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LUSIN FUNCTIONS ON PRODUCT SPACES
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1. Introduction. In [1] and [2], Calderon and Torchinsky introduced
the parabolic H* spaces associated with a group of linear transformations
of R* and obtained analogues of some results of Fefferman-Stein [8] in
this context. Later Gundy-Stein [11] extended some of the results of [8]
to the product spaces. (See also Gundy [10], M. P. and P. Malliavin [13].)
On the other hand, it seems likely that some parts of the theory of
Calderon-Torchinsky [1], [2] also extend to the product spaces. In fact,
in the present note we prove the equivalence with respect to the L*-
“norms” of the Lusin functions and the nontangential maximal functions
arising from certain two-parameter families of linear transformations of
R X R™ (see Theorem 1 and the corollary in §3), which is an extension
to the product spaces of a special case of a result of [1] and also is a
generalization of a result of Gundy-Stein [11]. Combined with the argu-
ment of Fefferman-Stein [9], this enables us to extend Fefferman’s weak

type estimates (see [7]) to the case of the double singular integrals with
mixed homogeneity (see Theorem 3 in § 3).

2. Preliminaries.

2.1. Let xeR* (n=2). We write z = (zV, 2%), where 2% ¢ R™,
¥ eR™ (ny,m, =1, ny+n,=n) and 2% = (@, ---,2¥) (1=1,2). If
XeRm' x R, we write X = (&%, t;; 2%, t,); P e R™, t,e R. (We often
write, for example, “x* e R™” instead of “x® e R™ and z® e R™’ for
simplicity. This abbreviation will be used throughout.) We also write
(2, t; 2%, t,) = (x, t), where © = (&%, 2®), t = (¢, t,).

Set R = {(x?, t,)e R"*: ¢, >0} (1 =1,2) and D = R X R%2*.

2.2. Let P, be a linear transformation of R™ such that (Px®, 2) =
(x?, ) for all x“e R™, where (x"%, y”) denotes the ordinary inner
product in R". We consider a group A{ =1t* (0 <¢, < ) of linear
transformations of R™.

For x2 € R* — {0}, let us denote by p“(x*) the unique ¢, such that
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|A9 7% | = 1, where [2] = (&, )2, and we define p(0) = 0. p“*is
defined similarly in terms of A{*, where A{* is the transposed trans-
formation of A{.

2.3. Let f* and f® be functions defined on R™ and R, respectively.
We define a function f* xf® on R" by

(f(l) xf(2))(x(1)’ x(z)) — f(l)(x(l))f(Z)(xQ)) .
An operator T{? (¢, > 0) is defined by
Tt(i)f(i)(w(i)) — f(i)(Aét)x(i))
i T ¢
We set
FE@?) = 6T O)0) = 67 OAL )
where 7, = trace P,,
Set
A(tl,iz)(x(l)’ x(Z)) - (At(;)x(l), A}:)x(Z)) ,
Al p(EY, £9) = (AR*e™, AP*e™) .
If f is a function on R", an operator T, is defined by
T.f(x) = f(Ax) .
We set
fi@) = 7ty (T f ) (@) = 7t 2f(AL e, AR 'e®) .
2.4. There is a unique strictly positive self-adjoint transformation
B, of R™ such that P,B, + B,P¥ = I,, where I, is the identity transfor-

mation of R™.
Let G be the inverse Fourier transform of the function

exp(—4m*(B£", £)). (If f9 e LR") (j = 1, 2), the Fourier transform of
f9 is defined by f(j)(&(j)) - Sf(j)(x(j))e—2xi(z(i),e(j))dx(j).> Set G = GV x G,
G9P = (PGV) X (0PG™), where 8y = 9/ox (=1, ++-, m)).
2.5. If a,> 0, set
Ir'P@®) = {(y"®, t,) e Ryt 09" — y) < a;t},
and for a = (a,, a,) set
Ty@) = TH@)XTHE@®) = {(y™, t; ¥, t): @, t) e T (=1, 2)}

