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LUSIN FUNCTIONS ON PRODUCT SPACES
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1. Introduction. In [1] and [2], Calderόn and Torchinsky introduced
the parabolic Hp spaces associated with a group of linear transformations
of Rd and obtained analogues of some results of Fefferman-Stein [8] in
this context. Later Gundy-Stein [11] extended some of the results of [8]
to the product spaces. (See also Gundy [10], M. P. and P. Malliavin [13].)
On the other hand, it seems likely that some parts of the theory of
Calderόn-Torchinsky [1], [2] also extend to the product spaces. In fact,
in the present note we prove the equivalence with respect to the Lp-
"norms" of the Lusin functions and the nontangential maximal functions
arising from certain two-parameter families of linear transformations of
RnixRn2 (see Theorem 1 and the corollary in §3), which is an extension
to the product spaces of a special case of a result of [1] and also is a
generalization of a result of Gundy-Stein [11]. Combined with the argu-
ment of Fefferman-Stein [9], this enables us to extend Fefferman's weak
type estimates (see [7]) to the case of the double singular integrals with
mixed homogeneity (see Theorem 3 in § 3).

2. Preliminaries.

2.1. Let xeRn (n^2). We write x = (xω,x{2)), where x{ι)eRn\
xω 6 Rn* (nlf n2 ^ 1, n, + n2 = n) and x{ί) = (a^, * , <>) (i = 1, 2). If

write, for example, "xU) e Rn*" instead of "xω e Rni and x{2) e iΓ 2" for
simplicity. This abbreviation will be used throughout.) We also write
(x{1), tx\ x{2), t2) = (x, ί), where x = (x{1), x(2)), t = (tlyt2).

Set Rn

+i+1 = {(x{ί), t%)eRn*+1: tt > 0} (i = 1, 2) and D =

2.2. Let Pi be a linear transformation of Rnί such that {P^, xU)) ^
(xw,x{i)) for all x(i)eRnί, where (xH), yH)) denotes the ordinary inner
product in RnK We consider a group A% = if * (0 < tt < «») of linear
transformations of Rnκ

For xH) eRni — {0}, let us denote by pw(x{i)) the unique t% such that
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-Xxw\ = 1, where \x{i)\ = (x{i), α( ί))1/2, and we define p{i\0) = 0. p{ί)* is
defined similarly in terms of A%*, where Aξ* is the transposed trans-
formation of A{ξ.

2.3. Let f{1) and /(2) be functions defined on Rni and Rn2, respectively.
We define a function / ω x / ( 2 ) on Rn by

(fωxfω)(xω, α{2)) = / ( 1 )(^ ( 1 ))/ ( 2 )(^ ( 2 )) .

An operator T% (ί, > 0) is defined by

Γ«)/«)(a.«)) = /"'(AgV") .

We set

fl?(χ{t)) = ίi- r ί(Ώf-7 ( ί ))(^ ( i )) = ίΓ'/^CAίΓ^"') >

where 7< = trace Pit

Set

A(ίl,t2)(α;(1), ^(2)) = {A?χ\ Aξx™) ,

AS l i % )(f ( 1 )

>e ( t )) = (Ag) 5 ω

> A ξ ) f β ) ) .

If / is a function on Rn, an operator Tt is defined by

We set

ft(x) = KHpKTfVKx) = tr*tϊKΓ K

2.4. There is a unique strictly positive self-adjoint transformation
Bt of Rni such that P ^ + B^t = /i, where 7, is the identity transfor-
mation of RnK

Let G(ί) be the inverse Fourier transform of the function

exp(-4τr2(Sίf
(ΐ), ί(i))) (if f{j)eL\Rnή (j = 1, 2), the Fourier transform of

is defined by f{j)(^Ί) = J/ ('VyV2*<(e( i )>e( i ) )<te ( i ).) Set G = G(1)xG(2),

.« = (3j1)G(1))x(3f G(2)), where 3f = djdxf (j = 1, , n j .

2.5. If α* > 0, set

and for a = (αlf α2) set

Γ.(») = ΓSϊC^Ox-ΓSC^) = {(yω, ί i ; ?/(2), ί2): (2/(ί), « 6Γ«(ίβw)) « = 1, 2)}.

