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STRONG AND CLASSICAL SOLUTIONS OF THE HOPF EQUATION
—AN EXAMPLE OF FUNCTIONAL DERIVATIVE EQUATION
OF SECOND ORDER

ATsusHI INOUE
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Abstract. In this note, we construct, strong and classical solutions of
the Hopf equation, a statistical version of the Navier-Stokes equation on a
compact Riemannian manifold with or without boundary. Our points are
to regard the Hopf equation as a given Functional Derivative Equation
(F.D.E. for short) of second order, to derive the Navier-Stokes equation as
the characteristic equation of it and to give an exact meaning to the ‘trace’
of the second order functional derivatives which appear in the Hopf equation.
To construct a solution of the Hopf-Foias equation with the energy in-
equality of strong form, we apply Foias’s argument with slight modifica-
tions instead of using Prokhorov’s compactness argument.

1. Introduction. Let (M, g) be a compact Riemannian manifold of
dimension d with or without boundary 6M. We denote by X,(M) and

j&},(M ), the space of all solenoidal vector fields on M which vanish near the
boundary and that of all divergence free 1-forms on M which vanish near

the boundary, respectlvely H (resp. H) stands for the completion of the
space Al(M ) (resp. X J(M)) with respect to L*norm (resp. L*-norm).
The aim of this paper is to solve the following problem.

(I) Find a real functional W(¢, ) on [0, oo)xfi, satisfying

+ v(Av)j(x)—‘W%)— + () fi(x, t) W(L, n)]dgx ,
1

(1.2) W%{Vg( )BWit( ;7)} ,

for 7 = y(x) = 9,(@)da’ € A{M) and te (0, ), and

(I1.3) Wt 0)=1,

(L.4) W, ) = W) .

Here f(x, t) = fi(x, t)o/ox’ eXo",(M ) for each ¢ and W(n) is a given positive
definite functional on H satisfying



116 A. INOUE

_ 1 0 oW () _
(L.5) WO =1 and 2, {l/g(x)———ﬁm(x)} 0

Here and in what follows, we use Einstein’s covention for contracting
indices as well as the terminology and symbols in Riemannian geometry
and functional analysis which will be explained in §2. There one
also finds the definition of functional derivatives oW(t, 9)/67;(x) and
O*W(t, 0)/67;()0n:(y).

In order to construct a solution of Problem (I), we consider the
following problem.

(II) Find a family {g(t, *)}s<t< 0of Borel measures on H satisfying

(D) ~S:Sn-‘2¢(att’—u)dp(t, wydt — Suq)(o, w)dpt(w)

— < —aqk g _i_ 5@“7 u) J k l BQ(t’ u)
=1 1) v ouim L )

it ok 0P, U) 4 00(t, u)
+ vV, ui(x)-V _——Bu"(w) fi(x, t)_—éu"(w) ]daxdy(t, w)dt

for suitable test functionals @(¢, u) which will be introduced in §2. Here,
the given data are a measure g, and an exterior body force f(¢).

Our results are as follows, although we restate Theorem A more
precisely as Theorem A’ later in §5:

THEOREM A. For any Borel measure t, on H satisfying
[, @+ lumdpmm < o,

and any f(-)e L*0, «; V), there exists a solution {{4(t, *)}y<i<. Of Problem
1.
Moreover, it satisfies the following emergy inequality of strong form.

@)+ wundatw + [ [ viuniuldue, o o
= 2, wupdp + | [ ], #(upr@, wape w jie
for 0 <t < oo and 4 €C'0, o) satisfying

0=4'(t) = s1[10p )qﬁ’(s) < oo,
THEOREM B. Suppose a positive definite functional Wy(-) on H satisfy

tracesul — Wi, (0)] < oo .
For any f(:)e L0, ; V), there exists a stromng solution W(t, n) of
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Problem (I).

THEOREM C. Let oM =@ and let | be the largest integer not exceeding
(d/2) + 1. Suppose a positive definite functional W(-) on H is of V-
exponential type and satisfies

traceg_u[ — Wy,,(0)] < oo and tracepip[— W,,,(0)] < o .

For any f(-) given in L0, oo; V'), there exists a classical solution
W(t, n) of Problem (I) on [0, T*) where T* < oo 1is determined by W, and
f independently of v.

BriEr HISTORY. The Hopf equation itself was introduced by Hopf
[10], but he solved it only for a special case. (See, Hopf and Titt [11].)

Foias [5], [6] solved it in the form of Theorem A above on M x (0, T')
when M is a bounded domain in R% d <4, and T is an arbitrary but
fixed number; It is remarkable that Gelfand [7] at I.C.M. in 1954 stressed
the importance of F.D.E., in another word, analysis on functional spaces.

Since the work of Foiasg, there have appeared many papers statisti-
cally studying certain non-linear differential equations. For example, a
statistical study of the non-linear Klein-Gordon equation was done by
Vishik and Komech [22]. Especially, Ladyzhenskaya and Vershik [18]
considered the following partial differential equation of infinitely many
independent variables:

0 &, 0 L2 . o
—F6,t) = —v D\ Npbp——F (6, t) — 1 aimg,, F,t
ot @, ?) 1%1 00, 0, 6) j,k,zm"=1 00;00, 6. %)

+ 0 3, FulnF0, 1) .

It corresponds to Problem (II) for a bounded domain M in R? Their
construction is based on the existence of weak solutions of the Navier-
Stokes equation, and is different from that of Foiag [6]. It seems desirable,
however, to solve Problem (I) or (II) without the knowledge of the
Navier-Stokes equation though the equations in Problems (I) and (II) are
actually derived from it.

Vishik, Komech and Fursikov [23] considered also Problem (II), using
Prokhorov’s compactness argument.

On the other hand, Arsen’ev [1], [2] constructed another type of
solution for Problem (II), called a turbulence measure for the Navier-Stokes
equation, which seems to be a candidate for a weak solution.

In any case, there exists few papers dealing with the existence of
the solution of F.D.E., except Donskar and Lions [3], Inoue, [12], [14],
Levy [19], ete.
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REMARKS. (1) The equation (I.1) is called the Hopf equation and
that of (II) will be called the Hopf-Foiag equation.

(2) Our main object is to solve a given F.D.E. like (I), and is not
to repeat a statistical study of the Navier-Stokes equation, although we
can extend a part of the results in Foias [5], [6] to the case where T'=
and M is an arbitrary compact Riemannian manifold with or without
boundary. Especially there is no restriction on the dimension d of M.
In Theorems A and B, M is rather arbitrary, but in Theorem C, we must
restrict our attention to the case where oM = @.