If F* is a function on R%*', we define the nontangential maximal
function by

NG (F ) @) = sup{|F'“(y*, t)|: (¥, t) € &} (=)}
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and the Lusin function by

SEFENE) = (], 0, | FOW, o1ty L)

(@) (4 (i
a; (=) :

For a function F' on D, we define the nontangential maximal}func-
tion by

No(F)(@) = sup{| F(y, O)|: (¥, t) € [ ()} ,
and the Lusin function by

1/2
saw) = (| 17w, nrentray )",
Igl2) t.t,
Let ' =1, I'yy=1I, N =N® §# =89 N,,=Nand S,,, =S.
For more details about 2.2, 2.3, 2.4 and 2.5 see [1].

2.6. S(R™ denotes the Schwartz class of infinitely differentiable
and rapidly decreasing functions on R™. Let

FR™) = {f € S(R™): f10) = 0},
FA(R™) = {f e S(R™): f(0) =1} .
S'(R™) denotes the set of tempered distributions in R™. /(R™)

denotes the set of tempered distributions f such that A& + |g®)~*e
L*(R™) for sufficiently large k.

27. If E is a set, X; denotes its characteristic function and (E
denotes its complement.

The letter ¢ is used to denote a constant which need not be the same
at each occurrence.

3. Statement of results. Let fe. %' (R") and set F(x, t) = f * G,(x)
(cf. 2.3, 2.4), where the symbol * denotes the operation of convolution.
We say that feH] ., (0 <p< ) if N(F)eL?(R") and set |[fllzz =
| N(F)|,, where ||-]|, denotes the L*-norm.

It is easy to see that H ,, coincides with L? if p > 1 and H?, (0 <
p < ) is independent of P..

Certain H? ,, spaces are characterized in terms of the Lusin functions
as we show in Theorem 1 and Corollary below.

THEOREM 1. Let ¢% € (R™) and ¥ € SAR™) (=1, -+, 1). Sup-
pose that

!
supzi, 11}?)(‘45)*5(“” >0 ’bf E(i) =0 .

;>0 j=1

Set ¢ = ¢V x¢®, 9P =Y x P, and F(w, t) = f * g,(x), Kulx, t) = f *
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PP (@) for fe FARY). Then if 1<p<2 or if 0<p=1and P, is
diagonal, we have

INE), S ¢ 3 3 1SEsl,

REMARK. This result also holds when p = 2 and f e L? by a duality
argument and the results below.
THEOREM 2. If fe A (R, set F(x,t) = f = G(x) and K;(x, t) = f *
G{i¥(x). Then
ny  mg 1/2
Hx: S((Z S EL) )@ > 1H <c| wEAvyas,
where the symbol N denotes the operation of taking the minimum.
We will prove this by the idea of [11] and [13].
COROLLARY. Let ¢ € FA(R™) and 9 e FH(R™). Set ¢ = ¢" xg?,
P =P xP?, and F(x,t) = f*¢,x), K@, t)=f*px) for feF'(R.
Then
ISE) N, el NF)l, 0<p<2).
This follows immediately from Theorem 2 and Lemmas 4 and 5 in
§4 (See [1, Lemma 3.3]).
REMARK. The corollary also holds when p = 2 as a consequence of
the theory of singular integrals.
We give an application of the above results. Let K ¢ C*(R" — {0})
be such that

SI . K(i)(x(i))(Pix(t), x(i))do.(x(i)) — 0 ,
KP(APx®) = t;1iK® (™) for all ¢, >0,
where do(x"”) is the area element of S™™! = {&®:|2"| = 1}. (See [6], [14].)

Set
K,

€162

@@, 2®) = TI K¥@™)(A — Xyl 0¥ @) for e, >0.

i=1,2

THEOREM 3. Suppose P, is diagonal. Let A and B be compact sets
wm R If f is a function on R" wvanishing outside B and if

SBlfllog(2 + | f)de < oo, then we have
fwed: sup |+ K@ > 1 sc| |fllog +|Ddz.

