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1. Introduction. Invariant integrals, stable or not, occupy a central
position in harmonic analysis on a reductive Lie group G. For instance,
they play a crucial role in Harish-Chandra's derivation of the Plancherel
formula. They also figure prominently in the theory centering on the
Selberg trace formula. Therefore it is only natural to try to characterize
them. One important contribution in this direction is the work of
Shelstad [9], who has obtained a "pointwise" description but only within
the context of the Schwartz space ^(G). For the applications, it is also
necessary to consider other function spaces, e.g., C?(G). This, in fact,
is one of our objectives. The main result is, however, rather different
from Shelstad's in that the characterization is essentially "transform-
theoretic" in nature (cf. [10]), the point being that the work of Herb
[5-(b)] already gives explicit inversion formulae for the invariant integrals
so, in order to study their transforms, a Paley-Wiener type theorem is
required. And for this, the recent work of Clozel and Delorme [3-(a)]
turns out to be exactly what is needed.

Regarding the organization, §§2-4 set up the preliminaries. In §5,
we review the results of Herb and in §6 those of Clozel and Delorme.
The characterization itself is the subject of §7. We close in §8 with a
series of miscellaneous remarks that point the way to a number of variants
on our main theme which can all be treated by the methods introduced
here.

* Research supported in part by the National Science Foundation



180 G. WARNER

For the sake of simplicity, we shall concentrate throughout on the
stable case, thereby eliminating certain technical difficulties. In another
paper, I shall give a "function-theoretic" characterization. To some extent,
though, it depends on what is to be found in the present note.

ACKNOWLEDGEMENT. It is my pleasure to thank Bob Kottwitz and
Scott Osborne for a number of very helpful conversations on this sub-
ject.

2. Assumptions and Conventions. Let G be a connected reductive
Lie group with compact center; let K be a maximal compact subgroup of
G. Let g be the Lie algebra of G, gc its complexification and Ge a com-
plex analytic group with Lie algebra gc for which the complex analytic
subgroup of Ge corresponding to [gc, gc] is simply connected. We shall
assume that

(1) GaGc;
(2) G is acceptable;
( 3 ) rank(G) = rankCBΓ).
Let A = Aτ AB be a 0-stable Cartan subgroup of G, P = M* AR- N

the associated cuspidal parabolic subgroup of G—then, strictly speaking,
the preceding assumptions are not hereditary since, in particular, M need
not be connected. However, its identity component M° is a connected
reductive Lie group with compact center. Moreover, if m is the Lie
algebra of M, mc its complexification and Mc the complex analytic subgroup
of Ge with Lie algebra mc, then the complex analytic subgroup of Me

corresponding to [mc, mc] is simply connected (cf. [4-(a), p. 482]) and, of
course, M°c.Mc. Trivially, the acceptability of G forces the acceptability
of M\ Finally, the identity component AJ of Ar is a compact Cartan
subgroup of M°, thus the last assumption is also met. Needless to say,
M itself is a reductive Lie group of Harish-Chandra class.

Let

OR the Lie algebra of AB—then Z{A) is a finite 2-group, central in M,
and, as is well-known,

Az = Z{A) AJ .

Put

ffl = Z{A) M° .

Then ΛΓ is a normal subgroup of M consisting of the m e M such that
Int(m) is an inner automorphism of M°. Viewing Z(A) as a vector space



STABLE INVARIANT INTEGRAL 181

over Z2, write

Z(A) = Z(A)f]M°xZM .

Naturally, ZM need not be unique but now ΛP can be displayed as a direct
product

ΛΓ = ZMxM° ,

as can AIf namely

Aj = ZιM x Aj .

In the sequel, we shall encounter a variety of invariant measures.
They are to be normalized according to the conventions of Harish-Chandra
[4-(d), pp. 114-115]. We remind the reader only that G and M carry the
standard Haar measure, while ^~ (the real dual of aR) carries the
Euclidean measure reciprocal to the Haar measure on AB derived from
exponentiation of normalized Lebesgue measure on aB relative to the
Euclidean structure associated with the Killing form (so Fourier inversion
holds with no constant factors).

