SEMI-SYMMETRIC LORENTZIAN HYPERSURFACES

Ignace Van de Woestijne and Leopold Verstraelen

Dedicated to Professor Dr. A. Lichnerowicz for his seventieth birthday
(Received January 28, 1986)

1. Introduction. Nomizu [2] classified semi-symmetric hypersurfaces in Euclidean spaces. In this paper, we shall give a classification of semisymmetric Lorentzian hypersurfaces in Minkowski spaces. We recall that a semi- or pseudo-Riemannian manifold M is said to be semi-symmetric, if it satisfies the condition $R \cdot R=0$, whereby R is the RiemmannChristoffel curvature tensor of M and where the first tensor acts on the second one as a derivation. Semi-symmetry is a proper generalization of local symmetry, and was first studied by Cartan and Lichnerowicz. Recently, a general study of semi-symmetric Riemannian manifolds was made by Szabó [4].

The main results of this paper can be stated as follows.
Theorem 1. Let M^{n} be a Lorentzian hypersurface of dimension n in a Minkowski space \boldsymbol{R}_{1}^{n+1}. Suppose that the type number $k(x)$ is $\geqq 3$ at a point x of M^{n}. Then M^{n} is semi-symmetric at x if and only if the shape operator A_{x} of M^{n} at x has the form

$$
A_{x}=\left[\begin{array}{c|c}
\lambda I_{k(x)} & 0 \tag{1}\\
\hline 0 & 0_{n-k(x)}
\end{array}\right], \quad \lambda \in \boldsymbol{R} \backslash\{0\}
$$

with respect to a suitable orthonormal frame of $T_{x} M^{n}$.
Theorem 2. Let M^{n} be a connected and complete Lorentzian hypersurface of dimension n in a Minkowski space \boldsymbol{R}_{1}^{n+1}. Suppose that the type number is $\geqq 3$ at least at one point of M^{n}. Then M^{n} is semisymmetric if and only if
(a) $M^{n}=S_{1}^{k} \times \boldsymbol{R}^{n-k}$
or
(b) $M^{n}=S^{k} \times \boldsymbol{R}_{1}^{n-k}$,
for some $k \geqq 3$. In case (a), S_{1}^{k} is a Lorentzian hypersphere in a Minkowski subspace \boldsymbol{R}_{1}^{k+1} of \boldsymbol{R}_{1}^{n+1} and \boldsymbol{R}^{n-k} is a Euclidean subspace of \boldsymbol{R}_{1}^{n+1} orthogonal to \boldsymbol{R}_{1}^{k+1}. In case (b), S^{k} is a hypersphere in a Euclidean
subspace \boldsymbol{R}^{k+1} of \boldsymbol{R}_{1}^{n+1} and \boldsymbol{R}_{1}^{n-k} is a Minkowski subspace of \boldsymbol{R}_{1}^{n+1} orthogonal to \boldsymbol{R}^{k+1}.
2. Basic formulae. Let M^{n} be an n-dimensional Lorentzian hypersurface in a Minkowski space \boldsymbol{R}_{1}^{n+1}. The natural Lorentz metric on \boldsymbol{R}_{1}^{n+1} with signature $(-,+, \cdots,+)$ and also the induced Lorentz metric on M^{n} will be denoted by \langle,$\rangle . The corresponding Levi Civita connection$ and Riemann-Christoffel curvature tensor of M^{n} will be denoted by ∇ and R, respectively. When D is the standard connection on \boldsymbol{R}_{1}^{n+1}, the second fundamental form h and the shape operator A with respect to a unit normal vector field ξ are defined by the formulas $D_{X} Y=\nabla_{X} Y+h(X, Y)$ and $D_{x} \xi=-A X$ of Gauss and Weingarten; X, Y, Z, W, V will always denote vector fields tangent to M^{n}. The rank of the shape operator A_{x} at a point x of M^{n} is called the type number $k(x)$ of M^{n} at x. The Gauss equation of M^{n} is given by

$$
\begin{equation*}
R(X, Y) Z=\langle A Y, Z\rangle A X-\langle A X, Z\rangle A Y \tag{2}
\end{equation*}
$$