This is a generalization of the weak type estimates of [7].
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4, Lemmas. In this section, we give several lemmas, which will be
used in the proof of Theorem 1. We prove Lemmas 1, 2 and 4 in later
sections.

Let u{®(s;) =s; (s,>0) and let u{(s;) (j=2, ---,m;) be positive
increasing functions. Set
F't —_ {é(i): Igz(i)[ é uéi)(é{i))’ cen, 157(:;)’ § u:&?(sfﬂ)’ EJ(.“ > O}
and
Fo — [uxl-vz — {(S(x)’ 5(2)): E(x) eri’ 5(2) €F2} .

LEMMA 1. There is 0¥ € S(R™) such that if we denote by ®,,,,(x)
the function:

I Ui (8:) + o us(8)0V (ui¥ (s )al?, -+, uP(s)wd)

2

then
”,5};?0 [f* @, 4l = el fll,

(0 < p < o) for all feLXR") with f vanishing outside I',.
This is an analogue of Coifman-Dahlberg [4, Theorem I]. (See also
Carleson [3] and Coifman-Weiss [5, p. 585].)
Let {w{#:5 =1, +-+, 2n,} be a C=-partition of unity on R" — {0} such
that
CI{EU): a);.i)(s(i)) :’é O, IE(i)l — l}C{S(i): ;_‘L) > 0’ ls(i)l — 1}
Cl{s(i): wr(tti)+j(5(i)) ._.'21___01 ls(i)[ — I}C{E(i>: ;.t) < 0, !E(i)[ —_ 1}
for j =1, .-+, n, (where for a set E, Cl E denotes its closure) and such
that @ (£”) = @ (A#*e") for all t, > 0. Define an operator T;, by
(Tf) @) = 0P ) E*)fE)
for f e L*R".

LEMMA 2. Let 4% € F(R™) and set ¢ = ¢ x¢®. Suppose that P, is
diagonal. Then

2n; 2n

Isup |f * gulll, < ¢ 3% 3% 1 Tf I »
Jor 0 < p < oo,

This is a consequence of Lemma 1.
Let W be a measurable subset of R™ and w be a positive function
on W. Let ¢ e FA(R™) and ™ € &4(R™) and suppose

§up l"’/}(l)(Aéi)*S(l))I > 0 if Eu) #0 .
1>0
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If f is a function on R"XW = {(z®, w): " € R, w e W} such that
S | f@", w) fow)dedw < oo,
R “xw

then we set

Fy®, 5 w) = [ o0 — 20", widz?,

K(y(l), t1; w) — S"/"g)(ym — z(l))f(z(l), ,w)dz(l) .

LeEMMA 3. Set
1/2
Flaw® ) = (| 1F@®, 5 0)row)do)”,

K |p(y™, t) = (SW | K(y®, t,; w)l%v(w)dw)l/2 .

Then we have
INY(UF )l = el SY(K W), 0<p<2).

This is a vector-valued analogue of Calderdn-Torchinsky [1, Theorem
6.9] and can be proved along the same line.

LEMMA 4. Let fe (R, % e F(R™) and let ¥ be the same as
in Theorem 1. Set L(z, t) = f * n,(®) ) = W xn?), K;(, t) = [ * 4% (x).
Then if 0 < p <2, we have

1SUL), = ¢ 5 1K, -

If F' is a function on D, we set
F*(x) = sup | F(x, t)| .
t

LEMMA 5. Let fe ' (R") and ¢, ¥ e FA(R™). Set ¢ = ¢"x¢"?,
P = PP XPp® and F(x, t) = f * ¢(x), H(x, t) = f *p(x). Then

”Na(H)Hp SCHF-‘_HP Jor 0<p< oo,

The arguments of [1] and [8] also apply to the proof of Lemma 5.
Let » = Ay M) Ay A, > 0. If F is a function on D, we set

. . p(i)(x(i) _ y(i)) —22; -1y it—- 1/2
G =[], 17w, o I {(1 + 2= a7

LEMMA 6. Let fe HU(R"), ¢ e AR™), 1% eFARY) and let ¢ =
$Ux9?, n=9"x9?, §=¢f). If keL™(R"), define Tf by (If)" =kf
and b by hY(E) = N(k(AFe). Set F(x,t) = f * ¢(x) and H(w, 1) = Tf *
V().  Suppose that 19(w) = bV (@) [l + pP@@OD* (n > 0) € LX(R™)
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and sup, |17, < . Then if = (ft, ), M= Ay M) and ft, — N > 7,/2,
Mo — Ny > 7o/2, we have

G.(H) < oGy(F) .