Terminologies used without definitions, for example, the definitions
of strong and classical solutions, will be explained in §2. In §3, we
derive Problem (II) from Problem (I) formally, that is, we show that the
Navier-Stokes equation appears as the characteristic equation of the Hopf
equation, by assuming some Ansatz’s. Some functional spaces and Foias’s
compactness argument for a certain family of Borel measures are given
in §4. We restate Theorem A and prove it in §5. In §6, we give a
strict meaning to the ‘trace’ of the second order functional derivatives
in Problem (I). That is,

SWt, 7 o 9
@) (@) 0w - ozt

makes sense as a distributional element of ST,(M) in fairly general
situations. This is a merit in considering the Navier-Stokes equation on
a Riemannian manifold, and one of the motivations of writing this paper.
There seem to exist no papers giving the meaning to the trace of higher
order functional derivatives appearing formally in F.D.E. In §7, we
give the proof of Theorem B. Foias [5] called a solution of (II) a sta-
tistical solution of the Navier-Stokes equation. We give the proof of
Theorem C in §8. In §9, we mention some open problems.
A part of our results was announced in Inoue [13].

2. Preliminaries. (A) For later use, we recall some notation and
symbols in Riemannian geometry. v

Let (g,;(x)) be a positive definite, symmetric matrix on M such that
each element g,;(x) is smooth in #. The Riemannian metric on M is
formally denoted by dg* = g,,dx'dx?. g¢*(x) stands for the (k, l)-entry of
the inverse of the matrix (g,,(x)). We put g(x) = det(g,;(x)) and dx =
Vgl@)dat A+ A da® represents a volume element on M. (We abbreviate
the argument « if there occurs no confusion.)

Let us introduce some function spaces on M.
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C>(M) (resp. Cy(M)) denotes the space of smooth functions (resp.
those with compacot support, i.eg., vanishing near the boundary) on M.

X(M) (resp. X(M), resp. X, (M)) denotes the space of smooth (resp.
with compact support, resp. with compact support and solenoidal) vector
fields on M. We define X(M) and X,(M) analogously. Here M =
MUoM.

AYM) denotes the space of smooth [-forms on M.

The space of symmetric tensor fields with %k contravariant (resp.
covariant) indices is denoted by ST,(M) (resp. ST*¥M)). For example,
w €ST,(M) means that it is expressed locally as

w = w” ® —
ax’

with some functions w* = w%(x) on M, symmetric in 4, . Analogously,
£ e ST M) stands for

¢ = Cyyda' @ da?

with some functions ; = {,;(x) locally on M, symmetric in 4, j.
Now, we put

1 0 0 0
ri;= Eg”‘{ Py Oki T+ o0 =7 Ik ngj} )

gjk:'_a—rfj Flk+r Fikayy

For a 1-form » = 7;dx?, we define

(Vﬂ?) - '6_77 - Fiﬂ?l ’

0
ok

(Vs = g*(Vu); = 9*{-Zrn; — Do}

on = ]/1

Hereafter, we identify a 1-form % with a vector field » by

——{1/ gg”n,} and (A); = V*V,n;, + Rin, .

o' =g'n; and 7, = g;v,
which we also express, with abuse of notation, as
= @) and %, = ).
On the other hand, for a vector field w = u9/ox?, we put



120 A. INOUE

(V)i = %u" + Ik,
(Vi) = g*¥(Vyu) = g“‘{%u" + I’izu’} ,

ou = VLETZT{‘/W} and (Au) = V*V,uf — Riu*.

We also put
{u, Ny = SM un'd,x for we X(M) and ne A(M) .
For u, ve X(M), we put
(u, v) = SM giuvide = lu, V) = (%, v) and (u, u) = |ul*.
For %, £ € AY(M), we put
9=\ gmeda=0 8 =G e and @) =1
Moreover, we define
((w, v)) = (Viu, V¥) = SM 9:,;Viu'Vvidax and ((u, w) = ||u]?®.

The completion of X(M) with respect to the norm || is denoted by
L*. The closure of X,(M) in L* is denoted by H.

Let s be a non-negative integer. In X(M), we introduce the norm
|||l, defined by the Hilbert space structure

((w, v)), = h}é}’ (V@u, V@) and ((u, w), = ||ul,

where u = u'd/ox’ € X(M),
V@ = V&.Vge ... Vi
With oA = (au Uy *°°y ad) and [al = Zid=1 ;.

H* (or H?) denotes the completion of X(AM) (or Ao’(M )) with respect
to the above norm ||-]|,. Clearly, we have

(u, ) = (w, v), ((w, V), = (U, v) + ((w, v)) and H’= L*.

The closure of )E',(M ) in H*® is denoted by V*® and V' is simply denoted
by V. By Poincaré’s inequality, ||-|| is equivalent to ||-||, in our case.
The dual space of H} is denoted by H™ and that of V* by V.

W denotes the closure of Ag,,(M ) in H*'N L¢ equipped with the norm

lwllw = llull + |we ,
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where L¢ stands for the space of vector fields whose components are d-
summable on M with respect to dx. In general, W is a subspace of V
different from V¥, although W =V for d = 2, 3, 4. This seems to be the
main reason why Foiag restricts himself to the case d < 4.

Analogously, we denote by I~f, ﬁ, ﬁ’, 17', W and 17", the completion
of A'IM) or AYM) or AXM) with respect to the corresponding norms
which are represented by the same symbols.

So, the dual space of H with respect to (-, -> or (-, -) is H or H,
respectively. Analogously, the dual space of V* with respeet to (-, -)
or (-, +) is V- or V—, respectively.

(B) We next recall the definition of Fréchet derivatives.

DEFINITION 2.1. (1) A real functional @(u) defined in a neighbour-
hood of a point %, of a Banach space X with norm |-| is said to be Fréchet
differentiable in u at u,, if there exists an element @,(u,) € X’ such that

I-i—llcbwo +0) — B(uy) — (B,(ug), v)| — 0
as |v|—0, where {, ) denotes the duality pairing between X and X'.
(2) If the above holds for all » belonging to a subspace YC X, we
shall call @ Fréchet X-differentiable at u, in the direction of Y. In both
cases, @,(u,) is called the Fréchet differential of @ in u at u,.
(3) For X =YXxZ, we write

Qy,z(yor %) = (djy(yo: o), D.(Yor 20) »
where the components constitute the partial Fréchet differentials.

DEFINITION 2.2. A Fréchet differentiable functional @ is twice Fréchet
differentiable at u, if @,: X — X’ is differentiable. That is, there exists
an element 9,,(u,) € (X ® X)" such that

L sup 1O (uy + ) W) — (Do), W) — (Bun(ue)y © @ WH| =0

|v| wex,lwis:
as |v|—0.
(C) Now, we define functional derivatives.