If .P ( ί ) is a function on JB+<+1, we define the nontangential maximal
function by
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and the Lusin function by

For a function F on Z>, we define the nontangential maximal^func-
tion by

Na(F)(x) = sup{|i%, ί) |: (y, t)eΓa(x)} ,

and the Lusin function by

Sa(F)(x) = (ϊ I F(y, t) \H^t^dy^-

Let / T = Γu\ Γ ( M ) = Γ, 2V«} = ΛΓ(ί), Sί<} = S ( i ), ΛΓ(lfl) = N and S(1>1) - S.
For more details about 2.2, 2.3, 2.4 and 2.5 see [1].

2.6. S^(Rm) denotes the Schwartz class of infinitely differentiate
and rapidly decreasing functions on JBW. Let

Sf\Rm) denotes the set of tempered distributions in Rm. &%
denotes the set of tempered distributions / such that /(f)(l + |<J|2)
L\Rm) for sufficiently large k.

2.7. If E is a set, 1E denotes its characteristic function and
denotes its complement.

The letter c is used to denote a constant which need not be the same
at each occurrence.

3. Statement of results. Let / e S^\Rn) and set Fix, t) = / * Gt(x)
(cf. 2.3, 2.4), where the symbol * denotes the operation of convolution.
We say that /efl? l i l l a (0 < p< «>) if N(F)eL*(Rn) and set II/IU;^ =
|| #(2^) UP, where || ||p denotes the ZΛ norm.

It is easy to see that Hfltni coincides with Lp if p > 1 and H?tl (0 <
p < oo) is independent of P t.

Certain Hξι>nz spaces are characterized in terms of the Lusin functions
as we show in Theorem 1 and Corollary below.

THEOREM 1. Let φu) eSi(Rni) and ψf e^(/Γ\) (j = 1, , lt). Sup-
pose that

ff* if
ti>0 j=l

Set φ = φωxφ(2), ψ(j>k) = ψ{/] x^i 2 ), and F(#, ί) = / * ^(^)» ^ ( ^ *) = / *
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φF k\x) for fe^i(Rn). Then if 1 < p< 2, or if 0 < p ^ 1 and Pt is
diagonal, we have

\\N(F)\\P^cΣiΣi\\S(Kjk)\\p.

REMARK. This result also holds when p ^ 2 and f eLp by a duality
argument and the results below.

THEOREM 2. Iffe &ί(Rn), seί F(α;, ί) = / • Gt(a) and ίΓΛ(a?f ί) = /

Σ I ^

where the symbol A denotes the operation of taking the minimum.

We will prove this by the idea of [11] and [13].

COROLLARY. Let φ{ί)e^(Rnή and ψ{i)e£*(Rnή. Set φ = φωxφ{2),
ψ = ψ{1)χψ™, and Fix, ί) = / * ΦM, K(x, t) = f * ψt(x) for f e ^\Rn).
Then

\\S(K)\\p^c\\N(F)\\p (0<p<2).

This follows immediately from Theorem 2 and Lemmas 4 and 5 in
§ 4 (See [1, Lemma 3.3]).

REMARK. The corollary also holds when p ^ 2 as a consequence of
the theory of singular integrals.

We give an application of the above results. Let KH) e C°°(Rni — {0})
be such that

, x{i))dσ(x{ί)) = 0 ,

Kw(A%x{i)) = tτnKH)(xH)) for all tt > 0 ,

where dσ(xu)) is the area element of S**"1 = {x{i): \xH) \ = 1}. (See [6], [14].)
Set

Kεi>ε2(xω, x{2)) = Ut Kw(xw)(l - W6TV>(<)G»W)))) for βlf ε2 > 0 .

THEOREM 3. Suppose Pt is diagonal. Let A and B be compact sets
in Rn. If f is a function on Rn vanishing outside B and if
\ l/|log(2 + \f\)dx < oo, then we have
JB

\{xeA: sup \f*K.llH(x)\ >l}\£c\ |/ | log(2 + \f\)dx .
£ δ > 0 L Δ JB

|
B

This is a generalization of the weak type estimates of [7].
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4. Lemmas. In this section, we give several lemmas, which will be
used in the proof of Theorem 1. We prove Lemmas 1, 2 and 4 in later
sections.

Let u^iSi) = s« (Si > 0) and let tiffa) (j = 2, , %) be positive
increasing functions. Set

r = {ι(ί): i3« i ̂  t^cen , iδ£?ι ̂  < } ( e n ^ > 0}
and

Γo = ΓxΓ2 = {(£(1), ί(2)): ί(1) eΓ1, f e Γ 2 } .