The proof of Lemma 6 is similar to that of Theorem 5.3 of [1], and
is omitted.

5. Proof of Lemma 1. Let ¢ S(R") be such that
A 1 if |1 =1/2
e = {o it lgl=1.

Define @9 € S#(R™) by
A~ = (1) (1)
QO (®Y = Bzt ‘<£z_) ‘<_ﬂ_)
() = ded(L-) - 3%
and let @, , be the same as in the statement of Lemma 1.

Suppose that f e L*R") and f vanishes outside I',. Then note that

5.1) (W) 0 = d@f0

1

The proof of Lemma 1 is based on the observation (5.1) and the
following lemma.

LEMMA 7. Let f € L*(R? and suppose that supp fCF* = {(Yy ¥) € R*:
Y, 20,9, =0}, Then of feL?(R?) (0<p< ), it follows that f € H?,

and B
| fllzz, = cll fllzocme -

1,1 =

(This can be proved by the argument of Stein-Weiss [17, pp. 116-117]
and the theory of Fefferman-Stein [8].)

Set F, () =f*®, (). If 2% = (2f,2"), 2® = (2, x®’) and if
we consider F, ,, and f as functions of (2{", 2{*), fixing 2’ and x®’, then
we write

F, @@, % 2@, 29) = F, (@@, 2), fla®, 225 2@, 2®) = fz®, 2?) .
When S | F,,o,(®)|Pde < oo, by Lemma 7 we have for almost every z*"
and 2®’
(5.2) I Sugoi(sﬁalxsﬁsz) * Flllzowny < el| Fllzows »
8,8

where ¢,,(2.") = sig(sii”).
From (5.1) it follows that

F’,l,,z = (¢51x ¢32) * f ¢
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Thus by (5.2) we have

S sup IF’,l,,zlf’dx{”da;}” = Snz sugol(¢,1><¢,z) * flrde® de®
81,89

R2 81,89>0

< cS | Flrde®ds® .
R2
Integrating this with respect to ™’ and x®’, we obtain

| sup 17, @ lrde < e 1/ ran,

81,89>0

which proves Lemma 1.

6. Proof of Lemma 2. If P, is diagonal, then

% () _ (s (2) .
APTED = (tag, oo, tingY) for some af =21.
Set

Fi= {9 601 SeleP | A<k <n), &9 =0} for 7=1,+,m,

and
Fifﬂ' — {__Em: Sm e['?} (J =1, .-, ’nz) .

Since supp(T;.f)" cI'sx I for some ¢, > 0, by Lemma 1 there are g{" €
F(R™) and ¢ € (R™) such that

lIsup| T f * ¢e"# |ll, = el TS lls »

where ¢“¥¥ = ¢ x¢?. Since 3;, Ty f = f, this, combined with Lemma
5, proves Lemma 2.

7. Proof of Lemma 4. If F is a function on D, then clearly we
have S (F) < ¢Gy(F'). On the other hand, the following result holds.

LEMMA 8. If0 < p =<2 andn= (\y \) With Ny > 7,/D, Ny > 7o/, then
|G, = el Su(F) ], -
Thus Lemma 4 follows from the following lemma.

