THE MORDELL-WEIL RANK OF ELLIPTIC CURVES

Jasbir Singh Chahal

(Received February 18, 1986)

Let E be an elliptic curve defined over a number field k (of finite degree). The Mordell-Weil Theorem states that the group $E(k)$ of k rational points of E is finitely generated. Consequently, the group $E(k)_{\text {tor }}$ of points of finite order of $E(k)$ is finite.

Let L be the field obtained by adjoining to k all the roots of unity. It has been shown by Ribet (cf. [1]) that even for the infinite extension L / k, the group $E(L)_{\text {tor }}$ is still finite. However, as we will show here, $E(L)$ can never be finitely generated.

We will denote the Mordell-Weil rank of E over k by $r_{k}(E)$. It is the maximum number of free generators of $E(k)$.

Theorem. Suppose E is an elliptic curve defined over \boldsymbol{Q} and r_{0} is a positive integer. Then there is a finite extension*) K of \boldsymbol{Q}, such that $r_{K}(E)>r_{0}$. Moreover, there is a constant $c=c(E)$, such that the degree of extension $[K: Q] \leqq c 2^{r_{0}}$.

Proof. Suppose E is given in the Weierstrass form

$$
\begin{equation*}
y^{2}=x^{3}+A x+B \quad(A, B \in \boldsymbol{Q}) . \tag{1}
\end{equation*}
$$

The polynomial $f(x)=x^{3}+A x+B$ has distinct roots e_{1}, e_{2}, e_{3} and factors as

$$
\begin{equation*}
f(x)=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right) \tag{2}
\end{equation*}
$$

in its splitting field k. We may consider E to be defined over k. Let $P_{j}=\left(x_{j}, y_{j}\right), j=1, \cdots, m$, be all the points of finite order of $E(L)-\{O\}$.

For any $P=(x, y)$ in $E(k)$, the factors $x-e_{1}, x-e_{2}, x-e_{3}$ of y^{2} in (2) are almost relatively prime. More precisely, there are finitely many d_{1}, \cdots, d_{n} in k, such that for any $P=(x, y)$ in $E(k)$, each factor is of the form

$$
\begin{equation*}
x-e_{i}=d_{j} z^{2} \tag{3}
\end{equation*}
$$

for some $j(1 \leqq j \leqq n)$ and z in k. To prove this let S denote any finite set of primes (including all the Archemedian ones) of k. By Dirichelet's

[^0]theorem, the group $U_{k}(S)$ of S-units of k, i.e.,
$$
U_{k}(S)=\left\{x \in k \mid \operatorname{ord}_{\mathfrak{p}}(x)=0, \mathfrak{p} \notin S\right\}
$$
is finitely generated, say by $\eta_{1}, \cdots, \eta_{r}$. For what follows, we may suppose that all $e_{i} \in \mathcal{O}_{k}$, the ring of integers of k. Choose a finite S containing all the prime divisors of
$$
\prod_{i<j}\left(e_{i}-e_{j}\right)
$$
and with the property that
$$
\mathscr{O}_{k}(S)=\left\{x \in k \mid \operatorname{ord}_{\mathfrak{p}}(x) \geqq 0, \mathfrak{p} \notin S\right\}
$$
is a principal ideal domain.
Now let $P=(x, y)$ be a k-rational point on E. A prime divisor \mathfrak{p} of $x-e_{1}$ and $x-e_{2}$ must divide $e_{1}-e_{2}$. Thus for any $\mathfrak{p} \notin S$, the exponent $\operatorname{ord}_{\mathfrak{p}}\left(\left(x-e_{2}\right)\left(x-e_{1}\right)^{-1}\right)$ in the factorization of $\left(x-e_{2}\right)\left(x-e_{1}\right)^{-1}$ is even, say $2 a_{p}$. If
$$
z_{1}=\prod_{p \notin S} \pi_{p}^{-a_{\mathfrak{p}}}
$$
where $\pi_{\mathfrak{p}}$ is a uniformizing parameter at \mathfrak{p}, then it is clear that $\left(x-e_{2}\right)\left(x-e_{1}\right)^{-1} z_{1}^{2}$ is an S-unit. So for some $m_{i} \in \boldsymbol{Z}$
\[

$$
\begin{equation*}
x-e_{2}=\left(x-e_{1}\right) \eta_{1}^{m_{1}} \cdots \eta_{r}^{m_{r}} z_{1}^{-2} \tag{4}
\end{equation*}
$$

\]

Similarly

$$
\begin{equation*}
x-e_{3}=\left(x-e_{1}\right) \eta_{1}^{n_{1}} \cdots \eta_{r}^{n_{r}} z_{2}^{-2} \tag{5}
\end{equation*}
$$

Substituting (4) and (5) in (2), we get

$$
x-e_{1}=\eta_{1}^{\alpha_{1}} \cdots \eta_{r}^{\alpha_{r}} z^{2} \quad\left(0 \leqq \alpha_{i} \leqq 1\right)
$$

We may suppose that no $d_{i} d_{j}^{-1}(i \neq j)$ is a square in k. Now choose t in k, such that
(A) $d_{i} d_{j}^{-1} t$ is not a square in k for any pair i, j (including $i=j$) and
(B) $x_{0}=e_{1}+d_{1} t \in \boldsymbol{Q}$ and is not a root of the polynomial $g_{j}(x)=f(x)-y_{j}^{2}$ for all $j=1, \cdots, m$.

If we put $y_{0}=(f(x))^{1 / 2}$ with x_{0} as in (B), then y_{0} is not in k, because otherwise (B) and (3) would contradict (A). However, for a root ζ of unity, we have $y_{0} \in \boldsymbol{Q}(\zeta)$. Therefore, the point $P_{0}=\left(x_{0}, y_{0}\right)$ is in $E(L)$. By (B), P_{0} is not a point of finite order. If we put $K_{1}=k\left(y_{0}\right)$, then $r_{K_{1}}(E)>r_{k}(E)$ and $\left[K_{1}: k\right]=2$. We repeat the process with k replaced by K_{1} to get a quadratic extension $K_{2} \subseteq L$ of K_{1}, such that $r_{K_{2}}(E)>r_{K_{1}}(E)$. This process now may be continued until $r_{K_{i}}(E)$ exceeds r_{0}. To prove the last assertion, we take $c=[k: Q]$.

Corollary. For no elliptic curve E defined over \boldsymbol{Q}, is $E(L)$ finitely generated.

Remark. The finite extension K is actually the composite of the splitting field k of $x^{3}+A x+B$ and L^{\prime}, where L^{\prime} is a composite of quadratic fields with galois group $\operatorname{Gal}\left(L^{\prime} / \boldsymbol{Q}\right) \cong(\boldsymbol{Z} / 2 \boldsymbol{Z})^{r_{0}}$. Moreover, if the discriminant

$$
\Delta=-\left(4 A^{3}+27 B^{2}\right)
$$

of E is a square in \boldsymbol{Q}, then k and hence K is abelian.
Acknowledgement. The author would like to thank Professor Wolfgang M. Schmidt for inviting him to Boulder (April 15-May 15, 1985), where this work was done.

Reference

[1] K. A. Ribet, Torsion points of abelian varieties in cyclotomic extensions (Appendix to N. M. Katz and S. Lang, Finiteness theorems in geometric class field theory), Enseign. Math. (2) 27 (1981), 315-319.

Department of Mathematics
Brigham Young University
Provo, UT 84602
U.S.A.

[^0]: * See the remark at the end of the paper.

