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The purpose of this article is to discuss the existence of almost
periodic solutions of a system of almost periodic integrodifferential
equations

k t
(E) fi;i(t) = hz(xz(t)){bz(t) - a’ii(t)xi(t) - ggf aii(t) S_ Kij(t - u)Gt(xg(u))du} ’
g1

i=1,2 -k,

which describes a model of the dynamics of a k-species system in
mathematical ecology when h,(s) = G;(s) =s. When h,(s) = G,(s) = s and
a;;(t), b,(t) are w-periodic, Gopalsamy [2] has recently discussed the
existence of w-periodic solutions of System (F) under some conditions.
In order to obtain an w-periodic solution of System (E), he has investigat-
ed the existence of w-periodic solutions of another system

(E) £(8) = ha b — aulDe )

- é&“w“) ‘ S Kt — u + rw)Gxxxu))du} ,

1=1,2, -+, k,

instead of the original system (&), because any w-periodic solution of
System (E) is also an w-periodic solution of System (X,) and vice versa.
As easily seen, however, we cannot directly employ Gopalsamy’s idea
when System (F) is almost periodic.. In this article, we shall investigate
some stability properties of a solution of System (), and consequently
obtain an almost periodic solution of System (E). We emphasize that
our result contains Theorem 2.1 in [2] as a special case.

In what follows, we denote by R* the k-dimensional real Euclidean
space and by |x| the norm of xze€ R*. Throughout this paper, we suppose
that the functions h,, b, a,;, K;; and G, in System (E) are real-valued
continuous functions on R:= R' and that the following conditions are
satisfied:
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(H1) a,; and b, are almost periodic functions, and inf,. a,;(t) > 0 and
inf,.z0,(t) >0 for 4,5 =1, «+--, k;

(H2) h(s) >0 for s >0, h,(0) =0 and h,(s) is Lipschitz continuous
insfori=1, -+, k;

(H3) K,; is nonnegative, S K,(s)ds =1 and S sK,i(s)ds < « for

1] 0

i’j:]-y ""k, i:;/:J;

(H4) G(¢) is nondecreasing in ¢, Gi(t) = 0 for t = 0 and there exists
a constant N > 0 satisfying |G,(t) — G«(s)] < N|t — s| for all ¢, se€ R and
alli=1, ---, k;

(HB) B> 3 a5Gbifal) for =1, .- k;

J#1
where
bl = inf b,(t) , b} = sup b;(t)
teR teR

aj; = tme a;t), afy= sup a,;(t) , 1, i=1 k.

Let BC be the set of all bounded continuous functions from (— <o, 0]
into R* and set ||¢|| = sup,<|¢(s)| for € BC. From (H1)-(H4) it follows
that for any (¢, ¢) € RXBC there is a unique (local) solution =x(f) =
(2, (t), +++, 2,(t)) of System (&) through (¢, ¢), which is continuable to
t = o if it remains bounded (cf. [1]). For each 7 we set

k

a2} = b¥al, and =z, = mm{m;“, [bi — _Z;a;‘,-G,.(x;?)]/a;‘,-} .
=
g#i

From (H1) and (H5), «} and x,, are positive numbers for each 7. We
can prove the following lemma by repeating almost the same argument
as in [2, p. 325].

LEMMA 1. Let ¢ = (¢, ***, ¢) € BC satisfy ., < ¢,8) < xF for all
sZ0 and all 1=1, -+, k, and let x(t) = (x,(t), + -+, x,(t)) be the solution
of System (E) through (t, ¢). Then x,, = x,(t) = xF for all t = &, and all
i=1, k. ’

We denote by S(E) the set of all solutions x(¢) = (w,(t), - -, x,(¢)) of
System (E) on R satisfying x,;, < 2,(t) < zf forallteRandalli=1, ---, k.
Then we have:

LemMMA 2. SE) + @.