3. Stabilization of the Discrete Series. It will be simplest to deal
first with G and then with M.

Fix a 0-stable compact Cartan subgroup T of G. Let W = W(G, T)
be the quotient of the normalizer of T in K by T itself—then W is a
subgroup of Wc = WC(G, T), the full Weyl group of the pair (G, T). In
the case at hand, Wc operates on T. Let f be the unitary character
group of T— then f can be canonically identified with a lattice £<?τ in
the imaginary dual of the Lie algebra t of T. Let Sfί be the set of
regular elements of £fτ. If 3 is, as always, the center of ©, then by
a regular integral character of 3 we understand any Z: 3 -+ C of the
form X = Xλ (λ e £fi), the set of such being parametrized by

Let Gd be the discrete series for G—then, according to Harish-Chandra,
there is a 1-to-l correspondence

This said, given ωeGd, let Θω be its character, Xω its infinitesimal char-
acter. For each regular integral X, set

Gd(X) = {ω: Xω = X] .

Then (cf. [4-(c), p. 94]).
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The break up

Gd - Π Gd(X)
X

can be regarded as the decomposition of Gd into "stable" subsets.
Thus, let

Ω = {ω: ft) 6 Gd(X)}

and then put

Obviously, ΘQ is a central eigendistribution on G.
In general, a central ,8-fϊnite distribution Θ on G is said to be stable

if ΘIG', qua an analytic function, is invariant in the following sense (cf.
[9, p. 38]): For every xeG',

Θ{wx) = Θ(x) (w 6 Wj{G9 Ax)) .

Here, Ax is the Cartan subgroup of G containing x, WX(G, Ax) the subgroup
of the full Weyl group of the pair (G, Ax) generated by the reflections in
the imaginary roots. By way of notation, in what follows we shall write

(/, θ) = \ f(xWx)dG{x) (/ e C7(G)) .
JG

LEMMA 3.1. ΘΩ is stable.

PROOF. Fix an ω e Ω and attach to it a parameter λ e £fi so that

Θω = (-l)dε(X)Θλ (d = 2"1 άim(G/K)) .

Then

ΘΩ = (-l)dε(λ) Σ e{w%)ΘWΛ
w\wc

and the stability of

W\WC

 l Wί

is a lemma of Harish-Chandra [4-(b), p. 307].

The stabilized discrete series for G will be denoted by

ST - Gd ,

its elements being the Ω, its characters the ΘΩ.
Put

Φω = Aτ Θω .

Then Φω is a C°° function on T. We recall that
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( 1 ) Φω is tF-skew, i.e.,

ΦZ = ε(w)Φω (weW)

( 2 ) (Φω, Φω) = [W];
( 3 ) α / ^ ω" => (Φω,, Φm..) = 0.
To stabilize these considerations, take an Ω and choose any ωeΩ.

We then let

ΦΩ = Σ e(wt)Φϊ*.
w\wc

It is clear that ΦΩ is well-defined in the sense that it is independent of
the choice of ω. Again, ΦΩ is a C°° function on T and

( 1 ) ΦΩ is TFc-skew, i.e.,

(w e Wc)

( 2 )
( 3 ) Q' Φ Ω" => (ΦQ,, ΦΩ..) = 0.

LEMMA 3.2. Suppose that φeC°°(T) is Wc-skew—then φ admits an
absolutely convergent expansion

where, by definition,

[Wc\ JT[Wc\

[We omit the elementary verification.]
The preceding remarks also apply to M provided that certain modifi-

cations are made but it is easiest to work in stages: M° to ikP to M.
First of all, everything that has been said above applies verbatim to

M° (since M° and G satisfy the same general assumptions). Passing on
to M\ from the fact that

ΛP = ZMxM° ,

it follows that the elements α<t e Ml are tensor products

6 M°d ,

where the characters are connected by the relation

ΘAzm0) = ζ(z)Θσo(m°) .