M^{n} is said to be semi-symmetric if $R(X, Y) \cdot R=0$ for all X and Y, where the curvature operator $R(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}$ acts as a derivation on the tensor algebra at each point of M^{n}. Using (2) one may verify that

$$
\begin{align*}
(R(X, Y) \cdot R)(Z, W) V= & (\langle A Y, A Z\rangle\langle A W, V\rangle-\langle A Y, A W\rangle\langle A Z, V\rangle) A X \tag{3}\\
& -(\langle A X, A Z\rangle\langle A W, V\rangle-\langle A X, A W\rangle\langle A Z, V\rangle) A Y \\
& +\left(\langle A X, W\rangle\left\langle A^{2} Y, V\right\rangle-\langle A Y, W\rangle\left\langle A^{2} X, V\right\rangle\right. \\
& +\langle A W, A Y\rangle\langle A X, V\rangle-\langle A W, A X\rangle\langle A Y, V\rangle) A Z \\
& -\left(\langle A X, Z\rangle\left\langle A^{2} Y, V\right\rangle-\langle A Y, Z\rangle\left\langle A^{2} X, V\right\rangle\right. \\
& +\langle A Z, A Y\rangle\langle A X, V\rangle-\langle A Z, A X\rangle\langle A Y, V\rangle) A W \\
& +(\langle A Z, V\rangle\langle A Y, W\rangle-\langle A W, V\rangle\langle A Y, Z\rangle) A^{2} X \\
& -(\langle A Z, V\rangle\langle A X, W\rangle-\langle A W, V\rangle\langle A X, Z\rangle) A^{2} Y .
\end{align*}
$$

Since the metric \langle,$\rangle on M^{n}$ is of Lorentz type and A_{x} is a symmetric endomorphism of the tangent space $T_{x} M^{n}$ of M^{n} at x, with respect to suitably chosen frames for $T_{x} M$, the shape operator A_{x} has one of the following forms [1]:
(i) $\quad A_{x}=\left[\begin{array}{llllll}a_{1} & & & & 0 \\ & a_{2} & & & \\ & & & & \\ & & & & \\ & 0 & & & & \\ & & & & & \\ \end{array}\right]$;
(ii) $A_{x}=\left[\begin{array}{rrrrrr}a & b & & & & \\ -b & a & & & 0 \\ & & a_{3} & & & \\ & & & & & \\ 0 & & & & & \\ & & & & & a_{n}\end{array}\right], \quad(b \neq 0)$;
(iii) $A_{x}=\left[\begin{array}{lllllll}a & 0 & & & & \\ 1 & a & & & & 0 \\ & & a_{3} & & & \\ & & & & & & \\ & 0 & & & & \\ & & & & & a_{n}\end{array}\right]$;
(iv) $A_{x}=\left[\begin{array}{rrrrrr}a & 0 & 0 & & & \\ 0 & a & 1 & & & \\ -1 & 0 & a & & & \\ & & & a_{4} & & \\ & & & & & \\ 0 & & & & & a_{n}\end{array}\right]$.

In cases (i) and (ii), A_{x} is represented with respect to an orthonormal frame ($e_{1}, e_{2}, \cdots, e_{n}$); this means that $\left\langle e_{1}, e_{1}\right\rangle=-1,\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j},\left\langle e_{1}, e_{j}\right\rangle=$ 0 , ($2 \leqq i, j \leqq n$) (in later considerations we permit ourselves sometimes to change the ordering of these vectors). In cases (iii) and (iv), A_{x} is represented with respect to a pseudo-orthonormal frame ($u_{1}, u_{2}, \cdots, u_{n}$); this means that $\left\langle u_{1}, u_{1}\right\rangle=\left\langle u_{2}, u_{2}\right\rangle=\left\langle u_{1}, u_{i}\right\rangle=\left\langle u_{2}, u_{i}\right\rangle=0,\left\langle u_{1}, u_{2}\right\rangle=-1$, $\left\langle u_{i}, u_{j}\right\rangle=\delta_{i j},(3 \leqq i, j \leqq n)$.
3. Proof of Theorem 1. Let M^{n} be semi-symmetric, i.e., let

$$
\begin{equation*}
(R(X, Y) \cdot R)(Z, W) V=0, \tag{5}
\end{equation*}
$$

for all X, Y, Z, W, V. The proof of Theorem 1 will be devided into four parts, according to the four possible forms of A. It is always assumed that $k(x) \geqq 3$.
(I) Suppose that A_{x} is of the form (i). Putting $X=e_{i}, Y=e_{j}$, $Z=e_{i}, W=e_{k}$ and $V=e_{j}$, (i, j and k being mutually distinct), from (3) and (5) we find that

$$
a_{k} a_{i} a_{j}\left(a_{i}-a_{j}\right)=0 .
$$

Thus, by the assumption on the type number, all non-zero eigenvalues are the same, which yields formula (1).
(II) Suppose that A_{x} is of the form (ii). Then we have:

$$
\begin{aligned}
& A e_{j}=a_{j} e_{j}, \quad(j=3, \cdots, n), \\
& A e_{1}=a e_{1}-b e_{2} \\
& A e_{2}=b e_{1}+a e_{2}
\end{aligned}
$$