LEMMA 9. Let L and K;, be the same as in Lemma 4. Then if
A= M)y = () With o — N > 7, and ff — N > Yy, we have

iy 13
GAL) S 03 3 GKy)

(We can prove Lemma 8 and Lemma 9 by using [1, Theorem 3.5]
and [1, Theorem 5.5], respectively.)
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8. Proof of Theorem 1. Let 7% e AR™), ¢ e FAR") and set
7 =n"xn?, 6 =¢"xg¢?. Suppose that
§up ly’]*(i)(Ag)*E(i))‘ >0 if gm )
>0
and
supp ﬁ(i)c{é(i): 1 _<__ ‘0(1)*(5(1)) é 2} .
To prove the theorem, we first assume that f e L*(R"). Set H(y,t) =
f *n(y). Then arguing as in [11], by using Lemma 3, we have
(8.1) sup || £ + g} < o | S*(H)ds .

This proves the theorem when p > 1. When 0 < p <1, suppose that P,
is diagonal, and let T;, be the same as in Lemma 2. Then by Lemma 2
and (8.1)

Isuplf * gulll < e I Tof I < 0 3 | S°Lsda,

where Ly, t) = Tyf *7(y). Note that Ly, t) = f + 6" (y) for some
098 = P x 6P with 6% € H4(R™) and 6 € S4(R™). Thus the theorem
follows from Lemma 4.

Next we remove the assumption that fe L’ Let fe¢ % (R and for
0=1(0,0) (0, >0), set f@ = fxG,. Then f@elL’ Let %" be the
same as in the statement of Theorem 1 and set

FOy,t) = f2 %« ¢y, KR, t) = 9« P(y) .
Then from what we have already proved, it follows that

(8.2) I NS(F)l, = ¢ g: | Su(BF) I, -

Let 7 be as above and set I(y, t) = £ x 9, xn,(y). Then using Lemma
6 and Lemma 8, we have

8.3 1SN, = ell Sy I,

where J(y, t) = f *n(y). By (8.2), (8.83) and Lemma 4, we have
INFN)l, < e % | S(K) Il -

Letting 6, — 0, §, — 0, we conclude the proof.

9. Preliminaries for the proof of Theorem 2. Recall that
G9P = (PG@M)x (PG?) for 1Zj5=<m, 1=k n;
and let
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Gmtih = (A,GV) X (3P G?) , GoP = GYx PG?) for k=1, «++, m,
(where A, = 374, (0f) is the Laplacian);

G(j,n2+1) — (a}l)G(l))X(AzGQ)) , G(j,o) — (a}”G“’)XG‘” fO]’.‘ .7 —_ 1’ e, my

G(0,0) = G(l) X G(2) , G(O,n2+1) — G(l) X(AZGQ)) ,

G(n1+1,0) — (AIG(I))XG&) , G(n1+1,n2+1) — (AIG(”)X(AZG(Z)) .

Let f (e %(R™) be real-valued. Set K;(y,t) = f*G{¥?, F = K.
Suppose S {N(F)A1Pdx < . Let
E = {x: N(F)(x) = 1},

and set v(y, t) = Xz * G(¥), wiy(y, t) = Yoz * GEP(Y), w = w,. Note v +

w =1 and therefore 0f’v = —3{w. In the proof of Theorem 2, we will
use the following equations:
ny 9

(1) "1 77(1) — (2) 1) 77 (2) —
Z Tel aa’ Ttl K:ik - Kn1+1,k ’ 2 Tc2 ak Tez Kjk — Bjmgt1

j=1 k=1

)Tia) ) — )T1A(2) rr(2) —
Tt(ll a_,,- Ttl ch = ik s Tt(; al(a Tt(z Kjo - Kjk ’

0 0
tla—tl—KOk = Kn1+1,k ’ tz‘(EKj = Kj,n2+1 .

(See [1].) The same equations hold for wy,.
It is easy to see the following two lemmas.

LEMMA 10. There is a number a, such that 1/2 < a, < 1 and
supfo(y, ): (0, ) e U '@} = (if D+ U I'@)) .
LEMMA 11. Let o, be the same as in Lemma 10, and let o, < a, < 1.
Set E' = {xeR": Nw)x) =1 — a,}. Then
ICE'| = c[CE],
inf{v(y, t): (¥, t) ezeUE,I"(x)} = a,.