As for M itself, the elements σeMd are of the form

σ = Ind£t(<7+) (^ e Ml) .
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The character Θa of σ is supported in M\ being given there, after
Frobenius, by the prescription

Σ
μ

or still

Θσ(zm°) =

Θa(zm°) = ζ(z)
μ

if

71//^ T T /yyj 7 1 / / ^

IVJ. — I I ιΐl/μl¥±
μ

In addition (cf. [7, p. 55]), the restriction σ\M* is a direct sum Σμ<?l of
mutually inequivalent σμ and for every μ,

σ = Indίt(σ]«) .

Therefore the natural map Ml -> Md is a surjection of order [M: Mf],
Let

' W° = W(M\ AJ)

be the quotient of the normalizer of

ίA°z in KnM° by AJ itself

[Aj in iΓΠM by A7 itself .

Then W° and W are subgroups of T7C = WC(M, Ax)f the full Weyl group
of the pair (Λf, Ax). It is not difficult to see that W° is a normal sub-
group of W and actually (cf. [13, p. 46]),

implying that the mμ can always be chosen to represent distinct elements
wμ in W.

[Note: There is nothing to be gained by introducing Wu. For Wf ~
TT....]

The infinitesimal character X of σ\ σ\ and σ is one and the same.
The cardinality of M°d(X) is [WCV[W0]. However, a given σ° determines
%{ZM) possible σ\ hence the cardinality of M\{X) is %{ZM) [T^c]/[^0]. Thus
the cardinality of Md(X) is

So, while
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m = π ma)
χ

is already the decomposition of Ml into stable subsets Σ°, to effect the
splitting for Ml and Md, it is necessary to reflect the presence of ZM, say
by writing

mm = π Jto z), Mda) = π to, Z) ,
providing decompositions

J0Ϊ = π Mice, z ) , Md. = π Md(ζ, z ) ,

into stable subsets Σ\ Σ, respectively. The symbols

(ST - Mi ίST - Ml JST - Md

are then to be given the evident meanings.
Let

f v) = Ind?(ίτ, v) (v

be a unitary principal series representation, ΘOtV its character. Put

σeΣ

LEMMA 3.3. ΘΣfV is stable.

PROOF. Owing to the formulae of Hirai [6-(a), p. 358] and Wolf [13,
p. 73] for ΘΣ>V on the Cartan subgroups of L = M AB, it is enough to
check the stability of ΘΣ (vis-a-vis M), itself readily reducible to the
stability of ΘΣo (vis-a-vis Af°), placing us back in a situation already
covered by Lemma 3.1.

We agree that both Aτ and A° come equipped with the Haar measure
assigning to each total volume one. To ensure compatibility, each point
in ZM is to have mass 1/#(ZM).

Attached to each σ° is the T7°-skew C°° function Φσo on A* with

If σf = ζ (x) σ°, then seemingly it is natural to let

Doing this though will lead to problems later on with the invariant
integral, thus we might just as well remedy the situation now. Implicit
in the definition of acceptability is the quasicharacter ξp of A. The
restriction of ξp to ZM is an element of ZM. That being the case, we
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twist the data and put instead

ΦΛzaΐ) = ξP(z)ζ(z)ΦAa°I) .

If

σ =

then

or still

ΦAzaϊ) = ξp(z)ζ(z) Σ e(wμ)Φy(a°z) .
μ

Φo is a W-skew C00 function on Aτ such that

ί(Φβ, Φβ) = [W]

\o> Φ a" - {Φa,, Φa,,) = 0 .

Turning to the stabilization, we need only work with M: Simply take
a Σ, choose any σ eΣ, and let

ΦΣ= Σ
\

Then Φj has the necessary expected properties.
In the present context, a generalization of Lemma 3.2 is valid. To

formulate it, note that Wc operates on all of A, the action on AR being,
of course, trivial.

LEMMA 3.4. Suppose that φeC?(A) is Wc-skew—then φ admits an
absolutely convergent expansion

φ{^idR) = Σ Φsiflz) \ Φ(Σ, v)aί~vdv

where, by definition,

> v ) = T1FT " \ \ Φ^i^Φ^i^^d^ia^d^a^ .T
CJ

[We omit the elementary verification.]