Proor. By (H1) there exists a sequence {t,}, t, > < as n — o, such
that b,(t + t,) — b,(¢) and a,(t + t,) — a,;(t) as n — o uniformly on R.
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Let x(t) be a solution of System (&) through (¢, ¢) € RXBC satisfying
T =w,t) <z} for all £=¢, and all 1=1, ---, k, whose existence was ensured
by Lemma 1. Clearly, the sequence {x(¢t + ¢,)} is uniformly bounded and
equicontinuous on each bounded subset of R. Therefore, by Ascoli’s
theorem and diagonalization procedure we may assume that the sequence
{x(t + t,)} converges to a continuous function p(t) = (p,(t), - -+, p:(t)) as
n — oo uniformly on each bounded subset of R. Let a € R be given.
We may assume that ¢, + 7 = ¢, for all n. For ¢ = 0, we have

x(t + t, +7) — 2, + 7)
(1) = [tants + t){puts + £ = auls + tdats + 1)

k 1]

— 2 (s + t,) S_ Kj(—v)G(x;(v + s + tn))dv}]ds .
Note that K, ;(—v)G,(x;(v + s + t,)) = K;;(—v)G(p;(v + 8)) as n—  and
that K (—v)G(x;(v + s + 1) = K (—v)G((|g]l + «F) for v =0 and se
[z, t + z]. Then, by (H3) and Lebesgue’s dominated convergence theorem,
we obtain

[ Ki—0G@ @ + s+ tido— | Ki(—0)Gupio + )iv

as n — o for each s€(z,t + r]. Moreover, from (HS3),

0

| =06, + 5 + t)do| < Gllgl + o).

Applying Lebesgue’s dominated convergence theorem again, and letting
n — o in (1), we have

pit +0) = 0 = | [R@EN{BO - auopi®

— 5046 | Ku(—0Go,w + s)dv} Jas

i

B S:H[h‘(pi(s)){bt(s) — a,(8)P(s)
_ Ji:lau'(S) S:w K (s — %)Gz(pj(u))du}:\ds

for all t =0 and all 4=1,-.., k. Since r € R is arbitrarily given, p(¢) =
(py(t)y +++, pi(t)) is a solution of System (F) on R. It is clear that z,, <

p;t) S af for all teR and all ¢ =1, ---, k. Thus peS(E). q.e.d.

By repeating almost the same argument as in the proof of Lemma 2,
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we also conclude:

LEMMA 3. Let a peS(E) and a sequence {t,}, t, =0, be given. If

(2)  a,t +t,) > Tyt and bt +t,) — b(t) as n— o uniformly on R
Sforall i,5=1, «-+, k, and

(3) p(t + t,) — D(t) as n — o uniformly on each bounded subset of R
for some functions @, b, and D, then DeS(E), where S(E) denotes the

set of all solutions y(t) = (y.(t), - -, ¥.(t)) of the system

t
—0c0

B 3 = R0 — au0u® - Ra0| Kt — 06w},

1=12, .-k,

on R satisfying ., < ¥,(&) < xf forallteRand all 1 =1, -+, k. (Hence-
forth, we denote (P, E) e Q(p, E) when (2) and (3) hold.)

Next, for any ¢, 4 € BC we set
On(gy ¥) = sUD l6(s) — $(s)l,

06, %) = 3, 0u(6 W2 + 0uly W] -

Clearly, 0(¢,, 9) =0 as n — o if and only if ¢,(s) — ¢(s) as n — co uni-
formly on each bounded subset of (— o, 0]. For any function z: R — R*
and any t€ R, we define a function x*: (— o0, 0] > R* by 2'(s) = x(t + s)
for s < 0.

DEFINITION 1. A function p € S(E) is said to be relatively uniformly
stable in Q(F) (RUS in Q(&), for short) if for any ¢ > 0 there exists a
d(e) > 0 with the property that for any ¢, =0, any (p, E)eQ(p, E) and
any z € S(K) satisfying o(p%, z') < d(¢) we have o(p, z%) < ¢ for all ¢ = t,.

DEFINITION 2. A function peS(E) is said to be relatively weakly
uniformly asymptotically stable in 2(F) (RWUAS in Q(F), for short) if
p is RUS in 2(E), and if p(7%, 7") —0 as t— c for all (p, £)eQ(p, E)
and all zZe S(E).

