in a unit sphere with g = 6 and m0 = mi ^ 5.

REMARK. I take this occasion to correct errors in my paper [10]:
( i ) P38 112, "except SO(9)/SO(6) x SO(β) and" should be replaced by

"except SpinQS), Spin(Ί), Spin(8), SO(9)/SO(6)xSO(3) and".
(ii) P38|13, "non simply connected spaces SO(p + q)/S(O(p)xO(q))

(p ^ q ^ 1)" should be replaced by "non simply connected spaces SO(ri)
{n ^ 5), SO(p + q)/S(O(p)xO(q)) (p ^ q ^ 1)".
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(iii) P38 118, "one of SO(9)/SO(6) x S0(3) and" should be replaced by
"one of Spinφ), SO(9)/SO(6)xSO(β) and".
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