LEMMA 1. There is Φ{ί) e S^(Rnί) such that if we denote by ΦSl>82(x)
the function:

Π
i=l,2

then

| sup
β1,β2>0

(0 < p < oo) /or αii f eL2(Rn) with f vanishing outside ΓQ.

This is an analogue of Coifman-Dahlberg [4, Theorem I]. (See also
Carleson [3] and Coifman-Weiss [5, p. 585].)

Let {ωf: j = 1, , 2nt} be a C°°-partition of unity on Rnί — {0} such
that

: ωf(ξ{ί)) Φ 0, |f(<) | = l}c{ί ( ί ): ff > 0,

: ω^+ i(ί ( ί )) ^ 0 , |f«>| - l}c{ί ( ί ): ff < 0,

for j = 1, •••, w< (where for a set i?, Cl J57 denotes its closure) and such
that ωf(ζ{i)) = ωf (A%*ζw) for all ί4 > 0. Define an operator Tjk by

for feL2(Rn).

LEMMA 2. Lei ̂ (ί) eS^(Rni) and set φ = φωxφ™. Suppose that Pi is
diagonal. Then

2nι 2n2

l | s u p | / * ^ | | | , ^ c Σ Σ \\τSkf\\p,

for 0 < p < oo.

This is a consequence of Lemma 1.
Let W be a measurable subset of J?m and α> be a positive function

on W. Let 0(1) 6 ̂ (j?7*1) and ψ{1) e £i(Rnί) and suppose

f(1)(Aif*f(1))| > 0 if f(1) ^ 0 .
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If / is a function on Rnίx W = {(xω, w): xω eiΓ1, weW} such that

( „ \f(xω, w)\2ω(w)dxωdw < oo ,

then we set

υ, ίiί w) = j φξ(y{1) - zω)f(z{1), w)dzω ,

(1), ί i ; w) = j ^ ( ^ - zω)f(zω, w)dzω .

LEMMA 3. Set

\F\w(Vω, «i) =

G \ 1/2

tt e feαve

\\N«\\F\W)\\P £.c\\Sω(\K\w)\\, (0 < p < 2) .

This is a vector-valued analogue of Calderόn-Torchinsky [1, Theorem
6.9] and can be proved along the same line.

LEMMA 4. Let f e <9%(Rn), r]{i) e ̂ 0(Rnί) and let ψ{j'k) be the same as
in Theorem 1. Set L(x, t) = f * 7)t(x) (η = ηωxη{2)), KJk(x, t) = f * ψlj>k)(x).
Then if 0 < p £ 2, we have

\\Sa(L)\\p ^ c g II Sb(Kjk)\\p.

If F is a function on D, we set

F+(x) = suv\F{x, t)\ .
t

LEMMA 5. Let fe^\Rn) and φ{i), ψH) e^(Rnή. Set φ = φωxφ{*),
J, t) = / * &(&), fΓ(a?, ί) = / * ψ*(»)

H I I p l l H , /or 0 < p < - .

The arguments of [1] and [8] also apply to the proof of Lemma 5.
Let λ = (λx, λ2); λi, λ2 > 0. If F is a function on Z>, we set

ΓΓ (/ nli)('rli) — vU)}\-2Xi ) rlt Ί 1 / 2

= |F(y, ί)l2 Π j(l + p {X , y ') tMdy^L .
Lio Ϊ=I,2 l\ ti / i tfaΛ

LEMMA 6. Let f e &&R*), Φw e ̂ (Λ"*)f i?(i) e S"(Rni) and let φ =
φ{1)xφw, η = ηwxψ\ ΐr = φη. If keL°°(Rn), define Tf by (TfΓ = kf
and hw by h{t\ξ) = %ξ)k(Aϊξ). Set F(x, t) = f * φt(x) and H(x, t) = Tf*
ft(x). Suppose that lw(x) = hM(x) Π4-i,*(l + Pw(xw))h (λ, > 0) eU(Rn)
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and supί || l{t) ||2 < oo. Then ifμ = (μ19 μ2), X = (λlf λ2) and μ1-X1> ΎJ2,
μ2 — λ2 > 72/2, we have

Gμ(H) ^ cGλ(F) .