Let a,, a, be as above and put a, = (a, + a,)/2. Let reC>(R') be
such that
1 if u=a,

) = {o it u<a,
[7"(w)|? < er(u) for all uweR'.
Then by Lemma 11 we have
. ny  ng 2 1/2 ’ ﬂ,
9.1 1, (5 2 k) Yo s o, L KRr@ v

For 0 < ¢ < 1/2, set
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3 =1 k=1 0o
In order to estimate I, we need the following result.

LEMMA 12. Let ¢, 4 e S(R™); ¢, v® € S(R™) and suppose $*(0) =
v®P0) =0. Set ¢ = 3" xg?, 4o =PV XP®. Then if feL¥R") and g€

L*(R™), we have

[, 1/ = 6 Flg » wFav-2 < ol £ IRl g 2 -

This follows from the argument about a Carleson measure. For this
argument see Stein [16, §6].

10. Estimate for I. We begin the proof of Theorem 2. Set dt =
dt/(t,t,). Then by integration by parts we obtain

I=-% S KoKt (@)dydt + 3 S KKy o' (v)dydt

=_I1+I21 say ,

where (and hereafter) j and k run through {1, ---,n»} and {1, ---, n,},
respectively. For 0 < 6 < 1/4, we have

1L <0 | (S Knr@)dydt + ¢ | (5 Kawss)dydt

=06l +cl,, say,
where s is a C*-function on R' such that
o) = {1 if u=a,
0 if u=a,
|s'(u)|* < es(u) for all ueR'.

(For a, and a,¥see §9.)
Integration by parts gives

L=% S Koktl(—aat—Ko,,)r(v)dth
= %‘. S [K&(y, €7, t)r(v(y, €7, t.) — K&y, &, t)r(v(y, ¢, t2>)]dy%

2

0 7. ’ 7.
= 3 { 0(Z-Ku) Kurdydt + 32 | Kar' 0o,y

=I -1+ I, say.
Note that
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L=-3, S 2RuK ' (0wodydt + 3, S K" (0)Ywiodydt .
Consequently
| L] £6I +cl,.

Thus
I<|Ll+ L=+ N5+ 0 <L) + 361+ e
= = 2 2 =g 2

This implies that

I<cl+ ).
In the following, we will prove that
(10.1) L <clCE],
(10.2) PRIV IR

uniformly in e. By Lemma 11 and (9.1), this proves Theorem 2.

11. Estimate for I,. By integration by parts we obtain

I=-% S FK,, . wis@)dydt — 3 S QK w0 5,5(0)dydt

3,k
+ Zk, S FK,w%s (v)wydydt
9y
=—J,—J,+J,, say.

We first estimate J,. Integration by parts gives

_ I S AW 1
J=3 S Ft2<at2 F)w,os(v)dydt

= ; S [Fz(y’ ty 6_1)?02}0(’1/, t, 5—1)3(1)(?/9 t, ™)

— F(w, b, iy, t 950, t, )dye

1

—J -3 § 2w 0,0, 18(0) dydt + 3 S F w38’ (0) oy 10y At
J J
=L —J,—L,+L,, say.
By Lemma 10 clearly we have
1L = o 3 | s o 67 + whw, b Ny S
1

Using the Plancherel theorem on the right hand side of the above
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inequality, we find |L,| = ¢/ E .
Next we estimate L.

L=25%| Fou(35 T 70 Ti2w, )s0)dydt
= -3 S FEywwssw)dydt — 3,2 S Fut,s(v)dydt

+ %‘ 2 S Fw jqw ;w8 (v)dydt
=-—-M,—M,+ M,, say.
It is easy to see that
M| <ok + e, S whdydt < o1, + ¢|0E|
and
|M,| < c|CE| .

By Lemma 12, we have
AR w:.owg,,dyaty”(g wz-kdyét)” <c(E|.
gk

Thus
|L;| = |M,| + | M,| + | M,| <61, + c|CE] .

In order to estimate L,, note that

)

L="S S F2w';’-0s'(v)(kzi T2 5 Tg’wo,,)dyo?t .

