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1. Introduction. Nomizu [2] classified semi-symmetric hypersurfaces
in Euclidean spaces. In this paper, we shall give a classification of semi-
symmetric Lorentzian hypersurfaces in Minkowski spaces. We recall that
a semi- or pseudo-Riemannian manifold M is said to be semi-symmetric,
if it satisfies the condition R R = 0, whereby R is the Riemmann-
Christoffel curvature tensor of M and where the first tensor acts on the
second one as a derivation. Semi-symmetry is a proper generalization of
local symmetry, and was first studied by Cartan and Lichnerowicz.
Recently, a general study of semi-symmetric Riemannian manifolds was
made by Szabό [4].

The main results of this paper can be stated as follows.

THEOREM 1. Let Mn be a Lorentzian hypersurface of dimension n
in a Minkowski space ΛΓ+1. Suppose that the type number k(x) is ^ 3
at a point x of Mn. Then Mn is semi-symmetric at x if and only if the
shape operator Ax of Mn at x has the form

(1) A. =
λ/4(., I 0

o \on_kM

with respect to a suitable orthonormal frame of TxM
n.

THEOREM 2. Let Mn be a connected and complete Lorentzian hyper-
surface of dimension n in a Minkowski space J??+1. Suppose that the
type number is 2̂ 3 at least at one point of Mn. Then Mn is semi-
symmetric if and only if

(a) Mn = SkxRn~k

or
(b) Mn^ SkxRΓk,

for some k ^ 3. In case (a), S? is a Lorentzian hyper sphere in a
Minkowski subspace Rk+1 of Rΐ+1 and Rn~k is a Euclidean subspace of
Rΐ+1 orthogonal to Rk+1. In case (b), Sk is a hypersphere in a Euclidean
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subspace Rk+1 of Rΐ+ι and RΓk is a Minkowski subspace of R"+1 orthogonal
to Rk+ι.

2. Basic formulae. Let Mn be an w-dimensional Lorentzian hyper-
surface in a Minkowski space JBΓ+1. The natural Lorentz metric on Rΐ+1

with signature (—, +, •••, +) and also the induced Lorentz metric on
Mn will be denoted by < , >. The corresponding Levi Civita connection
and Riemann-Christoffel curvature tensor of Mn will be denoted by V and
R, respectively. When D is the standard connection on Rΐ+1, the second
fundamental form h and the shape operator A with respect to a unit
normal vector field ς are defined by the formulas Dx Y = Vx Y + h(X, Y)
and Dxζ = —AX of Gauss and Weingarten; X, Y, Z, W, V will always
denote vector fields tangent to Mn. The rank of the shape operator Ax

at a point x of Mn is called the type number k(x) of Mn at x. The
Gauss equation of Mn is given by

(2) R(X, Y)Z= {AY,Z)AX- {AX, Z)AY.

Mn is said to be semi-symmetric if R(X, Y) R = 0 for all X and Y,
where the curvature operator R(X, Y) = VXVF — VFVX — V[jr>F] acts as a
derivation on the tensor algebra at each point of Mn. Using (2) one may
verify that

( 3 ) (R(X, Y) • R)(Z, W) V= ({A Y, AZ) {A W, V) - {A Y, A W) {AZ, V))AX

- ({AX, AZ){A W, V) - {AX, A W) {AZ, V))A Y

+ ({AX, W) {A2 Y, V) - {A Y, W) {A2X, V)

+ {AW, AY){AX, V)-{AW, AX){AY, V))AZ

-({AX, Z){A2Y, V)-{AY, Z){A2X, V)

+ {AZ, A Y){AX, V) - {AZ, AX){A Y, V))A W

+ ({AZ, V){A Y, W) - {A W, V){A Y, Z))A2X

- ({AZ, V){AX, W) - {AW, V){AX, Z))A2 Y.

Since the metric < , > on Mn is of Lorentz type and Ax is a symmetric
endomorphism of the tangent space TxM

n of Mn at x, with respect to
suitably chosen frames for TXM, the shape operator Ax has one of the
following forms [1]:

0
a,

( i ) A. =
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(π)

a b

— b a

α. , ΦΦO);

( 4 )

(iϋ) Ax =

(iv) Ax =

a 0

1 a

a*

0

a 0 0

0 a 1
1 0 α

α4

0

In cases (i) and (ii), Ax is represented with respect to an orthonormal
frame (el9 e2, , en); this means that (elf ex> = — 1 , <et, βy> = δii9 (e19 ed) =
0, (2 <^ i, j <Z, ri) (in later considerations we permit ourselves sometimes
to change the ordering of these vectors). In cases (iii) and (iv), Ax is
represented with respect to a pseudo-orthonormal frame (ulf u2,

 mm ,un);
this means that (ulf u^) = (u2, u2) = < χ̂, %<> = (u2, u^ = 0, <^x, M2> = — 1,

= δijf (3 ̂  i, j ^n).