Let E be a function space on M containing (C3(M))™ whose dual
space, denoted by E’, is contained in (Z'(M))™: We assume implicitly
that E has at least a structure of a locally convex topological vector
space. Here C3(M) denotes the space of infinitely differentiable functions
with compaet support and =2’'(M) denotes the space of distributions on
M. <(, ) stands for the duality pairing between E and E’. (It represents
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also other duality pairings which will be explained for each instance, if
necessary.)
First of all, we consider the case m = 1.

DEFINITION 2.3. Let @ = &(f) be a functional on E. If at fekE,
there exists D®(f)e E' such that

=<DO(f), hy ,

=0

2.1) L o(f + ch)
de

then @ is said to be differentiable (or more precisely, Geteaux-differentiable)
at f (in the direction of h). We represent formally the right hand side
of (2.1) as

(DO(f), by = S 90U) hwydw for heCs(M).
u Of(x)
00(f)/of(x), being a distribution on M, is sometimes called the functional
derivative of @ by f at x or of @ at f(x).
In physics literature, we find the following abbreviation for the above
definition, even though §(-) is not contained in E.

00(f) d
OPN) — % pf(- 5(+ — .
) I (f() +ed(-—a)|

DEFINITION 2.4. Let ® be a differentiable functional on E. If
(D®(f), h,y is differentiable as a functional of f for each h,€ E, then @
is called twice differentiable at f and its second derivative D*@(f) is
given by

2.2) L (DO + e, b)|_ = DO, T @ o>

Here, {, ) appearing on the right-hand side of (2.2) stands for the duality
pairing between F = E(Mx M) and E' = E'(Mx M) and (h, @ h,)(x, ¥) =
h(2)hy(y), hy, ho € C7(M) and x, y € M. Moreover, by the kernel theorem
of Schwartz [9], we may express the right-hand side of (2.2) as

2 _ 0*'0(f)
<D @(f)’ h1 ® h2> = SMXM Whl(x)hz(y)d,xdgy

— _ OO p oy )dwd,y -
" i Oy

Analogously, we define

Do, @ @ho=| B @) by dy,
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If a functional @ depends on many variables (f, f, - f.), then we
may define partial functional derivative 60(f,, f, « «« fn)/0f;(x) analogously.
Higher order derivatives as well as higher order partial derivatives of a
functional with many variables are defined analogously. (cf. Volterra
[24].)

REMARK 2.5. Since 6°@(f)/0f(x)0f(y) is a distribution on Mx M, it
generally does not make sense to put x = y. But if it is possible to
regard something like (6°0(f)/6f(x)0f(¥)).-, as a distribution on M, we
denote it by §*@(f)/0f(x)?, and call it the trace of §*@(f)/of(x)éf(y). Analo-
gously, we define 0"®@(f)/of(x)" ete.

(D) Now, we proceed to define the notion of solutions of (I).

We introduce:

DEFINITION 2.6. A real functional @(-, -) on [0, =) x H is called an
elementary test functional if it satisfies the following conditions.

(1) &, ) satisfies

o(t, w) = O(t, P,u) for (¢, u)el[0, o)xH

for a certain m € N depending on @.

(2) (-, -) is continuously Fréchet differentiable from [0, «)x H to
R and there exist constants ¢;, 7 = 1, 2, 3, depending on @ such that for
all (t, u) €[0, =)x H, we have
(2.3) [0, u)| = ¢, and |Q(t, w)| = ¢, + ¢;lul .
Here, @,(t, -) is regarded as an element in H.

DEFINITION 2.7. A real functional @(-, -) defined on [0, ) x V is called
a test functional if it satisfies the following.

(1) &, ) is continuous on [0, =) x V and verifies (2.3).

(2) @&(-, +) is Fréchet H-differentiable in the direction V.

(3) @, +) is continuous from [0, )X ¥V to V* and is bounded.
That is, there exists a constant ¢, depending on @ such that
(2.4) |@.(t )|, e, for all (¢, w)e[0, o)X V.

The set of all test functionals (resp. elementary test functionals) is
denoted by TF (resp. ETF).

Now, we give:

DEFINITION 2.8. A family of Borel measures on H is called a solution
fo Problem (II) on (0, =) if it satisfies (II) and the following conditions:

Y | @+ [upduc, e L=, =)
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@2) | lluldac, uye L, =) .

(H.3) Sﬂd)(u)dp(t, ) is measurable in ¢ for any non-negative, weakly
continuous functional @(:) on H.

DEFINITION 2.9. A functional defined on [0, T)Xﬁ (T £ ) will be
called a strong solution of Problem (I) on (0, T) if there exists a set D,
dense in V‘ for some 8, containing A‘(M ) such that:

(1) For each neD, W(, 7)) belongs to Li.[0, T') is continuous in ¢
at ¢t = 0 and is twice differentiable at ne D for a.e.t.

FWt,n) 0 0

(2) 07;(x)on,(x) ox? ® oxt
exists for almost every ¢ on (0, T') as a distributional element in ST,(M)
for neD.

(3) W, n) satisfies (I1.1)-(I.4) as distributions for each 7 e D.

DEFINITION 2.10. A functional defined on [0, T)x H, (T £ ) will be
called a classical solution of Problem (I) on (0, T') if there exists a dense
set D in V*, for some s, containing jX;(M ) such that:

(1) W(t, n) is absolutely continuous on [0, T') for each 7 eD and is
twice differentiable; moreover, é W(t, %)/6n;(x) belongs to Li..(M) for each
7.

(2) 0*W(t, n)/on;(x)én,(x) exists for each j, k and almost every ¢ on
[0, T) as an element of Li, (M) for 7]ef). Moreover,

oW, ) o 0
on(x)on,(x) ox? oxt
belongs to ST,(M) as an element in Li,.(M).

(3) ~W(t, 7)) satisfies (I.1)-(I.4) for almost every t as functions for
each 7e D.

REMARK 2.11. There may be many other possibilities of the notion
of solutions, for example, those which will be defined by respecting the
uniqueness or the regularity of solutions.

Finally, we introduce:

DEFINITION 2.12. A positive definite functional W on H is said to

be of V—* exponential type for any neﬁ, if the function s — W(sp)
defined on R can be extended analytically to an entire function W({; %)
on the complex plane C satisfying

(W 7)| < epred™ s for all LeC,neH,
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where ¢; and ¢, are constants depending on W.