The proof of Lemma 6 is similar to that of Theorem 5.3 of [1], and
is omitted.

5. Proof of Lemma 1. Let φeS^(Rι) be such that

_ ίl if |C l^ l/2
= 10 if | ζ | ^ 1 .

Define ΦH) e ^(Rnή by

and let Φ8ltS2 be the same as in the statement of Lemma 1.
Suppose that / e L\Rn) and / vanishes outside Γo. Then note that

(5.1) φ(£L)$fέL-)f(ξ) = Φ8l>82(ξ)f(ξ) .

The proof of Lemma 1 is based on the observation (5.1) and the
following lemma.

LEMMA 7. Let f eL\R2) and suppose that supp/cΓ* = {(ylf y2)eR2:
Vi ^ 0, y2 ^ 0}. Then if feLp(R2) (0 < p < oo), it follows that feH?tl

and

(This can be proved by the argument of Stein-Weiss [17, pp. 116-117]
and the theory of Fefferman-Stein [8].)

Set F.ltH(x) = / * ΦHίH(,x). If xω = (»ίϋ, x(1)'), «(2) = « , *(2)') and if
we consider F,ltH and / as functions of (a ί1', xl2>), fixing *α>' and xω', then
we write

F , , ^ " , xm'\ xΐ\ x™') = F.1,n(xί1), O ,

When I | FHιH(x) \"dx < «=, by Lemma 7 we have for almost every a;'11'

and xm>

(5.2) || sup \(ΦHxφt2) * /|||i»
t1,»2>β

where ^/αί") = s^s^).
From (5.1) it follows that

F,u,2=(φtlxφt2)*f.
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Thus by (5.2) we have

S 2 sup \Pβlιat\'dxlι)dx? = ( sup Kφ^xφJ
J κ 2 β1,β2>o JJR2 β l,82>o

JΛ2

Integrating this with respect to xω' and x{2)', we obtain

sup
*1>*2>°

which proves Lemma 1.

6. Proof of Lemma 2. If P* is diagonal, then

Aiy*ζH) = (ίf i*^, , ti^iζnl) for some af ^ 1 .

Set

Γ) = {f(i): |fi*} | β i ) ^ co\ζf \ak (1 ^ A; <; ^ ) , ^ ί} ^ 0} for j = 1, , ^

and

Since swpp(Tίkfyc:Γ)xΓl for some c0 > 0, by Lemma 1 there are φf 6
^ ( i Γ O and φfe&KR71*) such that

where ^(i>fc) =φj-)xφΐ) Since Σi,feϊ7ifc/ = /» this, combined with Lemma
5, proves Lemma 2.

7. Proof of Lemma 4. If F is a function on Z>, then clearly we
have Sα(F) ^ cGλ(F). On the other hand, the following result holds.

LEMMA 8. If 0 < p <; 2 cmd λ = (λ^ λ2) with λx > Ti/p, λ2 > Ύjp, then

\\Gλ(F)\\p<c\\Sα(F)\\p.

Thus Lemma 4 follows from the following lemma.

LEMMA 9. Let L and Kjk be the same as in Lemma 4. Then if
λ = (λx, λ2), μ = (μlf μ2) with μ1-X1>

 rY1 and μ2-X2> 72, we have

(We can prove Lemma 8 and Lemma 9 by using [1, Theorem 3.5]

and [1, Theorem 5.5], respectively.)
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8. Proof of Theorem 1. Let ηM e &\BP), φU)eSΊ(Rni) and set
η = 7 ω χ 7]v> φ = φ<ϋ χ φ<Λm Suppose that

| # ( £ ) l > 0 if | ( i > ^ 0

and

supp?(i)c{f(i): 1 ^ /o(iϊ*(ί(<)) ^ 2} .

To prove the theorem, we first assume that / e U{Rn). Set H(y, t) =
f * Vt(v)' Then arguing as in [11], by using Lemma 3, we have

(8.1)

This proves the theorem when p > 1. When 0 < p 5Ξ 1, suppose that Pt

is diagonal, and let Tjk be the same as in Lemma 2. Then by Lemma 2
and (8.1)

llsupl/ fclll; ^ c Σ II 2VΊU ^ c Σ (
t j,k j,k J

where Lik(y,f)= Tihf*ηt(y). Note that Ljk(y, t) = f * θ¥>k)(y) for some
0<i,*> = βfxθψ with ίJ1 }€^(JBni) and θ^e^0(Rnή. Thus the theorem
follows from Lemma 4.