3 Proof of Theorem 1. Let Mn be semi-symmetric, i.e., let

(5) {R{X,Y).R)(Z,W)V = 0,

for all X, Y, Z, W, V. The proof of Theorem 1 will be devided into four
parts, according to the four possible forms of A. It is always assumed
that k(x) ^ 3.

( I ) Suppose that Ax is of the form (i). Putting X — eiy Y = ej9

Z = ei9 W = ek and V = ejf (i, j and k being mutually distinct), from (3)
and (5) we find that

- a3) = 0 .
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Thus, by the assumption on the type number, all non-zero eigenvalues
are the same, which yields formula (1).

(II) Suppose that Ax is of the form (ii). Then we have:

Aed = afii , (j = 3, •••,%),

Aeλ — aeγ — be2 ,

Ae2 = bet + ae2 .

Putting X=Z = elf Y= V=ejf (j = 3, , ri), from (3) and (5) we find that

aόb{a2 + ¥)ex + (α2 + b2)aά{aό - a) = 0 .

In particular, this implies that

α, &(α2 + 62) = 0 ,

which in turn implies aά = 0 because 6 ^ 0 . This, however, contradicts
the assumption on the type number. Thus this case cannot occur.

(III) Suppose next that Ax is of the form (iii). Then, with respect
to a pseudo-orthonormal frame (ulf u2, •••, un), we have:

Aux = auγ + u2 ,

Au2 = au2 ,

AUJ = cίjUj , (j = 3, , n) .

Putting X = Z = %lf W = u2, Y=V= us, (j = 3, , w), from (3) and (5)
we find that

α2α, = 0 .

In case α Φ 0, this implies that aά = 0 for all j = 3, , w. This con-
tradicts the assumption on the type number. So we may assume that
a Φ 0. Then, putting X = Z = ulf Y— V = ui9 W — ujy (i, j — 3, , n;
iΦ j), from (3) and (5) we obtain:

α2α^ = 0 .

Thus, in this case, at most one of the numbers α3, , an can be different
from zero. This again contradicts the assumption on the type number.
Consequently, also the form (iii) for the shape operator cannot occur.

(IV) Finally, suppose that Ax is of the form (iv). Then, with respect
to a pseudo-orthonormal frame (u19 u29 •••, un)9 we have:

Au± = aUi — uz ,

Au2 = au2 ,

Aus = u2 + α^3 ,

Aus = a ά u ό , (ji = 4 , • • • , % ) .
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Putting X = Z = ulf W = V =u2, Y = u3, from (3) and (5) it follows that
a = 0. Next, putting X = Z = ulf Y =V — ui9 W = ujf (i, j = 4, , n;
iΦ j), from (3) and (5) it follows that

diCLj = 0 .

Thus at most one of the numbers α4, •••, an can be different from zero.
Assuming, however, that α4 = = an_γ = 0, for instance, we find that
also an = 0 from (3) and (5), where we put X = Z = uίf Y = u3, W— V = %n.
Then, clearly rank Ax = 2, which is a contradiction.

The converse statement of Theorem 1, the fact that R-R = 0 when Ax

is given by the expression (1), can readily be verified by a straightforward
calculation. •

4. Proof of Theorem 2. The main part of the proof of Theorem 2
can be taken over without any changes from Nomizu's classification of
the semi-symmetric hyper surf aces of Euclidean spaces in [2].

First, we assume that the type number k(x) ^ 3, everywhere on the
Lorentzian hypersurface Mn. Without loss of generality, we may suppose
that Mn is orientable and thus that there exists a unit normal vector
field ξ defined on the entire hypersurface ([3, p. 189]); (in case that Mn is
not orientable we can always work with the universal covering). From
the fact that Mn is semi-symmetric, we know by Theorem 1 that the
shape operator A of Mn corresponding to ζ is given by formula (1) for
every point x of the hypersurface. Precisely as in [2], it then follows
that the type number k(x) is constant on Mn, say k(x) = k, and that the
only eigenvalue X(x) of Ax which is non-zero defines a differentiate
function λ on Mn. Next, we consider the distributions To and Tλ which
are defined by

= {XeTxM
n\AX=0},

= {Xe TxM
n\AX = x(x)X} .

It is easy to see that both these distributions on M are differentiate and
involutive, and that TxM

n = T0(x) 0 T,(x) at each x e Mn. Also, as in [2],
we have the following result.

LEMMA 1. // Yx = 0 for every Ye To, VxT0aT0 and V ^ c ϊ 1 ! for
every vector X which is tangent to Mn.

Further, by M0(x) and Mx{x) we will denote the maximal integral
submanifolds of Mn corresponding respectively to To and Tlf and which
pass through the point x. We then have the following result.