3. The derivation of Problem (II) from Problem (I). Multiplying
both sides of (I.1) by a function p(t)eC{[0, <) and integrating with
respect to f, we get

@1 | e®wWe it — e WO, 7)

= 1ol [-ilamre —ruenelz 2

oW, ) i i
o+ T oW ) s

ANSATZ 1. There exists a family {u(¢, +)}<i<. 0f Borel measures on
the set <#(L? of Borel sets in L? such that

+ v(A7),(x)

(3.2) Wit, 1) = S GOt v) .
Then, (I.3) and (I.4) yield that »
3.3) SL2 dpt, ) =1 for 0<t< oo
and
(3.4) Wi =\ eerdm) .
Moreover, by (I.2), measures p(t, -) must be supported on H. That is,
(3.5) #_@ LA a@v@) =0

for v(:) = vi(-)o/ox? € supp u(t, -)C L.
Analogously, if W(n) satisfies the condition (I.5), then

(3.6) supp ¢, CH and Sm dp(u) =1,

Substitute (3.2) into (3.1) and assume that functionals @(t, v; ) =
o(t)eX"” belong to the space of test functionals. Then by the definition
of functional derivatives and (3.5), we get

. a . _ 14 M
'Lp(t)SM { P N;(2) F:k(wmz(“’)} o1 (@)87,(x) de

= =i} [ | {2 - ri@n@lereds o v niue, v

== Sﬂguivk(w)-éi—kv"(x) + Fiz(x)v"(x)v’(x)}é%%ﬂd,xdy(t, v) .
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Calculating analogously other terms on the right hand side of (3.1), we get
(I1.1) for @(t, v; ). Here, we assume implicitly that 6*W(t, 1)/6,(x)o7.(x)
exists for W(t, 1) expressed by (3.2) and also that the change of the order
of the integration with respect to d,x and d(¢, ») is permissible.

Let us introduce another:

ANSATZ 2. A family {£(t, -)}o<i<. of Borel measures in (8.2) is induced
from an operator T, in L* for 0 < ¢ < o, that is,

3.7) wt, ) = p(Ti'w) for 0 <t < and we F(L?) .

In other words,
(8.8) W(t, n) = Sm XTI ()

Combining this with (3.4) and (8.6), we get
3.9) Twu =u in H.
By (8.7), (I1.2) and the definition of the functional deriative, we get

(3.10) d;‘iW(t, 7+ ed¢)]£=0 - SL2<Ttu, dpde T (u)

- D) e
for any @ e C3(M) and for any ne L’ So, it seems natural to assume
{Tw, dp) =0 for any @ecCP(M).

That is, by (3.5) and (3.9),
(3.11) TuecH for weH.
Substituting (3.8) and (3.11) into (I.1), we have

i, Ty = 9ATa + Vo Tow = £, mretondpn(u) = 0 .

Combining the above results, we have finally:
ANsSATZ. There exists a family {T,} of operators in H and a Borel
measure , such that a solution of (I) is expressed as

(3.12) W(t’ 77) = Sﬂei(TW,U)dﬁo(u) .

Then, by the Hodge decomposition, we get that T (=u(-,t)) is a
solution of the following initial boundary value problem for the Navier-
Stokes equation.
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(3.13) —a—u(x, 1) — vAux, t) + Vi ul, t) + Vo, t) = flx, t),

ot
(3.14) ou(x, t) =0,
(3.15) w(x, t)|;w = 0 and
(3.16) u(x, 0) = uyx) .

REMARK. (1) Above Ansatz asserts that the Hopf equation has the
Navier-Stokes equation as the characteristic equation. Note, however,
that the uniqueness of the weak solution of the Navier-Stokes equation
is not known. Hence the above operator T;* does not necessarily exist.

(2) The condition (1.2), which follows from the gauge condition
(3.14), has a counterpart in Quantum Field Theory, called the Ward-
Takahashi identity.

(3) Hopf [10] and Foias [5], derived (I) or (II) from the Navier-Stokes
equation by an argument converse to ours above. It seems meaningful,
however, to start with a given F.D.E. just as we treat the Schrodinger
equation independently of the fact that it is derived from the classical
mechanics. Unfortunately, there does not exist any mathematical foun-
dation for treating F.D.E. directly, though it was possible to regard the
Schrodinger equation as an example of P.D.E., when it appeared.

4. Some functional spaces and Foiag’s compactness argument for a
certain family of Borel measures. Concerning the criterion for the weak
compactness of measures, Prokhorov’s theorem is now well-known. (See,
Theorem 1, §1, Chap. VI in Gihman and Skorohod [9].) But we follow
essentially the argument of Foiag [5] and present here Foiag’s result in
somewhat more abstract form. The detailed proof will not be presented
here, because we can get them slightly modifying the arguments in [5].

Let X, Y be Banach spaces such that Yc X where the injection is
dense, continuous and compact. We denote the norms of X and Y by
|+] and ||+]|, respectively. Moreover, we assume that there exists a family
of operators P, in X for m =1, 2, --- with the following properties.

(P.1) P,—Ias m— in X and P,ucD for all ueX.

(P.2) For each m, if w converges to v weakly in X, then P,u con-
verges to P,v in Y.

P.3) [|Pu| = | Pepul|l = |lull for ue X.

Here, D is a dense subset in Y.
As functional spaces, we introduce the following:

DeFINITION 4.1. (i) C, for & = 0 denotes the space of all real con-
tinuous functionals @(-) on X such that
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_lo@w)|

< oo,
1+ |ul®

|@]l¢, = sup
ueX

(ii) C,, denotes the space of all real continuous functionals @(:) on Y
such that

O
12le,,, = sup =TT

We further introduce the following:
DEFINITION 4.2. For C, and C,,, we put
L, = L0, «;C,) and L}, = L¥0, «;C,,) .
Moreover, we put, for any T > 0,
LyT ={@(-, ) e LX0, «; C,,); &, -) =0 for t= T} and
Ly™ = {@(-, ) e L0, =;C,); @, -) =0 for ¢t=T}.

DEFINITION 4.3. A family {g(Z, +)}<i<r Of positive Borel measures on
X will be called basic if it satisfies the conditions (H.1l), (H.2) and (H.3)
in Definition 2.8, with H replaced by X.

The following lemma corresponds to Lemma 1 in Foias [5, p. 246].

LEMMA 4.4. Let {¢(t, *)}oci<w be a basic family of Borel measures on
X. Then, for each T > 0,

F(0) = mx O(t, wydp(t, w)dt

makes sense for any ® € LiULyT. Moreover, we have the following esti-
mates.

