SEMI-SYMMETRIC LORENTZIAN HYPERSURFACES

IGNACE VAN DE WOESTIJNE AND LEOPOLD VERSTRAELEN

Dedicated to Professor Dr. A. Lichnerowicz for his seventieth birthday

(Received January 28, 1986)

1. Introduction. Nomizu [2] classified semi-symmetric hypersurfaces in Euclidean spaces. In this paper, we shall give a classification of semisymmetric Lorentzian hypersurfaces in Minkowski spaces. We recall that a semi- or pseudo-Riemannian manifold M is said to be semi-symmetric, if it satisfies the condition $R \cdot R = 0$, whereby R is the Riemmann-Christoffel curvature tensor of M and where the first tensor acts on the second one as a derivation. Semi-symmetry is a proper generalization of local symmetry, and was first studied by Cartan and Lichnerowicz. Recently, a general study of semi-symmetric Riemannian manifolds was made by Szabó [4].

The main results of this paper can be stated as follows.

THEOREM 1. Let M^n be a Lorentzian hypersurface of dimension nin a Minkowski space \mathbf{R}_1^{n+1} . Suppose that the type number k(x) is ≥ 3 at a point x of M^n . Then M^n is semi-symmetric at x if and only if the shape operator A_x of M^n at x has the form

(1)
$$A_{x} = \left[\frac{\lambda I_{k(x)}}{0} \middle| \begin{array}{c} 0\\ 0_{n-k(x)} \end{array}\right], \quad \lambda \in \mathbb{R} \setminus \{0\}$$

with respect to a suitable orthonormal frame of $T_x M^n$.

THEOREM 2. Let M^n be a connected and complete Lorentzian hypersurface of dimension n in a Minkowski space \mathbf{R}_1^{n+1} . Suppose that the type number is ≥ 3 at least at one point of M^n . Then M^n is semisymmetric if and only if

(a) $M^n = S_1^k \times \mathbf{R}^{n-k}$

or

(b) $M^n = S^k \times R_1^{n-k}$,

for some $k \ge 3$. In case (a), S_1^k is a Lorentzian hypersphere in a Minkowski subspace \mathbf{R}_1^{k+1} of \mathbf{R}_1^{n+1} and \mathbf{R}^{n-k} is a Euclidean subspace of \mathbf{R}_1^{n+1} orthogonal to \mathbf{R}_1^{k+1} . In case (b), S^k is a hypersphere in a Euclidean

subspace \mathbf{R}^{k+1} of \mathbf{R}_1^{n+1} and \mathbf{R}_1^{n-k} is a Minkowski subspace of \mathbf{R}_1^{n+1} orthogonal to \mathbf{R}^{k+1} .

2. Basic formulae. Let M^n be an *n*-dimensional Lorentzian hypersurface in a Minkowski space \mathbf{R}_1^{n+1} . The natural Lorentz metric on \mathbf{R}_1^{n+1} with signature $(-, +, \dots, +)$ and also the induced Lorentz metric on M^n will be denoted by \langle , \rangle . The corresponding Levi Civita connection and Riemann-Christoffel curvature tensor of M^n will be denoted by ∇ and R, respectively. When D is the standard connection on \mathbf{R}_1^{n+1} , the second fundamental form h and the shape operator A with respect to a unit normal vector field ξ are defined by the formulas $D_x Y = \nabla_x Y + h(X, Y)$ and $D_x \xi = -AX$ of Gauss and Weingarten; X, Y, Z, W, V will always denote vector fields tangent to M^n . The rank of the shape operator A_x at a point x of M^n is called the type number k(x) of M^n at x. The Gauss equation of M^n is given by