THEOREM 2a. (i) MQ(x) is a complete totally geodesic submanifold
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Of M\
(ϋ) /|jfO> the restriction of the isometrical immersion f of Mn in

Rΐ+ι to Mo, is an isometry of MQ(x) to Rn~k(x) or to Rl~k(x).

PROOF, (i) See [2].

(ii) It is clear that the second fundamental form h of M0(x) in Rl+l

vanishes identically (for all X, Y tangent to M0(x), we have h(X, Y) =
<F, AX}ζ), and so M0(x) is also a totally geodesic submanifold of the
Minkowski space Rΐ+1. Consequently, by the immersion /, every geodesic
of MQ(x) is mapped upon a straight line in R?+1. The restriction of the
metric on M to M0(x) is either Euclidean or Lorentzian. Accordingly, by
the completeness of M0(x), either f(M0(x)) = Rn~k(x) or f(M0(x)) = RΓk(x).
It follows that / is a covering map ([3, p. 202]), and so it is an isometry
of M0(x) to Rn~k(x) or to KΓ\x) respectively. •

In the next theorem we will need the following.

LEMMA 2. For every Ye To, we have Yλ = 0.

PROOF. Following Theorem 2a, we have to consider two cases, ac-
cording as M0(x) is isometric to a Euclidean space Rn~k(x) or to a Minkowski
space Rl~k{x). In the first case, the proof of this lemma can be carried
over completely from [2]. We now give a proof for the second case.
Let {y1, , yk, yk+1, , yn) be a coordinate system in a neighbourhood
U of M with origin x such that {d/dy\ , d/dyk} and {d/dyk+\ , d/dy71}
are local frames for 2\ and T09 respectively, and such that the restriction
of {yk+1, -—,yn} to M0(x)Π U is rectangular in the Lorentzian sense, i.e.,

<3/dr, 3/3i/'> = ejaβ ,

for k + 1 ^ a, β ^ n, where εr = 1 for 7 — k + 2, , n and ek+1 = — 1.
Then, precisely as in [2], we find that F2(l/λ) = 0 for all Y = d/dy\
Consequently, λ is constant on all straight lines in M0(x) which pass
through x and which are not lying on the null-cone through x. From
this and the fact that λ is continuous on Mn (even differentiate), it
follows that λ is a constant function on the whole of M0(x). Π

The proof of Theorem 2, under the assumption that the type number
k(x) ^ 3 at every point x of Mn, is completed by the following.

THEOREM 2b. ( i) M^x) is a complete totally geodesic submanifold
of M\

(ii) Mn is isometric with MoxMλ for every point meMn, where
MQ = M0(m) and M1 = M^m).

(iii) For every point meMn, the spaces f(M0(m)) — Rn"\m)9 respec-
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tίvely f(M0(m)) = Rl~k{m), are parallel.
(iv) In case Mo is isometric to Rn~k, the restriction f\Ml off to Mλ is

an isometry of M1 to SkczRk+\ where Rk+1 is orthogonal to Rn~k in J?f+1.
(v) In case Mo is isometric to Rl~k, the restriction f\Ml of f to M1

is an isometry of M1 to SkaRk+1, where Rk+1 is orthogonal to Rl~k in
Rΐ+1.

(vi) / = /UoX/k, i.e., /(m0, mj = (/U0(m0), f\Ml(mΰ) for every point
(m0, mx) 6 Mo x M1 = M.

PROOF, (i) See [2].

(ii) From Lemmas 1 and 2, it follows that both distributions To and
Tj are parallel. Thus T0(M0(m)) and T^M^m)) are invariant under the
action of the holonomy group of Mn at any point m e Mn. Since, more-
over, the restrictions of the metric on TmMn to Γ0(m) and 7\(m) are
non-degenerate, by Wu's extension of de Rham's decomposition theorem
to indefinite metrics [5], we can conclude that Mn is isometric to MQXM^

(iii) See [2].
(iv) We consider the function x\-+ξx + Xf(x). Since Df*x(ξ + λ/) = 0

for every vector X tangent to Mlf we obtain that f(Mλ) is part of a
hypersphere Si in Rl+1 with radius |l/λ|. Since /(AfJ is orthogonal to
f(M0) = Rn~k at each point and since these spaces Rn~k are all parallel,
it follows that /(Mi) is also contained in the linear subspace Rk+1 of
Rι+1 which passes through fix) and which is orthogonal to Rn~k. Con-
sequently, /(Mi) is a part of the sphere Sk = S* Π Rk+1 Finally, since
Mi is complete and / is a covering map, / is an isometry of M1 onto S*.

(v) This proof is similar to the one in (iv).
(vi) See [2]. •

So far, we proved Theorem 2 under the assumption that the type
number is greater than 2 at every point of the Lorentz hypersurface
Mn. The proof under the weaker assumption that there exists a point
x e Mn where k(x) ^ 3 can be adapted from [2] using arguments similar
to those given above. •
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