1Pl = [ @+ lumdec, w and

L% (0,)
1/2

1Pl < [ @+ lumdec, w |, @+ i, w

A slight modification of Lemmas 3 and 4 in Foiag [5, p. 254 and p. 264]
gives:

1/2
L®(0,%) Lio,7)

THEOREM 4.5. Let {¢t™ (&, +)}ocico b€ a sequence of basic families of
Borel measures on X such that

@ sup || @+lupdecow| =< e,

) sup|||_lluldpmapc, w|
(c) Slﬂ.}p 1™y X))l = e(T) < oo for each T < oo.

=03< o,
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Let F'™ be a functional defined by
(IRm) Fm (@) = S”S O, w)dp™ (¢, w)dt .
0JX

Then, we have:

(1) There exists a functional F, a w*-cluster point of {F™} in LY.
(2) F 1is also a w*-cluster point of {F*™} in L¥™ for any T > 0.
(8) There exists a basic family {¢(t, *)}locicw Such that

(IR) F(®) = S‘”SX D¢, w)dp(t, w)dt

for all @€ L.

In addition to the conditions (a)-(c), we assume:

(d) The functional |-|* is uniformly integrable with respect to almost
all p™@, )0 <t<oo,m=1,2, --+), that is, for any ¢ >0, there ewrists
an 0 < r, < o such that

S |uPdp(t, w) < ¢
{ueX;lulzre)

for all m and almost all t.
Then, the formula (IR) is valid also for every @ e L.

COROLLARY 4.6. Under the assumptions (a) and (b) tn Theorem 4.5,
if all measures p™(t, +) for 0 <t <o are probability measures, then the
measures constructed above are also probability measures for almost all
te (0, ).

See Remark in Foias [5, p. 263].

REMARK 4.7. To prove Theorem 4.5, we use the property (P.3) of
P, which is important to define a desired measure by Daniell’s integral.

5. Proof of Theorem A. In order to restate Theorem A more
precisely, we need some notation.

We consider the initial boundary value problem of the Navier-Stokes
equation, although it is mot necessary to solve it.

We define the forms a¢ and b by

a(u, v) = (4, v)) = SMgijvkuskvfd,x
and

b(u, v, w) = (Vo, w) = SM gi,-{u"—ai—k-v" + F?,,u"v‘}w"d,x

for u, v, we X(M). Then, we have:
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LEMMA 5.1. (1) The from b can be regarded as a trilinear con-
tinuous form on VX VX W or Hx VX V*® satisfying
(5.1)  [bu, v, w)| = [lullllv]llwllw or [blu, v, w)| = colul o] ||wll,

for some s = d/2, where ¢, is a constant related to the Sobolev imbedding.
(2) For weV and v, we W, we have

b(u, v, w) = —blu, w, v) .

For the proof, see, for example, Lemmas 1.1-1.3 in Chap. II and
Lemma 4.1 in Chap. III of Temam [21].

REMARK 5.2. (a) For u, veV, we denote by B(u, v) the linear
continuous form on W defined by

(B(u, v), w) = b(u, v, w) for we W.

Clearly, B(u, v) = V,-v for u, ve X(M). By (5.1), we have
(5.2) | B(w, v)[wr = [Jull|o]l or [[Bu, v)ll_, < enlulllv]l.

(b) We also define a linear operator A from V onto V' by

(Au, v) = a(u, v) for u,ve V.

Here, we use (-, -) on the left-hand side also as the duality pairing
between V and V.

Now, we remark that as a corollary to Definition 2.7 in § 2, we have:
LEMMA 5.8. (1) Any test functional O(-, ) can be extended to
[0, )X V~° so that
(5.3) | D, u) — O, v)| = cullu — v,
for all t€[0, ) and u, ve V°, where ¢, = SuPseruer || Pu(ts w)|l,. More-
over, this extension ts continuous from [0, o)X Hyer to R.

(2) Any @ cTF may be extended as a functional on [0, ) x H and
we have

(5.4) |, w)| = ¢y + cslul for all (¢, )

with some constants ¢, and ¢, depending on @.
(3) If a test functional @(-, :) satisfies @(t, u) =0 for a certain
t€[0, ) and for all u with |u| large enough, then actually @, ) = 0.

PrOOF. See, Foias [5, p. 253].

After these preliminaries, we are in a position to restate Theorem A
as follows:
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THEOREM A’. Let f(-)e L*0, «o; V') be given and suppose a Borel
measure t, on H satisfies

(5.5) [, @+ lupdmw <

Then, there exists a basic family {u(t, +)}locice Of Borel measures on H
such that

6.6) ||, ot wapt, wat + | 00, wapw
':S:OBH{W(%’ D, (t, w)+bw, u, Du(t, u))—{F(E), Pult, u)>}d;c(t, u):|dt

for any @ € TF with compact support in t, i.e., there exists a constant T
depending on @ such that O, -) =0 for t = T.
Moreover, it satisfies the following energy imequality of strong form.

(EIS) % Suq,'r(|u|2)d,u(t, w) + ”SBH (P e, u)]dr
= =, wtubdpw + [ ], w(ub@©, wipe, e
for 0 <t < oo and € C'0, ) satisfying

0= '(t) = sup P'(s) < oo

The proof of Theorem A’ consists of several steps.

Step 1. Using the Galerkin approximation of the Navier-Stokes
equation, we may construct a basic family {¢™(¢, *)}ocic for each m.
Moreover, {¢t™(t, +)}oci<w satisfies the conditions (a)-(d) in Theorem 4.5.

So, we have a basic family {¢(¢, +)}c;<. 0f measures as a candidate
for the solution of Problem (II).

Step 2. We show that {u(¢, )}i<i<w constructed above satisfies the
properties in Theorem A’'.

SKETCH OF THE PROOF OF THEOREM A’. By standard argument, we
can show that there exists an orthonormal basis {w,} of H, orthogonal
in V, such that

(EVP) a(w gy, v) = Nj(wyy, v) for any ve V,

where )\; = 0. By a suitable choice of the indices, we may suppose that
0K ENRS SN, S > 00,

Obviously, A, satisfies
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5.7 —— = sup

For each m, we define the orthogonal projection P, in H by
(5.8) P,u = Z; (w, W))W, -

By regarding the scalar product (-, -) in (5.8) as a suitable duality pairing,
we can extend the operator P, as an operator from V~° or W' to P,H.
Moreover, P, satisfies the properties (P.1)-P.3) in§4 with X =H, Y=V
and D = V**,

From each m, putting u.,(t) as

Uim(®) = 3 hin(t0
we seek functions {h,,(t)} satisfying
(5.9)  Um®) W) + VAU (D), W) + O U @) Um @), we) = (f@), w)
for te(0, <) and 5=1,2, ---, m, and
(5.10) Uiy (0) = U = Prity «
LEMMA 5.4. There exists a unique solution wu, (t) € C'([0, «); P, H)

of the equation

(5.11) d—’ﬁ;;f—”— + 2P Aty (2) + PoBtim(t), m(®) = Puf(®) in PoH

satisfying (5.10). Moreover,

1 d 2 2
(5'12) _2" —E‘u(m)(tﬂ + 2)Hu('m)(t) H - (f(t)! u(m)(t)) ’