(2)
$$R(X, Y)Z = \langle AY, Z \rangle AX - \langle AX, Z \rangle AY.$$

 M^n is said to be semi-symmetric if $R(X, Y) \cdot R = 0$ for all X and Y, where the curvature operator $R(X, Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}$ acts as a derivation on the tensor algebra at each point of M^n . Using (2) one may verify that

$$(3) \quad (R(X, Y) \cdot R)(Z, W) V = (\langle AY, AZ \rangle \langle AW, V \rangle - \langle AY, AW \rangle \langle AZ, V \rangle)AX - (\langle AX, AZ \rangle \langle AW, V \rangle - \langle AX, AW \rangle \langle AZ, V \rangle)AY + (\langle AX, W \rangle \langle A^2 Y, V \rangle - \langle AY, W \rangle \langle A^2 X, V \rangle + \langle AW, AY \rangle \langle AX, V \rangle - \langle AW, AX \rangle \langle AY, V \rangle)AZ - (\langle AX, Z \rangle \langle A^2 Y, V \rangle - \langle AY, Z \rangle \langle A^2 X, V \rangle + \langle AZ, AY \rangle \langle AX, V \rangle - \langle AZ, AX \rangle \langle AY, V \rangle)AW + (\langle AZ, V \rangle \langle AY, W \rangle - \langle AW, V \rangle \langle AY, Z \rangle)A^2X - (\langle AZ, V \rangle \langle AX, W \rangle - \langle AW, V \rangle \langle AX, Z \rangle)A^2Y.$$

Since the metric \langle , \rangle on M^n is of Lorentz type and A_x is a symmetric endomorphism of the tangent space $T_x M^n$ of M^n at x, with respect to suitably chosen frames for $T_x M$, the shape operator A_x has one of the following forms [1]:

(i)
$$A_x = \begin{bmatrix} a_1 & 0 \\ & a_2 & \\ & \ddots & \\ & & \ddots & \\ 0 & & & a_n \end{bmatrix};$$

(ii)
$$A_{x} = \begin{bmatrix} a & b & & 0 \\ -b & a & 0 \\ & a_{3} & & \\ & & \ddots & \\ 0 & & & a_{n} \end{bmatrix}$$
, $(b \neq 0)$;
(iii) $A_{x} = \begin{bmatrix} a & 0 & & 0 \\ 1 & a & 0 \\ & & a_{3} & & \\ & & a_{3} & & \\ & & & a_{3} & \\ & & & \\ & & &$

(

(iii)
$$A_{x} = \begin{bmatrix} a_{3} & & & \\ & \ddots & & \\ 0 & & a_{n} \end{bmatrix};$$

(iv) $A_{x} = \begin{bmatrix} a & 0 & 0 & & \\ 0 & a & 1 & & \\ -1 & 0 & a & & \\ & & a_{4} & & \\ & & & \ddots & \\ 0 & & & & a_{n} \end{bmatrix}.$

In cases (i) and (ii), A_x is represented with respect to an orthonormal frame (e_1, e_2, \dots, e_n) ; this means that $\langle e_1, e_1 \rangle = -1$, $\langle e_i, e_j \rangle = \delta_{ij}$, $\langle e_1, e_j \rangle = 0$, $(2 \leq i, j \leq n)$ (in later considerations we permit ourselves sometimes to change the ordering of these vectors). In cases (iii) and (iv), A_x is represented with respect to a pseudo-orthonormal frame (u_1, u_2, \dots, u_n) ; this means that $\langle u_1, u_1 \rangle = \langle u_2, u_2 \rangle = \langle u_1, u_i \rangle = \langle u_2, u_i \rangle = 0$, $\langle u_1, u_2 \rangle = -1$, $\langle u_i, u_j \rangle = \delta_{ij}$, $(3 \leq i, j \leq n)$.

3. Proof of Theorem 1. Let M^n be semi-symmetric, i.e., let

$$(5) (R(X, Y) \cdot R)(Z, W) V = 0,$$

(

for all X, Y, Z, W, V. The proof of Theorem 1 will be devided into four parts, according to the four possible forms of A. It is always assumed that $k(x) \ge 3$.

(I) Suppose that A_x is of the form (i). Putting $X = e_i$, $Y = e_j$, $Z = e_i$, $W = e_k$ and $V = e_j$, (i, j and k being mutually distinct), from (3) and (5) we find that

$$a_k a_i a_j (a_i - a_j) = 0 .$$

Thus, by the assumption on the type number, all non-zero eigenvalues are the same, which yields formula (1).