DEFINITION 3. A function pe S(¥) is said to be relatively totally
stable for (E) (RTS for (E), for short) if for any ¢ > 0 there exists a
0(e) >0 with the property that if ¢ =0, o(x®, p) < d(¢) and g(t) =
(9.(t), -+, 9,(t)): R — R* is any continuous function satisfying sup,.z|g9(t)| <
o(e), then we have p(x?, p*) < ¢ for all ¢ = t,, where « is any solution of

the system
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(B)  6) = @b — auet)

k t
= Sau®) | Kt — w6 e,a)iu) + 0.0,
G#i
1= 1, .-,k ’
on R satisfying z,, < x,(t) < zf forall teRand all =1, ---, k.
LemMMA 4. If peS(E) is RWUAS in Q(FE), then it is RTS for (E).
Proor. We give the proof for completeness, although it is essentially
the same as the one for [3, Theorem] (cf. [4, Proposition 4.1]). Suppose
the contrary. Then there exist an ¢ > 0, sequences {¢,}, 0 <e¢, <e and
e,—0 as n— oo, {s,}, {t.}, t.=3s,=0, {g,} and {«"} such that g,: R — R*
is a continuous function satisfying sup,.z|9.(t)] < &, and that
(4) o, (")) < &, , p(p', (x")'») = ¢ and
(@', (")) <e on [s,t,),
where 2" is a solution of (%,) on R satisfying z,, < (2"),(¢) < 2} on R for

all ¢ =1, ..., k. Furthermore, by (4) we can choose a sequence {r,},
s, <7, <t, so that

(5) p(p™, (")) = d(e/2)/2

and

(6) o(e/2)/2 = p(p', (@")) = ¢ on [c, t.],

where §(+) is the number given in Definition 1. We may assume that
p(t, +t) — D(t) as m — o on each bounded subset of R for a continuous
function 7 and that (p, E)e 2(p, E). Moreover, we may assume that
27, +t) > 2(t) as n — o uniformly on any bounded subset of R for a
continuous funection z, since the sequence {x"(z, + t)} is uniformly bounded
and equicontinuous on R. Then, the same argument as in the proof of
Lemma 2 shows that Z € S(#). Now, suppose that ¢, — 7, — o as n — oo,
Letting n» — « in (6) we have §(¢/2)/2 < p(p*, 7") < e for all t=0. On
the other hand, p(?% z*) —0 as t — o, since p is RWUAS in 2(E). This
is a contradiction. Thus, ¢, — 7, -~ >~ as n — . Taking a subsequence
if necessary, we may assume t, — 7, > 1 < o as m — oo. Letting n—
in (6), we obtain p(?’, 2°) = 8(¢/2)/2 < 6(¢/2), and hence p(P% 7*) < €/2 for
all ¢ = 0, because p is RUS in Q(F). On the other hand, from (4) we
have o(p", Z") = ¢, which is a contradiction. This completes the proof.

Now, our main result on the existence of an almost periodic solution
of System (E) is the following:
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THEOREM. In addition to (H1)-(H5), suppose that

(H6) there exists a positive constant M such that

k
¢, >N-Sas+M forall i=1,---,k
Pt
(here, N s the number in (H4)). Then System (E) has a unique almost

periodic solution q(t) in S(E). Moreover, the module of q(t) is contained
in the module of {a;(t), b(t); 1,57 =1, -+, k}.

ProOF. Let p be an element in S(E). First of all, we shall prove
that p is RTS for (F). By Lemma 4 it suffices to show that p is
RWUAS in 2(F). For arbitrary (B, E)c2(p, E) and z ¢ S(E), let

(1) o)) = Vit, 5(), () = 3| IH@®) — HGE@)

+3[ K[| auts + wIGE @) - GG w)ldulds ],

=1
#1

-,

where

Hs):= S du/hu) .

Tk
Note that the integrand in (7) converges by (H3) and that v(t) is continu-
ous in . An easy computation shows that

(8)  D'w(®) S 3 {-au 0B — 20| + N- X sz — 50}

< — M35 — 50| <0
by (HS8), (H4) and (H6). Hence we have

o(t) — v(0) < —M - i So B(s) — Z(s)|ds for £=0.

Consequently S, | IBis) — Z9) ds < w0, hence ShIB(t) — Z(H) 0 as
t — oo, since the function X% |D,(t) — Z,(t)] is uniformly continuous on
[0, ). Thus p(p?‘, z')—>0 as t— . Moreover, from (7) and (8) it
follows that

k

(9) 2 [ Hy(p(t) — HiZ ()] = v(t) = v(to)

i=1

< [ 1H@@) — HEw) + N- S aser | sKo)ds

F#



ALMOST PERIODIC SOLUTIONS it

k oo
+N-Xai- S sK,(s)ds- sup [p;u)— 29’(“)[]
j=1 0 0

ty—Lsust
Tl 0

for all t =t, =0 and all L = 0. For each ¢ > 0 we set
k
10)  3(e) = inf {3 H(m) — Hl: lo — 4l = ¢ and 2., < 2,

Yy, < xf for all 7 =1, ---,k} .