(5:13)  uw®F + o) 4@ 'ds < umOF + 1|71 75) s

REMARK 5.5. The sequence {u,(t)} constructed above is called the
Galerkin approximation of the Navier-Stokes equation. In fact, from
them, we may extract a subsequence converging to a weak solution of
the Navier-Stokes equation. As we mentioned before, this fact is not
necessary to construct {u(t, +)}ocicoo-

Defining an operator S™(¢t) by S™(t)P,u, = %um(t), we put
(5.14) L@, ) = g (S™(¢) (@ N P,H))
for t€(0, ) and every Borel set w c H, where
(@) = p(Pr(wNP,H)) for m=1,2, ...
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Then, we may verify that {#™(, «)}<i< iS @ basic family of measures
on H, and that the sequence {{¢t'™(f, *)}oci<wm=: Satisfies the conditions

(a), (b), (¢) and (d) in Theorem 4.5.
To proceed further, we need the following which corresponds to

Lemma 2, in Foias [5, p. 249].
LEMMA 5.6. Let {¢(t, )}ocicw be a basic family on H. Assume that

Ff() e L¥0, oo; V') and @(-, -)eTF. Then
(6.15) @(?) = Sw [SH{—@t(t, u) + va(u, 5u(t, w) + b(u, u, 6u(t7 w))
— (S, Bt W)} apt, w) Jat

makes sense. Moreover, defining @, as
@, u) =0, P,u), for all (t,u)el0, =)xH,
we get 9,(+, -) e ETF and
P(D,) = P(@) for m— oo .
Corollary in Foias [5, p. 266] corresponds to:

LEMMA 5.7. Let {{4(t, +)}oci< be a basic family of measures constructed
Jrom {£™(, )}cice satisfying the assumptions (a)-(d) in Theorem 4.5.
Then, the formula (IR) is valid for all fumctionals ¥o(-, ) defined by

(5.16) Wy, u) = —B(t, u) + va(u, D,(t, u)) + blu, u, B,(t, u))
— (@), D8, w)) s
for @ e ETF with compact support in t.
Combining these, we get the first half of Theorem A’. The energy

inequality of strong form is proved in the same way as Proposition 1 in

Foias [5, p. 291].
REMARK 5.8. Let FeL{ be the functional attached to {£(¢, *)}octcoo

Using the above notation, we see that {£(¢, -)}o<;<. is & solution of Problem
(II) if and only if

(5.17) FW,) = SB 00, w)d ()

holds for any @(-) e ETF with compact support in ¢. Indeed, ¥, for such
@ belongs to L¥7 N Ly* which is dense in L}7.

6. Fourier-Stieltjes transformations of measures and the meaning
of the second order functional derivatives.

DEFINITION 6.1. By a Fourier-Stieltjes transform of a bounded Borel
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measure # on H, we mean the functional /I defined on H by the formula
i) = Sﬂe““””dp(u) for pel.

REMARK 6.2. (1) If g is a probability measure on H, then #Z will
be called the characteristic functional of g In this case, f is continuous

on H and is positive definite, that is, for any complex numbers {; and any
elements ;€ H, j=1,2, -++, m, we have

jél iy — ) = 0.

(2) The correspondence of ¢ to f is one-to-one and onto from {Borel
probability measures on H} to {continuous positive definite functionals on H
with value 1 at 0}. (See, Theorem 1 in Gelfand and Vilenkin [8, p. 348]).

LeMMA 6.3. (cf. Foias [6, Lemma 1, p. 110]) (1) If ¢ is any Borel
probability measure on H satisfying

(6.1) Sﬂluvd;z(u) < oo,

then [(+) is positive definite and differentiable in H and its Fréchet
differential f1,(-) satisfies

(6.2) o), & = 1|, w Dewrdpu) for sell.
Moreover, fi,, exists as an operator from Hto H satisfying
6.3) tracesal— (0] = | urdp).

(2) In addition to (6.1), if we suppose that
(6.4) |, lwlidu) < -,
then f,(n) eV and
(6.5) (@), 8) = i ((w, Besrdptu) for ce V.

Moreover, [,, can be regarded as an operator from VitV satisfying
(6.6) tracesil— ()] = | llw/'dpcu) .

(3) Conversely, if W is a positive definite functional on H such
that W(0) =1, W,, exists and

traceg.a[— W, (0)] < o ,
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then W = @i for a uniquely determined Borel probability measure ft on
H satisfying (6.1).

Extending the statement appearing at the end of Foiag [6], we get:
PROPOSITION 6.4. Let pt be a probability measure on H such that
(6.7) [, 1 lidesu) < o
with s > d/2. Then, for any j, k and for any x, y € M, we have,
6.8) — (f(mo.ets 3, = || Wt wesrdu)

where 8,67 denotes the functional on V* defined by Bxe"(u)_——— ui(x). More-
over, the left-hand side of (6.8) is continuous in (x, y) € M x M.

PrOOF. The equality (9.14) in Foiag [5, p. 111] is restated as
(6.9) pnmt = = | Ouerdpuw) e H
for all %, seﬁ. Combining (6.9) with (6.7), we have

(6.10) |, 61 < 1w lidget)- 1167 - 16 -

so that the bilinear funectional
(6.11) 5(1), E(z) — <ﬁ7777(77)$(1)’ 5(2)>

extends by continuity to a bilinear continuous functional on the whole V-
On the other hand, as s > d/2, V* is continuously imbedded in the set
X°(M) of continuous vector fields on M by Sobolev’s imbedding theorem.
So the Dirac functional §./, which sends u to ui(x), is well-defined and
continuous on V* for all xeM and j=1,2, ---,d. By (6.9), we have

6.12) (Po(1)3.0%, 8,65 = —SH Cu, 8,675 Cu, 8,6>e w1 dp(u)
= | a.u, e ndptu) .

This implies (6.8) and the last assertion follows immediately q.e.d.

On the other hand, if a measure g satisfies
(6.13) [, luldlaiw) < e,

where |#¢| denotes the modulus of g, then for any v e V*, the functional
b(u, u, v) in u belongs to L'(x). This implies that the integral
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SH b(w, u, ©)e“* ()
makes sense for all 7¢ H; and is a continuous linear functional in v on
V*. Therefore it defines an element —#(L#Z)(n) of V. That is, we have:
DEFINITION 6.5. For any measure g on H satisfying (6.13), we define
an operator L by

(6.14) (LD, ) = i b, u, Ve rdp(u)

for all ve V* and neH.