4. The Invariant Integral and its Stabilization. Fix a 0-stable
Car tan subgroup A = AZ AB of G—then, for any feC?(G), the invariant
integral Fj of / relative to A is defined by

Fj(a) = εB(a)AA(a) \ /(xax^daUx) (a e A') ,
)G/A
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A' the set of regular elements in A. Here, we employ the usual notation
(see, e.g., [12-(a)] and [12-(b)]), which can therefore remain unexplained.

It will be recalled that a priori, Fj e C°°(A'), its support being compact
in A but not necessarily in A\ In reality, it is possible to extend the
domain of Fj. Thus let A!τ be the set of points in Aτ that are regular
in M—then AΊ AB is the set of points in A lying outside the kernel of
every ξa (a imaginary). This said, one knows that Fj extends to an
element of C^AΊ-AR). But more is true (cf. [11, p. 373] or [12-(b), p.
248]). We may, in the obvious way, view Fj as an element of C^iAΊ;
C?{AB)). Suppose now that ^°°(^; CT{AB)) is the vector space of all

such that for every invariant differential operator D on AIf

\U\A\D = sup Λ(Du) < + oo ,

Λ a seminorm on C?(AR). When topologized by the \1\Λ%DJ ^°°(Aί; C?(AB))
becomes a complete LCTVS. With this in mind, it can then be shown
that

the assignment

being continuous.
[Note: When A = Γ, the result is to be regarded as saying that

Ff e^?°°(Tf) in the sense that for every invariant differential operator D
on Γ,

sup \DFτ

f\ < + oo .
2 "

At the other extreme, when A is of Iwasawa type, there are no singu-
larities and it is actually the case that FjeCT(A) (cf. [11, p. 400]).]

It is clear that AΊ is invariant under the action of Wc- Therefore
the same is true of AΊ-AR

LEMMA 4.1. Fj is W-skew.

In fact, since Δ^ is W-skew and

JG/A

remains unchanged with respect to the operations of W, everything reduces
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to showing that εR is PF-invariant, which is easy to establish using defini-
tions only (cf. [6-(c), p. 37]).

[Note: The proof shows that εB is even PPc-invariant, a point that
will be used below.]

Thanks to the lemma, it then makes sense to form

&i = Σ efaXFtr* ,
w\wc

a function in ^"(AΊ; CT(AB)). We shall refer to S?f as the stabilized
invariant integral of / relative to A. As such, S^f is obviously Wc-skew.

The interpretation of the procedure is simply this. Given a e A', put

= ί
JGJG/A

Then έ?a(f) is essentially the orbital integral of / relative to a ("essential-
ly" because the centralizer Gα of a in G can very well be larger than A,
although the index [Gα: A] must be finite (cf. [12-(b), p. 228])). Accord-
ingly,

&f{fl) = eB(a)AA(a) ( Σ ^«,«(/)) .
w\wc

5. On the Results of R. Herb. Let Car*(G) be the set of 0-stable
Cartan subgroups of G. If A and B are two elements of Car^(G), then
we write A > B (or B < A) if ϊo(aB\bB) Φ 0 (cf. [4-(f), p. 151]). Let

be a complete set of representatives for

#\Car,(G) .

[Note: Conventionally,

to = ϊo(aB\aB) ,

the "little" Weyl group of (G, A). The order > is plainly transitive but
need not be linear. If A > B and B > A, then A and B are if-conjugate
(cf. [12-(a), p. 91]). Within (£, it is therefore permissible to use the
symbol ^ , > being understood in the strict sense, i.e.,

At>AJ=*iΦ j .]

THEOREM 5.1. Fix AeK—then there exist slowly increasing, C°°
functions

BLu, on AΊ-ABxST - M

such that for all /GCC°°(G),
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= Σ Σ ( if, θXt,JΈLMJfl\ (Σt, v

In substance, this theorem is due to Herb [5-(b)]. However, she does
not explicitly formulate it in this manner so it will be necessary to make
some comments on how one goes about making the transition.