Clearly, 6(¢) > 0 by (H2). We select a number L > 0 so large that
k k o
PRI S sK.(s)ds < 5()/(2N) ,

i=1 j=1
j#t

which is possible by (H3). Moreover, we select a () € (0, &) so that

> (IO — By + N- S at | sKoo)ds - sup_ Iow) — y(wl

i=1

<d(e)/2,

whenever 0(g, ¥r) < d(¢). Hence, if o(p%, %) < (), we have
S @0 — HE) < 36

by (9), and consequently, |p(t) — z(t)] < e for all ¢t = ¢, by (10). Thus, if
p(B%, %) < d(c), then

o3, 7) < 3 (00", ) + 9)/[2° + 0,(B", 7) + o)]

< 3 27{0,(B% Z9NIL + 0,(5% 2] + &/(L + o)}
<o) +e< 2

for all t = ¢t,, Note that the number §(:) is independent of the particular
choice of P, 7€ S(E). Therefore, each pe S(E) is RWUAS in Q(E).

Next, we shall prove that each pe S(E) is asymptotically almost
periodic. Let {¢,} be any sequence satisfying ¢, — « as n — . We may
assume that the sequence {p(t + ¢,)}>=, is uniformly convergent on each
bounded subset of R and that the sequences {a,;(t + )}, and {b,(¢t + t.)}-,
are uniformly convergent on R. Set p™(t) = p(t + ¢,), t€ R, for each
positive integer m. Clearly, p™ is a solution of the system

(B (t) = hiad) bt + ta) — ault + t)add)



78 S. MURAKAMI
k
— St + t) S’ Kyt — u)Gi(xj(u))du} =1, ek,
iz —e

J#i

on R and it is RTS for System (E™) with the common number §(-), since
p is RTS for (E) with the number §(.). For any positive integers m and
n, we define a continuous function g¢,,: R — R* by ¢n.(t) = (@mu(t), ***,
Imni(t)), Where

gmni(t) = hi<pi(t + tn))[bi(t + tn) - bi(t + tm) - (aii(t +tn) - aii(t + tm))pi(t + tn)
= Saut + 1) — agt + t} | Kt — wGipu + t)du ],

FESA

fori=1, .--, k. Now, for any ¢ > 0 there exists a positive integer n,(¢)
such that sup,cz|9..(t)| < 8(¢) and p((p™)°, (P™)°) < 8(¢) if m, n = ny(e). Then,
the fact that p™ is RTS for (E™) implies that p((p™), (»")") < ¢ for all
t =0 if m, n = nye), since p™ is a solution of System (E; ) on R and
Ty = (p")(t) = xF for all teR and all 2=1, ---, k. Thus the sequence
{p(t + t)}, is uniformly convergent on [0, ), which shows that p(t)
is asymptotically almost periodic, that is, p(¢) is the sum of an almost
periodic function ¢(¢) and a continuous function »(t) defined on R such
that p(t) = q(t) + r(t), te R, and r(t) — 0 as t — « (see [6]).

Finally, we shall show that q(¢) is a unique almost periodic solution
in S(E). We choose a sequence {s,}, s,— o as 7 — o, such that
qt + s,) — q@), a;;(t + s,) — a;;(t) and b,(t + s,) — b,(t) as n — o uniformly
on R. Then, ¢qeS(F) by Lemma 3. Let § be another almost periodic
solution in S(E). Since qe S(E) is RWUAS in 2(F), as was shown in
the first paragraph of the proof of the theorem, we obtain o(¢% ¢*) — 0
as t — o and hence |q(t) — §(t)] >0 as t — . Hence q(t) = §(t) on R,
because ¢ and § are almost periodic. Thus, System () has q(f) as a
unique almost periodic solution in S(E). The assertion on the module of
q(t) can be proved by standard argument (see, for instance, [5, Lemma
5.1]).

As an immediate consequence of our theorem, we obtain the following
result, which was proved by Gopalsamy in [2, Theorem 2.1] when &,(s) =
G,(s) = s.

COROLLARY. Under the assumptions (H1)-(H6), suppose that a.;(t)
and b(t) are w-periodic for all 1,7 =1, .-+, k. Then System (E) has a
unique w-periodic solution in S(K).
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