Define the space FSM, as the Fourier-Stieltjes image of the space of
Borel measures on H satisfying (6.13) with norm

1=, Il .
Then the operator L is bounded from FSM, to B(H, V). In fact,
ILZ sy = sup (LA < |2l
neH,|7]=1

To state one of the main results in this section, we need the follow-
ing lemma which is proved in Ebin and Marsden [4]. We denote by
H},(M) the closure of the space {u¢€ X,(M):u-n|, =0} in L*M), and
by L*ST*(M)) the closure of the space of sections from M to ST*M) in
(LA M)~~~ Here, n stands for the unit exterior normal on oM.

LEMMA 6.6. Define an operator T by
(To)a(a) = 3(Va¥ (&) + V,,@)) -

Then T 1is one-to-one and onto from H} (M) to L*(ST*(M)).
THEOREM 6.7. Let tt be a Borel probability measure on H satisfying
(6.7). Then

(i) 8*(n)/on (x)dn;(x) exists and belongs to C(M) for each 1%, j.
(ii) For each ve V?,

(6.15) @R, = (LD, (To)u2)

Fpm 0 p)
W) @@ o ° o
belongs to ST,(M) as a continuous element.

PrROOF. By the kernel theorem of Schwartz [8], (6.11) implies that
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there exist distribution kernels K(9)“(x, y) on Mx M such that for &%,
£® e A(M),

(6.16) (Bn(m)EY, 89y = SWM K(n)'i(z, )& ()P (y)dgad,y ,

where the integral on the right-hand side must be symbolically interpreted.
Combining this with (6.8) and the definition of the functional derivative,
we have, as distributions,

S () - : 3001 g — /0 i k
©1n)  EL |, w@uw@esdpu) = Gy, 0,6 .

Since the above holds as continuous functions on Mx M, we get (i).
Using the above definition of L and Proposition 6.4, we get

6.18) (LAY, v) = ’58,, b(u, u, 0)e* Pdpu(u) = —i| b, u, V) Pdn(u)

Il

- iSH BM (Vkﬁ)j(x)ui(x)u"(x)d,lee““"7>d)u(u)

Il

—i| || s wieerdp) a0
where we have used (6.7) and Fubini’s theorem. So, we have
(6.19) (LX), 0) = 1| (VD) (00,65, 0.61d,

for all e H and v = vid/oxic V.

Because (6.19) holds with the term (V,?);(x) replaced by (Tw);(x), we
have an element in ST*(M) for ve V* by Lemma 6.6. This implies that
O*A(n) ) 2
0N (x)on;(x) ox' 0’

belongs to ST,(M) as a continuous element. This leads us to (ii) and
(iii). q.e.d.

Now, we extend the above theorem to the following:

COROLLARY 6.8. Let ¢t be a Borel probability measure on H satisfy-
ing (6.13). Then, there exists a distribution K(9)"(x)o/ox’ @ o/ox? in ST,(M)
such that
(6.20) (L)), v) = (K™ ), (Tv)p(®))
for ve X,(M).

ProOOF. Using the third equality in (6.18), which is valid when g
satisfies (6.13), we have
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G2 (@@, ) =~ [ | Tou@wEueds e .
This implies, by (5.1),

(6.22) (@@, ) < 1 Toll,(], 1l 2 ]dlpiw) .
So there exists a distributional element in ST,(M) denoted by K(1)*(x)d/0x*Q
0/ox? satisfying (6.20). q.e.d.

REMARK 6.9. By Theorem 6.7, it seems natural to put

o) N R NN S I
@) oo & ow - RN @S E Qi

Because a measure g satisfying (6.13) on H may be approximated
weakly by a measure p, satisfying (6.7) on H, we may have

(6.23) (L), v) = iKY, (Tw);»
= lim — ’:LUM (T'v)j,,(w)u"(x)u"(x)d,x:le““'”>dﬂe(u)

&—0

= lim — igM (Tv),—k(w)[gﬂu"(x)u"(x)e““'”>dpts(u):|dgx

— 1im o/ OB YA i () (@) .
lim i 5Pt (Tota)) = i( - FE D, (To)(@)
We rather define
O*H(n) 0 ® 0 = lim 3*f(1) 0 0
on(x)on;(x) oxt T dxd e ()0 (x) oxt T oa

where the limit is taken in ST,(M) in the sense of distribution.

’

Finally, we recall the following lemma in Foias [6, p. 115].

LEMMA 6.10. Let ¢ be a Borel probability measure on H. Then, [
s of V- exponential type if and only if p is with bounded support in
Ve.

7. Proof of Theorem B. Theorem 1 in Foias [6, p. 106], is restated
as follows:

THEOREM 7.1. Let {t(t, *)}oci< be a solution of Problem (II) with
initial data p, satisfying (5.5). Let W(t, n) denote the characteristic
Sunctional of pt, ) and let Wy(n) be that of tty. Then, we have:

(1) W, n) is defined on [0, )x H and belongs to L0, «) with
respect to t for each 7 cH.

(2) For any ne Ve and any o(+)€Ci0, «), we have



HOPF EQUATION 139

@) ={Teowe ndt + |7 e@ba e, », ) + (@WE, ), @lat

= pOWin) + | ot s, Wi,
Analogously, Theorem 2 in Foias [6, p. 109] is restated as follows:

THEOREM 7.2. Let Wy(-) be a positive definite functionl on H such
that W,(0) =1 and that W, () exists with

(7.2) traces_u[— Wyy(0)] < oo .

Then, there exists a solution W(t, ) on (0, «) of (7.1) with initial data
W), such that, for any te(0, =), W(t, -) is a positive definite fumnc-
tional on H, W(t, 0) =1, W,(t, +) exist and satisfies

(7.8) tracez_u[— W,,(+, 0)]€ L0, ) and
(7.4) tracey_,[— W, (+, 0)] € L>(0, ) .
The following lemma is elementary.
LEMMA 7.3. Let @, be a real number. Let ¢(t) belong to L=(0, ).
If there exists a function +(t) € Li,[0, =) such that
~["pwewit — o0, = | ottt

for any p(t) € Cif0, «), then (a) @' =+ in D'(0, o), (b) we can make @
continuous on [0, ) after modifying the values on the set of measure 0
and (c) @(t) converges to @, as t — 0.

Proor OF THEOREM B. We can derive the following equation from
(7.1) by taking p(-) € Cy0, o).