It is in the nature of things that

ΆAUi = 0

unless A ^ At. Moreover, the procedure itself immediately furnishes HAU:

BAU(a: (Σ, v)) = ΦMa^ .

Therefore, we can write

Sf(a) = Σ ΦM \ (/, θΣJa£=*dv

+ Σ Σ ( (/, θΣi,H)ΉΛUi(a: (Σit vj)dvt •

Herb also explicitly computes the HAUt when At > A. For our purposes,
it will not be necessary to recall these formulae. Suffice it to say that
they are ultimately expressible in terms of "elementary" functions,
TFc-skew in α. This is because Herb's theory of two-structures reduces
the computation of the HAUi to root systems of type Ax or B2, where
one ends up with sums of products of quotients of hyperbolic sine
functions (cf. [5-(b), pp. 13-15] and [5-(c), pp. 245-246]). Consequently,
the slow growth of the Ή.AUi and its derivatives can be established by
direct calculation.

The most important case is that of A = T, so we shall first look at
it. The key is to employ at all stages of the argument the stabilized
invariant integral rather than just the invariant integral (even in rank 1
(cf. [8]) or rank 2 (cf. [2])). As always, one begins by expanding Fj on
T into a Fourier series:

FKt)= Σ &(«)•(/,©*)- Σ &(«)• Σ \ Λχ)θJχ)dG(x),
Xe£fτ Xesrτ Aϊ,Ai>T dGA

where, for any AeK,

Form now

GA = U xA'x'1 .
xeG

= Σ eiWtWKWit) = Σ ξx(t) - (/, θ})
W\WC λe^f

- Σ ξi(t) Σ L Άχ)θf(ddσ(x),
λ&Sf AA>T JGA
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Θ* as in the proof of Lemma 3.1. Since Θ* = 0 if λ £ J&ί, we may replace
Έixe&r by Σ λ e ^ Then, on the basis of the definitions

Σ ξ*(t)-(f,θz) = ΣiΦ0{t)-{f,θ0).

As for what is left, fix an A Φ T in (£ and consider

\ Λχ)WχjdG(χ)
)GA

or still, by WeyΓs integration formula,

[W(G, A))'1 \AFKΦR(a)AA(a)θf(a)dA(a) .

It has been noted earlier that Θ* is stable. Accordingly, taking into
account what has been said in §4, we can average the last expression
over W\WC (perikf) to get

thereby incorporating the stabilized invariant integral into the "remainder".
From this point on, one can, modulo a few minor changes, simply copy
Herb's argument to come up with the sought for conclusion.

If A Φ T, then the position is slightly more complicated due to the
disconnectedness of M. Following Harish-Chandra [4-(d), pp. 145 and 152],
let

fp(m: aR) = dP(aR) I fκ(maBn)dN(n) ,

fκ the .^-centralization of /:

fΛx) - ( f{kxk~ι)dκ{k) .
JK

As is well-known (cf. [4-(d), p. 146]),

4(αJ) ί f^zma^m-1: aB)dM/Al(m)

^α 0 , ) ( 0 f
p{zm\wμa\)m-\ aR)dMo/Ao(m°) .Σ

μ

If

fϊ(m°: aR) = fp(zm°: aR) ,

then

^ζw^αJ) J fp
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is the invariant integral of /f(?:α s) at wμa\ calculated relative to the
compact Cartan subgroup A\ of M\ In view of the normality of W° in
W,

Σ = Σ Σ
w<\wc w\wc μ

So, taking into account the relation

Δ

it follows that

is ςp(z) times the stabilized invariant integral of /f (?: αB) at α° calculated
relative to the compact Cartan subgroup A] of M°, the "leading term"
of which is, by the foregoing discussion,

Our claim is that this, multiplied by ξp(z), is the same as

Σ ΦΛzal) J^ (/, θΣJa£=*dv .