Putting $X=Z=e_{1}, Y=V=e_{j},(j=3, \cdots, n)$, from (3) and (5) we find that

$$
a_{j} b\left(a^{2}+b^{2}\right) e_{1}+\left(a^{2}+b^{2}\right) a_{j}\left(a_{j}-a\right)=0 .
$$

In particular, this implies that

$$
a_{j} b\left(a^{2}+b^{2}\right)=0,
$$

which in turn implies $a_{j}=0$ because $b \neq 0$. This, however, contradicts the assumption on the type number. Thus this case cannot occur.
(III) Suppose next that A_{x} is of the form (iii). Then, with respect to a pseudo-orthonormal frame ($u_{1}, u_{2}, \cdots, u_{n}$), we have:

$$
\begin{aligned}
& A u_{1}=a u_{1}+u_{2}, \\
& A u_{2}=a u_{2} \\
& A u_{j}=a_{j} u_{j}, \quad(j=3, \cdots, n) .
\end{aligned}
$$

Putting $X=Z=u_{1}, W=u_{2}, Y=V=u_{j},(j=3, \cdots, n)$, from (3) and (5) we find that

$$
a^{2} a_{j}=0
$$

In case $a \neq 0$, this implies that $a_{j}=0$ for all $j=3, \cdots, n$. This contradicts the assumption on the type number. So we may assume that $\mathrm{a} \neq 0$. Then, putting $X=Z=u_{1}, Y=V=u_{i}, W=u_{j},(i, j=3, \cdots, n$; $i \neq j$), from (3) and (5) we obtain:

$$
a_{i}^{2} a_{j}=0
$$

Thus, in this case, at most one of the numbers a_{3}, \cdots, a_{n} can be different from zero. This again contradicts the assumption on the type number. Consequently, also the form (iii) for the shape operator cannot occur.
(IV) Finally, suppose that A_{x} is of the form (iv). Then, with respect to a pseudo-orthonormal frame ($u_{1}, u_{2}, \cdots, u_{n}$), we have:

$$
\begin{aligned}
& A u_{1}=a u_{1}-u_{3} \\
& A u_{2}=a u_{2} \\
& A u_{3}=u_{2}+a u_{3} \\
& A u_{j}=a_{j} u_{j}, \quad(j=4, \cdots, n) .
\end{aligned}
$$

Putting $X=Z=u_{1}, W=V=u_{2}, Y=u_{3}$, from (3) and (5) it follows that $a=0$. Next, putting $X=Z=u_{1}, Y=V=u_{i}, W=u_{j},(i, j=4, \cdots, n$; $i \neq j$), from (3) and (5) it follows that

$$
a_{i} a_{j}=0
$$

Thus at most one of the numbers a_{4}, \cdots, a_{n} can be different from zero. Assuming, however, that $a_{4}=\cdots=a_{n-1}=0$, for instance, we find that also $a_{n}=0$ from (3) and (5), where we put $X=Z=u_{1}, Y=u_{3}, W=V=u_{n}$. Then, clearly rank $A_{x}=2$, which is a contradiction.

The converse statement of Theorem 1 , the fact that $R \cdot R=0$ when A_{x} is given by the expression (1), can readily be verified by a straightforward calculation.
4. Proof of Theorem 2. The main part of the proof of Theorem 2 can be taken over without any changes from Nomizu's classification of the semi-symmetric hypersurfaces of Euclidean spaces in [2].

First, we assume that the type number $k(x) \geqq 3$, everywhere on the Lorentzian hypersurface M^{n}. Without loss of generality, we may suppose that M^{n} is orientable and thus that there exists a unit normal vector field ξ defined on the entire hypersurface ([3, p. 189]); (in case that M^{n} is not orientable we can always work with the universal covering). From the fact that M^{n} is semi-symmetric, we know by Theorem 1 that the shape operator A of M^{n} corresponding to ξ is given by formula (1) for every point x of the hypersurface. Precisely as in [2], it then follows that the type number $k(x)$ is constant on M^{n}, say $k(x)=k$, and that the only eigenvalue $\lambda(x)$ of A_{x} which is non-zero defines a differentiable function λ on M^{n}. Next, we consider the distributions T_{0} and T_{1} which are defined by

$$
\begin{aligned}
& T_{0}(x)=\left\{X \in T_{x} M^{n} \mid A X=0\right\} \\
& T_{1}(x)=\left\{X \in T_{x} M^{n} \mid A X=\lambda(x) X\right\} .
\end{aligned}
$$

It is easy to see that both these distributions on M are differentiable and involutive, and that $T_{x} M^{n}=T_{0}(x) \oplus T_{1}(x)$ at each $x \in M^{n}$. Also, as in [2], we have the following result.