(1.5)  Wt, n) = va(W,(t, ), ) + (LW, )W), ) — if@®), pWE, 9,
which holds as distributions on (0, ) for each e D.
As W(t, n) = [(t, 1), we have readily

(7.6) (W, ), dp) =0 for @eCy(M),
and

(7.7 W, 0)=1.

To prove

(7.8) lim W(t, ) = Wi(7)

we must check the conditions in Lemma 7.8.
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For each ne Ve, putting @(t) = W(t, ), we have already proved that
o(t) € L*(0, ) and ¢(t) satisfies the equation in Lemma 7.6 with

¥(t) = va(W,(t, 7), 7) + (LW, )®), ) — i{f (@), ) W(t, 1) .
As (t) belongs to Li,[0, «) because of

2w n)| < | wlallul + el ulflnl + @171 ),
we have (7.8). Lastly using (EIS), we have
SH || |[fdp(t, u) < o for almost every ¢t

so by Corollary 6.8, ((LW(t, «))(%), §) may be expressed as

N, ) = (T, (), LW & D
(7.10) (LW, ), 7) <(T77)ak(x)’ 57]j(x)37;k(ac)>
for 7 7. q.e.d.

REMARK 7.4. The above proof of Theorem B indicates that the
solution in §5 also gives a strong solution in our case. Moreover, it is
clear from the arguments in §3 and §6 that a strong solution yields a
solution of Problem (II). As the condition (7.2) seems necessary to
define a strong solution by our reasoning, it is natural to ask whether
there exists a family of measures satisfying (5.6) without the condition
(5.5). If we want to remove the condition tracegz_u[— W,,,(0)] < « in
Theorem A, we must introduce new notion of solution of (I), which will
be named a weak solution. This point will be studied in the forthcomming

paper.

8. Proof of Theorem C. To prove Theorem C, we repeat the pro-
cedure in §5-6 with some modifications.
First of all, instead of (5.13), we use

GO um®F + 25| w0 @ s = 2]l + 3 | 1 F@)ds |

which is given, for example, in Ladyzhenskaya [17, p. 147]. Then, defining
{"™(t, }ocicw as in (5.14), we get
(8.2) § (1 + [uP)dp™ (¢, w) + 2»8”[8 1w |fd ™, u):ldt
H 0 H
= Sa (1 + 2|uP)de(u) + cu- t(H) = 20, + Cou tto(H) = ¢y«

Here, ¢, = 3[8:0 ]f(s)lds]z.
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Secondly, we want to have a constant independent of m and ¢ € (0, T*)
such that

SH o llide ™, u) < e < oo,
where [ is the largest integer not exceeding (d/2) + 1.

To this end, we begin with the following:

LEMMA 8.1. For w introduced in §5 we have:
(1) wy belongs to H''.
(2) P, satisfies

(8.3) | Prully < || Prawlly = [ful]; -
Proor. (1) follows from the regularity theorem of a weak solution
of elliptic systems. (2) follows if we redefine the norm |||, by
l
il = 31 (- Ay
in view of the property of w,; and A; in (EVP). q.e.d.

LEMMA 8.2. As oM = @, we have H' = V' and

(8.4) | Blu, ) [l: = e lu ]| vl
for we Vi, ve V.  Moreover,
(8.5) [(B(wy v), )| = e llulll]v]]34s -

For the proof, see Kato [16].

LEMMA 8.3. Let %, (t) € C([0, «); P, H) be a unique solution obtained
previously in §5. For any a>1, there exists T* depending on a, ||f(t)|],
and || u,||, such that

(8.6) ”u(m)(t)Hl = allull, on [0, T%).

PrROOF. Using the arguments in Temam [20] and Kato [16], (here,
oM = @ is used), we have
1
2

Comparing the solution w,(t) of (5.11) with the solution y(¢) of the
ordinary differential equation

8.7 gt—llum)(t)l!? + V[ Um@li = oot | Uem 1] + oot B0l % ol

d — ()2 .
-d_ty(t) = Cp Y(t) + ¢ || F(B) ]I,

with initial data y(0) = ||u,||;, we have
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(8.8) lum |l = y(@) = ay(0)
on some interval [0, T*), where T* is defined by and depends on ¥(0),

f(+, t) and arbitrarily given number a>1. For example, T*=a— 1/ac,y(0)
when f(t) =0. q.e.d.

As the functional Wy(») is of V- exponential type, we may take the
above T* strictly positive because of the last remark of the above proof.
Moreover, from the conditions

tracegul— Wyl < o and tracepip[— W,,] < «,

and remembering Lemma 6.3, we have a Borel probability measure g, on
H satisfying

(8.9) | 1urdm) < = and [, I lidenm) < oo .

Therefore, applying the results in §4 to the case where X =H, Y = V!

and D = V', we may define a Borel measure p™(t, -) satisfying the

desired inequality on [0, T*) with ¢, = a”S ||} dpt(u) < oo. This implies
H

that {¢'™(t, *)}o<s< satisfies the properties (a)-(d) in Theorem 4.5. So we

may apply Proposition 6.4 and (6.19). Combining this with Theorem 7.1

and 7.2, and then with Lemma 7.3, we finished the proof of existence.

9. Concluding remarks. Our aim to write this paper was as follows:

(1) To understand clearly the procedure presented in Foias [5], [6]
from the point of view of solving F.D.E.

(2) To give an exact meaning to

0:W(t, m)
0n(x)on,(x)
which is not given in the above works.

(8) To find another construction of weak, strong or classical solu-
tions of F.D.E. of second order. In the case of first order, we have
examples of solutions without classical correspondence. See, Inoue [12],
[14].

(4) In connection with (3), we want to find the change of variables
formula for F.D.E., which we find for the problem of quantization in

Inoue and Maeda [15].
To explain the point (4) above more precisely, let us consider an
example. Berger’s equation is given by

9.1) Uy + U, — VU, = 0 for (x,t)e Rx(0, ).
It is well-known that this equation is linearized by the Hopf-Cole trans-
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formation, given by u(x, t) = —2vo/oxlog v(x, t). That is, if u(x, t) satisfies
(8.1), then w(x, t) satisfies
(9.2) Vy — VU, = 0

and vice versa.
Now, we consider the functor from the Navier-Stokes equation to the
Hopf equation in this case, that is, we consider the following F.D.E.’s.

2 3 .o 3UR, 7) » sU, 1)
03 vt = gl LA 4,0 20T g,

ox  on(x) ox*  on(x)
and
0 — o 02 0V(t, &)
9.4) 2t o = |y D D

If these functors commute with the Hopf-Cole transformation, then we
could construct a solution U of F.D.E. of second order from a solution V'
of F.D.E. of first order.

Concerning the above problems, we have some affirmative answers to
(1) and (2). But most important ones (3) and (4) are left unanswered.
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