(II) Suppose that A_x is of the form (ii). Then we have:

$$egin{aligned} Ae_{j} &= a_{j}e_{j} \;, \qquad (j=3,\;\cdots,\;n) \;, \ Ae_{1} &= ae_{1} - be_{2} \;, \ Ae_{2} &= be_{1} + ae_{2} \;. \end{aligned}$$

Putting $X = Z = e_1$, $Y = V = e_j$, $(j = 3, \dots, n)$, from (3) and (5) we find that

$$a_j b(a^2 + b^2) e_1 + (a^2 + b^2) a_j (a_j - a) = 0$$

In particular, this implies that

$$a_j b(a^2 + b^2) = 0 ,$$

which in turn implies $a_j = 0$ because $b \neq 0$. This, however, contradicts the assumption on the type number. Thus this case cannot occur.

(III) Suppose next that A_x is of the form (iii). Then, with respect to a pseudo-orthonormal frame (u_1, u_2, \dots, u_n) , we have:

Putting $X = Z = u_1$, $W = u_2$, $Y = V = u_j$, $(j = 3, \dots, n)$, from (3) and (5) we find that

$$a^2a_i=0$$

In case $a \neq 0$, this implies that $a_j = 0$ for all $j = 3, \dots, n$. This contradicts the assumption on the type number. So we may assume that $a \neq 0$. Then, putting $X = Z = u_1$, $Y = V = u_i$, $W = u_j$, $(i, j = 3, \dots, n; i \neq j)$, from (3) and (5) we obtain:

$$a_i^2 a_j = 0$$
.

Thus, in this case, at most one of the numbers a_3, \dots, a_n can be different from zero. This again contradicts the assumption on the type number. Consequently, also the form (iii) for the shape operator cannot occur.

(IV) Finally, suppose that A_x is of the form (iv). Then, with respect to a pseudo-orthonormal frame (u_1, u_2, \dots, u_n) , we have:

Putting $X = Z = u_1$, $W = V = u_2$, $Y = u_3$, from (3) and (5) it follows that a = 0. Next, putting $X = Z = u_1$, $Y = V = u_i$, $W = u_j$, $(i, j = 4, \dots, n; i \neq j)$, from (3) and (5) it follows that

$$a_i a_j = 0$$
 .

Thus at most one of the numbers a_4, \dots, a_n can be different from zero. Assuming, however, that $a_4 = \dots = a_{n-1} = 0$, for instance, we find that also $a_n = 0$ from (3) and (5), where we put $X = Z = u_1$, $Y = u_3$, $W = V = u_n$. Then, clearly rank $A_x = 2$, which is a contradiction.

The converse statement of Theorem 1, the fact that $R \cdot R = 0$ when A_x is given by the expression (1), can readily be verified by a straightforward calculation.

4. Proof of Theorem 2. The main part of the proof of Theorem 2 can be taken over without any changes from Nomizu's classification of the semi-symmetric hypersurfaces of Euclidean spaces in [2].

First, we assume that the type number $k(x) \geq 3$, everywhere on the Lorentzian hypersurface M^n . Without loss of generality, we may suppose that M^n is orientable and thus that there exists a unit normal vector field ξ defined on the entire hypersurface ([3, p. 189]); (in case that M^n is not orientable we can always work with the universal covering). From the fact that M^n is semi-symmetric, we know by Theorem 1 that the shape operator A of M^n corresponding to ξ is given by formula (1) for every point x of the hypersurface. Precisely as in [2], it then follows that the type number k(x) is constant on M^n , say k(x) = k, and that the only eigenvalue $\lambda(x)$ of A_x which is non-zero defines a differentiable function λ on M^n . Next, we consider the distributions T_0 and T_1 which are defined by

$$egin{aligned} T_{_0}(x) &= \{X \in T_x M^n \,|\, AX = 0\} \;, \ T_{_1}(x) &= \{X \in T_x M^n \,|\, AX = \lambda(x)X\} \end{aligned}$$

It is easy to see that both these distributions on M are differentiable and involutive, and that $T_x M^n = T_0(x) \bigoplus T_1(x)$ at each $x \in M^n$. Also, as in [2], we have the following result.