Lemma 1. If $Y \lambda=0$ for every $Y \in T_{0}, \nabla_{X} T_{0} \subset T_{0}$ and $\nabla_{X} T_{1} \subset T_{1}$ for every vector X which is tangent to M^{n}.

Further, by $M_{0}(x)$ and $M_{1}(x)$ we will denote the maximal integral submanifolds of M^{n} corresponding respectively to T_{0} and T_{1}, and which pass through the point x. We then have the following result.

Theorem 2a. (i) $M_{0}(x)$ is a complete totally geodesic submanifold
of M^{n}.
(ii) $\left.f\right|_{M_{0}}$, the restriction of the isometrical immersion f of M^{n} in \boldsymbol{R}_{1}^{n+1} to M_{0}, is an isometry of $M_{0}(x)$ to $\boldsymbol{R}^{n-k}(x)$ or to $\boldsymbol{R}_{1}^{n-k}(x)$.

Proof. (i) See [2].
(ii) It is clear that the second fundamental form h of $M_{0}(x)$ in R_{1}^{n+1} vanishes identically (for all X, Y tangent to $M_{0}(x)$, we have $h(X, Y)=$ $\langle Y, A X\rangle \xi)$, and so $M_{0}(x)$ is also a totally geodesic submanifold of the Minkowski space \boldsymbol{R}_{1}^{n+1}. Consequently, by the immersion f, every geodesic of $M_{0}(x)$ is mapped upon a straight line in \boldsymbol{R}_{1}^{n+1}. The restriction of the metric on M to $M_{0}(x)$ is either Euclidean or Lorentzian. Accordingly, by the completeness of $M_{0}(x)$, either $f\left(M_{0}(x)\right)=\boldsymbol{R}^{n-k}(x)$ or $f\left(M_{0}(x)\right)=\boldsymbol{R}_{1}^{n-k}(x)$. It follows that f is a covering map ([3, p. 202]), and so it is an isometry of $M_{0}(x)$ to $\boldsymbol{R}^{n-k}(x)$ or to $\boldsymbol{R}_{1}^{n-k}(x)$ respectively.

In the next theorem we will need the following.
Lemma 2. For every $Y \in T_{0}$, we have $Y \lambda=0$.
Proof. Following Theorem 2a, we have to consider two cases, according as $M_{0}(x)$ is isometric to a Euclidean space $\boldsymbol{R}^{n-k}(x)$ or to a Minkowski space $R_{1}^{n-k}(x)$. In the first case, the proof of this lemma can be carried over completely from [2]. We now give a proof for the second case. Let $\left\{y^{1}, \cdots, y^{k}, y^{k+1}, \cdots, y^{n}\right\}$ be a coordinate system in a neighbourhood U of M with origin x such that $\left\{\partial / \partial y^{1}, \cdots, \partial / \partial y^{k}\right\}$ and $\left\{\partial / \partial y^{k+1}, \cdots, \partial / \partial y^{n}\right\}$ are local frames for T_{1} and T_{0}, respectively, and such that the restriction of $\left\{y^{k+1}, \cdots, y^{n}\right\}$ to $M_{0}(x) \cap U$ is rectangular in the Lorentzian sense, i.e.,

$$
\left\langle\partial / \partial y^{\alpha}, \partial / \partial y^{\beta}\right\rangle=\varepsilon_{\alpha} \delta_{\alpha \beta},
$$

for $k+1 \leqq \alpha, \beta \leqq n$, where $\varepsilon_{r}=1$ for $\gamma=k+2, \cdots, n$ and $\varepsilon_{k+1}=-1$. Then, precisely as in [2], we find that $Y^{2}(1 / \lambda)=0$ for all $Y=\partial / \partial y^{\alpha}$. Consequently, λ is constant on all straight lines in $M_{0}(x)$ which pass through x and which are not lying on the null-cone through x. From this and the fact that λ is continuous on M^{n} (even differentiable), it follows that λ is a constant function on the whole of $M_{0}(x)$.

The proof of Theorem 2, under the assumption that the type number $k(x) \geqq 3$ at every point x of M^{n}, is completed by the following.