Thus, in the notation of Harish-Chandra [4-(e), p. 162], we have

(/f (?: aB), ΘΣo) - ( mm0: aR)ΘA^F)dAm°) - \\

Suppose that Σ -> Σf «-> (ζ, Σ0)—then

f fp f
9 Σ,v » > Σ j ^ 2 Jf j

S Γ f 0 0

On the other hand (§3),

ΦΣ(ZO>QI) = ξP(z)ζ(z)ΦΣo(a°r) .

So, using the orthogonality relations on ZM, we find that

equals

frfc) Σ Φjo(αϊ)ί ΓΣ ί /^m^θjoίm^m^d^m^Ίαί^dy
[M: ikff] JO J ^ L /« JifO J
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But obviously

* . „ ί ΓΣ (
[M: Λff] i^L μ JMO

if we assume, as is permissible, that the mμeKf]M. Hence the claim.
This sets the stage once again for the methods of Herb.

Herb's formulae readily lead to a result of independent interest (cf.
[1, p. 388], [3-(a), p. 452], [9, p. 40]).

PROPOSITION 5.2. Fix feC?(G)—then the following are equivalent'.
(i) For every 4 e K and for every a e Ar,

&t(a) = 0

(ii) For every stable Θ,

(/, Θ) = 0 .

PROOF, (i) =» (ii). Owing to the stability of Θ, we have

(/, θ) = \ f{x)W)dG{x) = Σ CΛ ^/(a)eR(a)^A(a)θ(a)dA(a) ,
JG Ae<& JA

CA a positive constant. Since Sff vanishes identically, (/, 0) must be
zero.

(ii) ==> (i). Because the ΘΩ and ΘΣ>V are stable (Lemmas 3.1 and 3.3),
this follows from Theorem 5.1.

The proof is therefore complete.

6. The Theorem of Clozel and Delorme. The theorem in question
provides a Paley-Wiener type characterization for the "invariant Fourier
transform" of the JΓ-finite functions C?(G, K) in C?(G).

With P = M - AB - N determined by A = Ax AR as in §2, let <βr, be
the complexification of &~ and call ΘOyV (v e ^~c) the character of the non-
unitary principal series representation

πP(σ, *0 = Ind?(σ, v) .

Given feCΐ(G,K), put

fP(σ, v) = (/, ΘσtV) .

Then, by definition,

is the invariant Fourier transform of / at P. It has three basic properties.
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(1) As a function of σ, fP has finite support.
(2) As a function of v, fP is in P-W ( ^ ) .
(3 ) For every w e to,

fP(wσ, wv) = fP(σ, v) .

[Note: Here, P-W C^) is the Paley-Wiener space on ^ , i.e., the
image under Fourier transformation of C?(aB). These properties obtain,
of course, when P = G since then A = T.]

It is not hard to see that fP does indeed satisfy (l)-(3). There is,
however, a converse that is substantially more difficult to establish (cf.
[3-(a)]), namely:

THEOREM 6.1. Suppose given functions

such that for all i:
(1) As a function of σit ft has finite support.
(2) As a function of vif fi is in P-W (^7β).
(3 ) For every w e ϊoif

ft(wσif wvt) = fie* vt) .

Then there exists an feC?(Gf K) with the property that for all i,

?Pt = fi

[Note: Needless to say, / is far from unique.]
It is easy to stabilize this result (cf. [3-(a), p. 449]). Thus, one can

define the stable invariant Fourier transform of / at P by putting

FP(Σ, v) = (/, ΘΣ>V) .

Then

FP: ST—Md x j r c -> C

satisfies:
(1) As a function of Σ, FP has finite support.
(2) As a function of v, FP is in P-W (^ς).

(3) For every we to,

FP(wΣ9 wv) = FP(Σt v) .

Conversely, suppose given functions

F.iST—Mux^-ie-*C

such that for all i:
(1) As a function of Σi9 Ft has finite support.
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(2) As a function of »4> F 4 is in P-W
(3) For every wete^,

Then there exists an feC?(G,K) with the property that for all i,

FPi = Ft .

[In fact, the cardinality of each Σt is the same, viz. [WicMWJ, so
one has only to set

vt) (σt e J4)

and then apply the theorem to the ft to produce an /eCc°°(Cr, K) fulfilling
all the requirements.]