J =

Thus by integration by parts we have

L, = —Zl: 2 S FK,w%s' 0)wedydt — Zk 2 S FPw;w 58' (0)wy,dydt
2 25

+3 S Fwtys” (v)wih,dydt
:—M—M5+Me, say .
We estimate M,, M,, M, as follows.

M S 3L + Sie S wiawhdydt < 5L, + ¢|LE |,
— \1/2 — \1/2
| M| = g. C(S wi-ow%kdydt) (S w?-kdydt> =c[CE],

| M| < jZk.c S wiwkdydt < c|CE| .

53
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This implies that
|Ls| < |M,| + | My| + | M| <61, + ¢[CE] .

Therefore

1 1 1

|Ji| = = Li| + = Ly| + = Ls| 0L + ¢|CE] .
2 2 2
It is easy to obtain the following estimates for J, and J;:

|l < 0L, + 3¢ S whdydt < 0L, + ¢|LE|
3

T S 0L+ S | whowtdydt < oI + clCE] .
Consequently
|L| < |Jy| + || + |J:] <881 + ¢[CE] .
Thus
I <c[CE],
which proves (10.1).

12. Estimate for I,. Set

1o = | Kiw, & throw, & )iy 2

2

Then by integration by parts we have

10 = 3| (700 T P Kur()dy S

2

= —8 FKo,nwfr(v)dy% + % S FEKur'(v)wedy dttz
2 2

=—J,+J,, say.

We estimate J,. Integration by parts gives

(md
J, = S P -Friv)dyd,

= S [F*(y, & e Yr(w(y, & ™) — F*(y, &, e)r(v(y, & e)ldy — J;

+ S Fw@)wo,nzﬂdy%
2
=L, —J,+ Ly, say.

Clearly
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L s ¢ [ ALy
Next we estimate L.

L = | Fro) 3 (1o T wady S

= -2 S FKOkwokr'(v)dy%- +3 S Fng,,r"(v)dyﬂl:—ﬁ

2

= —M,+ M,, say.

It is easy to see that

1) = o1 + o 3 | whdyh < 10 + clLE,

2

dt,

| M, | gcggwgkdy L < el

2

This implies that
|Ly| < |M;| + | M;| = 01" + c|lCE] .

Consequently

Tl S LI + L] 010 + o | (N ALYdy

Since
PAEDI RS S wgkdy% < 5IY + ¢[0E],
we have
1 S ] + 19, £ 810 + ¢ | WD) ALydy .
Thus
10 < e | Atyay
If we set

=5 S K&, €, tr(w(y, e, tz»dyi‘-lt‘—z ,

k 2

then in the same way as above, we obtain

I <e¢ S (N(FYALYdy .
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Thus
L= 1+ 10 < o [ v Ay,

which proves (10.2).
13. Proof of Theorem 3. Let K be the same as in Theorem 3
and suppose that P, is diagonal. Let {,e C*(R") be such that
1 if w1
=0 ’ o = . _
“a G(w) {0 it ux2.

Set
K(i)(x(i)) — K(i)(x(i))co(ap(i)(x(i))) (@ >0),
K =Kw» x K@ ,
K(i),a(x(i)) — I?‘“(x‘“)(l _ co(a—lp(i)(x(i)))) (5 > 0) ,
K® = Wy @8
ES@") = K@ )1 — Louler 0 @) ,
K, =K'XK? (6= (ene,), 6>0).
On account of a theorem of Stein [15], which generalizes an indirect
method of Kolmogoroff [12], Theorem 8 follows from the next lemma.

(The constant @ in the definition of K will be determined depending on
the sets A and B. See [9, p. 138].)

LEMMA 13. If f is a function on R"™ with compact support and
satisfies
[ 1 n0g@ + 1£Ddz < <=,
Sf(x“’, z®)dz® =0 for all x"eR™,
§f(x“’, 2 dx™ =0 for all x® eR™,

then we have sup, | f * K.(x)| < o for almost every .