LEMMA 1. If $Y_{\lambda} = 0$ for every $Y \in T_0$, $\nabla_x T_0 \subset T_0$ and $\nabla_x T_1 \subset T_1$ for every vector X which is tangent to M^n .

Further, by $M_0(x)$ and $M_1(x)$ we will denote the maximal integral submanifolds of M^n corresponding respectively to T_0 and T_1 , and which pass through the point x. We then have the following result.

THEOREM 2a. (i) $M_0(x)$ is a complete totally geodesic submanifold

of M^n .

(ii) $f|_{M_0}$, the restriction of the isometrical immersion f of M^n in \mathbf{R}_1^{n+1} to M_0 , is an isometry of $M_0(x)$ to $\mathbf{R}^{n-k}(x)$ or to $\mathbf{R}_1^{n-k}(x)$.

PROOF. (i) See [2].

(ii) It is clear that the second fundamental form h of $M_0(x)$ in \mathbb{R}_1^{n+1} vanishes identically (for all X, Y tangent to $M_0(x)$, we have $h(X, Y) = \langle Y, AX \rangle \xi$), and so $M_0(x)$ is also a totally geodesic submanifold of the Minkowski space \mathbb{R}_1^{n+1} . Consequently, by the immersion f, every geodesic of $M_0(x)$ is mapped upon a straight line in \mathbb{R}_1^{n+1} . The restriction of the metric on M to $M_0(x)$ is either Euclidean or Lorentzian. Accordingly, by the completeness of $M_0(x)$, either $f(M_0(x)) = \mathbb{R}^{n-k}(x)$ or $f(M_0(x)) = \mathbb{R}_1^{n-k}(x)$. It follows that f is a covering map ([3, p. 202]), and so it is an isometry of $M_0(x)$ to $\mathbb{R}^{n-k}(x)$ or to $\mathbb{R}_1^{n-k}(x)$ respectively.

In the next theorem we will need the following.

LEMMA 2. For every $Y \in T_0$, we have $Y\lambda = 0$.

PROOF. Following Theorem 2a, we have to consider two cases, according as $M_0(x)$ is isometric to a Euclidean space $\mathbb{R}^{n-k}(x)$ or to a Minkowski space $\mathbb{R}_1^{n-k}(x)$. In the first case, the proof of this lemma can be carried over completely from [2]. We now give a proof for the second case. Let $\{y^1, \dots, y^k, y^{k+1}, \dots, y^n\}$ be a coordinate system in a neighbourhood U of M with origin x such that $\{\partial/\partial y^1, \dots, \partial/\partial y^k\}$ and $\{\partial/\partial y^{k+1}, \dots, \partial/\partial y^n\}$ are local frames for T_1 and T_0 , respectively, and such that the restriction of $\{y^{k+1}, \dots, y^n\}$ to $M_0(x) \cap U$ is rectangular in the Lorentzian sense, i.e.,

$$\langle \partial/\partial y^{lpha}$$
 , $\partial/\partial y^{eta}
angle =arepsilon_{lpha}\delta_{lphaeta}$,

for $k+1 \leq \alpha, \beta \leq n$, where $\varepsilon_{\gamma} = 1$ for $\gamma = k+2, \dots, n$ and $\varepsilon_{k+1} = -1$. Then, precisely as in [2], we find that $Y^2(1/\lambda) = 0$ for all $Y = \partial/\partial y^{\alpha}$. Consequently, λ is constant on all straight lines in $M_0(x)$ which pass through x and which are not lying on the null-cone through x. From this and the fact that λ is continuous on M^n (even differentiable), it follows that λ is a constant function on the whole of $M_0(x)$.

The proof of Theorem 2, under the assumption that the type number $k(x) \ge 3$ at every point x of M^n , is completed by the following.

THEOREM 2b. (i) $M_1(x)$ is a complete totally geodesic submanifold of M^n .

(ii) M^n is isometric with $M_0 \times M_1$ for every point $m \in M^n$, where $M_0 = M_0(m)$ and $M_1 = M_1(m)$.