The support condition in σ or Σ can be relaxed but this is not the
place to go into detail. Instead, we shall address that problem in a
future publication.

7. Formulation and Proof of the Characterization. Fix A 6 K—then,
as we have seen in §5, for any feC?(G),

+ Σ Σ S (/, ΘΣi>H)RAUi(a: (Σif »<)
Ai\Aι>A Σt JJ^

Let

= Σ Φifa) \
Σ J

Then it is clear that °£*f e C?(A) is TFc-skew and, in the notation of
Lemma 3.2 (if A = T) and Lemma 3.4 (if A Φ T\

°έf(Σ, v) = (/, ΘΣiV) .

Consequently,

one for each A G K , all linked by Herb's formulae via the transforms
But the latter can be characterized by the theorem of Clozel and Delorme,

£?(a) = Σ Φi(az) ί ° i f (J?, v)av

R~»dv
Σ Jjr-

Thus the upshot is that to each / e C?{G) we can attach functions
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at least in the ίΓ-finite case.
Suppose, therefore, that we are given functions

We then seek to impose conditions on the elements of this collection so
as to guarantee the existence of an feCΓ(G, K) such that for every i,

Sff* = φAi .

To begin with, it is necessary to assume that for each Ae(£,

and is TFc-skew. The other conditions involve °φA and its transform °φA,
which will be defined recursively, starting at the "top" and working down.
When A is of Iwasawa type, set

To

1 =

define °φA in

rank(G/JΓ).

general, put

n(A)

Obviously,

Σ =

v =ΦΛ

dim(^je) ,

n;n<n{A) AΛ\AΛ>A &n{A)—n

Accordingly, if the °φAi have been defined for all At> A with n{A^) < n(A),
then we may let

ψ = ΦA- Σ Σ Ϊ °ΦAi(Σi9 ^)H^Uί(?: (Σi9 vMv* ,
Ai\Aϊ>A Σf JJTi

the recursive demand being throughout that °φA e CC°°(A). As such, °φA is
certainly TΓc-skew. It will also be necessary to ask that

ψ{Σ, v)

be finitely supported in Σ and satisfy the invariance condition

°φA(wΣ, wv) = ψ(Σ, v) (weto).

Because the Paley-Wiener requirement is already built in, it follows from
the stable version of Theorem 6.1 that there exists an feC?(G, K) such
that for each A 6©,

ψ{Σ, v) = (/, ΘΣ)V) .

And our main contention is:

THEOREM 7.1. For every AeK,
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PROOF. We have

= Σ Φi(βx) \^ °φA(Σ, v)a^dv = ψ(a)

But then

&?(a) = °&?(α) + Σ

= V(α) + Σ Σ ( °^C?,, ^ )H4Ui(α: (Σi9 vx))d^

as desired.

8. Concluding Remarks. The present methods can easily be adapted
to give other characterizations of a similar sort. To do so, one just needs
to have a suitable version of Theorem 6.1 (modulo Herb's formulae).
Here, we shall briefly touch upon some of the possibilities along these
lines, albeit informally.

It has already been mentioned at the end of §6 that the support
requirement in the discrete parameter can be weakened, the new require-
ment being one of "rapid decrease", while retaining, of course, the Paley-
Wiener condition.

Another variant arises by working with ^(G), the Schwartz space
on G. In this setting, Theorem 6.1 would be replaced by a theorem of
Arthur [1], where, in the "real" domain, one demands rapid decrease in
both the discrete and continuous parameters (ίΓ-finiteness in irrelevant).
Since Herb's formulae are still valid, everything goes through as before.

Finally, one could also characterize Ff rather than its stable counter-
part S^f. The requisite inversion formulae are contained in [5-(a)] and
[5-(c)] (see also [4-(f)]). But now the analysis is complicated by the fact
that it is also necessary to take into account limits of discrete series.
However, this problem can be handled by using the main result from

It would be interesting but apparently rather difficult to find ^pp(G)-
analogues of the above. The only work in this direction is that of
Trombi [10], who has a characterization when rank(G/iί) = 1.
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