We begin the proof of Lemma 13. Let ¢ e S4(R™) be such that
6" =0, supps?C{x?: p¥(x") <1} and set ¢ = ¢V xp®. To estimate

f * K,, we use the following lemmas.
LeEMMA 14. There is o, > 0 such that
KO (@®) — K9 % g@(29)| < cer™i(l + g0 ()% 4f 25 <e,.
LEMMA 15. Let 9" € A(R™) and suppn® c{x: p¥(x¥) < 1}. Given
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L >0, there exists M > 0 such that if
(18.1) | 7@ s = 0
for all multi-indices a satisfying |a| =< M, then we have
| RO — gy dy®| S et + 0@ N,

where ¢ 1s independent of t, and d.

When ¢ is a function on R", set

Mu)g(xu), wm) = sup ;" S |g(yu)’ w(z>>|dy(1) ,
>0 By (z1),¢y)

M(z)g(xu), x(z)) — f‘i%’ 7 SB o |g(x(1>’ y(z)>ldy<2) ,
2 2(2% 2o

where B,(x?, t;) = {y'“: o9 — y?) < t}. Thenif f satisfies the assump-
tions of Lemma 13, by arguing as in [9] and by using Lemma 14 we have

sup | f * K.| < eM®(sup| f *o B )) + eM®(sup| f o K2 )
£ & €2
+ cMPM?Pf + lim inf(sup| f * K? * ¢,]) ,
3—0 &
where the symbol *, denotes the operation of convolution in R™. It is
clear that MO M®Yf < oo a.e. since g; fllog(@ + | fDdw < .

We next note that if F(y,t) = f *4,y), then SNN(F)dx < o for

some p, with 0 < p, < 1. (This follows from a direct estimate for N(F).)
Thus to prove liminf, ,(sup,|f » K@ = ¢,|) < o a.e., it is sufficient to show
that

(13.2) sup S sup|f * K@ x ¢, |7oda < ¢ S N?o(F)dz .
3 &
Now we prove (13.2). Let 7 € S/(R™) and supp 7 C{x™: p¥(x"¥) <

1}. Suppose also that »“ satisfies the condition (13.1) for sufficiently large
M and the condition:

sup| V(AT >0 (¥ #0).
t;>0

Set HO(y, t) = f * KW xn, = n(y) ) =1 x9?), J(¥, t) = f*7(y). Then
by Theorem 1 we have

S sup|f * K9 x ¢, |70dx < ¢ S Sro(H®)dz .

Using Lemma 6, Lemma 8 and Lemma 15 (for sufficiently large L), we
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obtain
S SP(H")dz < ¢ S S*o(J)dz ,

where ¢ is independent of §. By the corollary to Theorem 2, we have
S Sr(de < ¢ S No(F)de .

Combining the above inequalities, we obtain (13.2).
To prove M®(sup,|f *y, K*|) < « a.e., note that

M‘Z’(suplf * ) Ke(ll) I) é cM(z)Mu)f + CM(Z)(.Q) ,
£
where 2 = liminf,_,(sup, | f *o K" *,, ¢ |) (this follows from Lemma 14).
Since MYM®Yf is finite almost everywhere, we only have to prove
M?(@2) < « a.e. Let V be a compact set in R*. Then since M® is of
weak type (1, 1), we have

(13.3) SV (MP@)de < ¢ + ¢ SWQdac 0<qg<1)

for some compact set W in R". If F“(y",t) = (¢ *y f(-, 2®))(y") for
fixed 2%, then we can prove directly

SN(I)(F(I))dx(I) é c + CS If(w(l)’ x(2)) [log(z + If(x(l), x(z))])dx(l) .

Thus the finiteness of the integral on the right hand side of (13.3) follows
from the equivalence of S* and N if we argue as in the proof of (13.2).
This proves the almost everywhere finiteness of M®(Q), which completes
the proof of the fact that M®(sup,|f *, K[) < o a.e. The almost
everywhere finiteness of M“(sup,|f * K‘:’ [) is proved similarly. This
completes the proof of Lemma 13.
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