Theorem 2b. (i) $M_{1}(x)$ is a complete totally geodesic submanifold of M^{n}.
(ii) M^{n} is isometric with $M_{0} \times M_{1}$ for every point $m \in M^{n}$, where $M_{0}=M_{0}(m)$ and $M_{1}=M_{1}(m)$.
(iii) For every point $m \in M^{n}$, the spaces $f\left(M_{0}(m)\right)=\boldsymbol{R}^{n-k}(m)$, respec-
tively $f\left(M_{0}(m)\right)=\boldsymbol{R}_{1}^{n-k}(m)$, are parallel.
(iv) In case M_{0} is isometric to \boldsymbol{R}^{n-k}, the restriction $\left.f\right|_{M_{1}}$ of f to M_{1} is an isometry of M_{1} to $S_{1}^{k} \subset \boldsymbol{R}_{1}^{k+1}$, where \boldsymbol{R}_{1}^{k+1} is orthogonal to \boldsymbol{R}^{n-k} in \boldsymbol{R}_{1}^{n+1}.
(v) In case M_{0} is isometric to \boldsymbol{R}_{1}^{n-k}, the restriction $\left.f\right|_{M_{1}}$ of f to M_{1} is an isometry of M_{1} to $S^{k} \subset \boldsymbol{R}^{k+1}$, where \boldsymbol{R}^{k+1} is orthogonal to \boldsymbol{R}_{1}^{n-k} in \boldsymbol{R}_{1}^{n+1}.
(vi) $f=\left.f\right|_{M_{0}} \times\left. f\right|_{M_{1}}$, i.e., $f\left(m_{0}, m_{1}\right)=\left(\left.f\right|_{M_{0}}\left(m_{0}\right),\left.f\right|_{M_{1}}\left(m_{1}\right)\right)$ for every point $\left(m_{0}, m_{1}\right) \in M_{0} \times M_{1}=M$.

Proof. (i) See [2].
(ii) From Lemmas 1 and 2, it follows that both distributions T_{0} and T_{1} are parallel. Thus $T_{0}\left(M_{0}(m)\right)$ and $T_{0}\left(M_{1}(m)\right)$ are invariant under the action of the holonomy group of M^{n} at any point $m \in M^{n}$. Since, moreover, the restrictions of the metric on $T_{m} M^{n}$ to $T_{0}(m)$ and $T_{1}(m)$ are non-degenerate, by Wu's extension of de Rham's decomposition theorem to indefinite metrics [5], we can conclude that M^{n} is isometric to $M_{0} \times M_{1}$.
(iii) See [2].
(iv) We consider the function $x \mapsto \xi_{x}+\lambda f(x)$. Since $D_{f^{*} X}(\xi+\lambda f)=0$ for every vector X tangent to M_{1}, we obtain that $f\left(M_{1}\right)$ is part of a hypersphere S_{1}^{n} in R_{1}^{n+1} with radius $|1 / \lambda|$. Since $f\left(M_{1}\right)$ is orthogonal to $f\left(M_{0}\right)=R^{n-k}$ at each point and since these spaces R^{n-k} are all parallel, it follows that $f\left(M_{1}\right)$ is also contained in the linear subspace \boldsymbol{R}_{1}^{k+1} of \boldsymbol{R}_{1}^{n+1} which passes through $f(x)$ and which is orthogonal to \boldsymbol{R}^{n-k}. Consequently, $f\left(M_{1}\right)$ is a part of the sphere $S_{1}^{k}=S_{1}^{n} \cap \boldsymbol{R}_{1}^{k+1}$. Finally, since M_{1} is complete and f is a covering map, f is an isometry of M_{1} onto S_{1}^{k}.
(v) This proof is similar to the one in (iv).
(vi) See [2].

So far, we proved Theorem 2 under the assumption that the type number is greater than 2 at every point of the Lorentz hypersurface M^{n}. The proof under the weaker assumption that there exists a point $x \in M^{n}$ where $k(x) \geqq 3$ can be adapted from [2] using arguments similar to those given above.

References

[1] M. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. Math. 118 (1985), 165-198.
[2] K. Nomizu, On hypersurfaces satisfying a certain condition on the curvature tensor, Tôhoku Math. J. 20 (1968), 46-59.
[3] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, London, 1983.
[4] Z. Szabó, Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0$, I, The local version, J. Differential Geometry 17 (1982), 531-582.
[5] H. Wu, On the de Rham decomposition theorem, Illinois J. Math. 8 (1964), 291-311.
U.F.S.A.L.

Vrijheidslaan 17 1080 BruSSEL
Belgiè
and K.U.L.
Celestijnenlaan 200B 3030 Heverlee (Leuven) Belgiè