(iii) For every point $m \in M^n$, the spaces $f(M_0(m)) = \mathbb{R}^{n-k}(m)$, respec-

tively $f(M_0(m)) = \mathbf{R}_1^{n-k}(m)$, are parallel.

(iv) In case M_0 is isometric to \mathbf{R}^{n-k} , the restriction $f|_{M_1}$ of f to M_1 is an isometry of M_1 to $S_1^k \subset \mathbf{R}_1^{k+1}$, where \mathbf{R}_1^{k+1} is orthogonal to \mathbf{R}^{n-k} in \mathbf{R}_1^{n+1} .

(v) In case M_0 is isometric to \mathbf{R}_1^{n-k} , the restriction $f|_{\mathbf{M}_1}$ of f to M_1 is an isometry of M_1 to $S^k \subset \mathbf{R}^{k+1}$, where \mathbf{R}^{k+1} is orthogonal to \mathbf{R}_1^{n-k} in \mathbf{R}_1^{n+1} .

(vi) $f = f|_{M_0} \times f|_{M_1}$, i.e., $f(m_0, m_1) = (f|_{M_0}(m_0), f|_{M_1}(m_1))$ for every point $(m_0, m_1) \in M_0 \times M_1 = M$.

PROOF. (i) See [2].

(ii) From Lemmas 1 and 2, it follows that both distributions T_0 and T_1 are parallel. Thus $T_0(M_0(m))$ and $T_0(M_1(m))$ are invariant under the action of the holonomy group of M^n at any point $m \in M^n$. Since, moreover, the restrictions of the metric on $T_m M^n$ to $T_0(m)$ and $T_1(m)$ are non-degenerate, by Wu's extension of de Rham's decomposition theorem to indefinite metrics [5], we can conclude that M^n is isometric to $M_0 \times M_1$.

(iii) See [2].

(iv) We consider the function $x \mapsto \xi_x + \lambda f(x)$. Since $D_{f^*x}(\xi + \lambda f) = 0$ for every vector X tangent to M_1 , we obtain that $f(M_1)$ is part of a hypersphere S_1^n in \mathbf{R}_1^{n+1} with radius $|1/\lambda|$. Since $f(M_1)$ is orthogonal to $f(M_0) = \mathbf{R}^{n-k}$ at each point and since these spaces \mathbf{R}^{n-k} are all parallel, it follows that $f(M_1)$ is also contained in the linear subspace \mathbf{R}_1^{k+1} of \mathbf{R}_1^{n+1} which passes through f(x) and which is orthogonal to \mathbf{R}^{n-k} . Consequently, $f(M_1)$ is a part of the sphere $S_1^k = S_1^n \cap \mathbf{R}_1^{k+1}$. Finally, since M_1 is complete and f is a covering map, f is an isometry of M_1 onto S_1^k .

(v) This proof is similar to the one in (iv).

(vi) See [2].

So far, we proved Theorem 2 under the assumption that the type number is greater than 2 at every point of the Lorentz hypersurface M^n . The proof under the weaker assumption that there exists a point $x \in M^n$ where $k(x) \ge 3$ can be adapted from [2] using arguments similar to those given above.

References

- [1] M. MAGID, Lorentzian isoparametric hypersurfaces, Pacific J. Math. 118 (1985), 165-198.
- [2] K. NOMIZU, On hypersurfaces satisfying a certain condition on the curvature tensor, Tôhoku Math. J. 20 (1968), 46-59.
- [3] B. O'NEILL, Semi-Riemannian geometry with applications to relativity, Academic Press, London, 1983.
- [4] Z. SZABÓ, Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R = 0$, I, The local version, J. Differential Geometry 17 (1982), 531-582.

[5] H. WU, On the de Rham decomposition theorem, Illinois J. Math. 8 (1964), 291-311.

U.F.S.A.L. AND K.U.L. VRIJHEIDSLAAN 17 CELESTIJNENLAAN 200B 1080 BRUSSEL 3030 HEVERLEE (LEUVEN) BELGIË BELGIË