Next we remove the assumption that / € ZΛ Let / 6 &%(Rn) and for
δ = (δlfa2) (δ 4>0), set fM=f*G9. Then / ( δ ) eL 2 . Let ψ(^w be the
same as in the statement of Theorem 1 and set

F{δ)(y, t) = Γδ) * φt{y) , i^f(2/, ί) = Γδ) * ψ{^w(i/) .

Then from what we have already proved, it follows that

(8.2) l | iV α (^)l l P ^cΣ IISOT)I

Let η be as above and set I{δ\y, t) = fiδ) * ̂  * ??*(#). Then using Lemma
6 and Lemma 8, we have

(8.3)

where J(y, t) = f * ηt(y). By (8.2), (8.3) and Lemma 4, we have

Let t ing δx —> 0, <52 —> 0, we conclude t h e proof.

9. Preliminaries for the proof of Theorem 2. Recall that

G ( i . « = ( j ω g i i ) ) x ( 9 ( 2 ) G ( 2 ) ) f o r 1 ^ i ^ ^ , l ^ k ^ n 2 ;

and let
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G(n1+i,k) = (A1G
{1)) x (3fG ( 2 )) , G(0'fc) = G(1) x (3fG ( 2 )) for k = 1, , n2

(where At = Σ J ^ i (Sj'O2 is the Laplacian);

fi(j,n2+i) _ n ί i i ^ ω w /Λ ί7(2M /70'»o) __ (;)(i>f7(i>\ vί7 ( 2 > fnr i" — 1 . . . nn
v>Γ — \UQ \JΓ ) /\ \ίΛ2\JΓ ) y \SΓ — \Uj \JΓ ) ^ ^Γ L\JL J — If 9 * "I >

G(o,o) = Gω χ Gω f Q(o,n2+i) = G (D χ (A2G
( 2 )) ,

gκ»i+i.o) = ( Δ 1 G ( 1 ) ) x G ( 2 ) , G ( n i + 1 ' Ώ 2 + 1 ) = ( Δ 1 G α ) ) x ( Δ 2 G ( 2 ) ) .

Let / (e^(Rn)) be real-valued. Set Kjk(y, t) = f * Glj>k), F = if00.

Suppose ί { iV^Λl} 2 ^ < <*>. Let

£; - {x: N(F)(x) ^ 1} ,

and set v(y, t) = TE* Gt(y), wjk(y, t) = XzE * G{

t

j'k)(y)f w = w00. Note v +
w = 1 and therefore dfv — —dfw. In the proof of Theorem 2, we will
use the following equations:

πi _ n 2

3=1 k=l

t^—K —K t-^—K = K

(See [1].) The same equations hold for wjk.
It is easy to see the following two lemmas.

LEMMA 10. There is a number ax such that 1/2 < αx < 1 and

/, t): {y, ί ) ί U Γ(x)} ̂ a, (if D Φ U

LEMMA 11. Let ax be the same as in Lemma 10, and let aγ< a2< 1.
E' = {xe Rn: N(w)(x) ^ 1 - α2}.

inf{ι;(y, ί): (y, t) e U Γ(a?)} ^ α2 .
a e E'

Let «!, α2 be as above and put a3 = (α̂  + α2)/2. Let r e C^iR1) be
such that

( 1 i f i t ^ a2

r(u) =
(0 if u

I r'(^) |2 ^ cr(^) for all u e R1 .

Then by Lemma 11 we have

(9.1) \ S 2((Σ Σ ^ Y / 2 ) ^ ^ e\ (Σ K}k)φ)dy^ .
JE' \Vi=l Λ=l / / JZ> j , Λ tχt2

For 0 < ε < 1/2, set
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S fi-l f £ - 1 f / «l n 2 v 7,

(Σ Σ Kh)riv)dyjL .
ε Je JΛ« \i=3 fc=l / txt2

In order to estimate J(ε), we need the following result.
LEMMA 12. Let φω, ψ{1)eS(Rnή; φ{2), ψ{2)eS(Rn*) and suppose φω(0) =

t(2)(0) = 0. Set φ = φωxφ{2), f = ψωxf{2). Then if feL\Rn) and ge
L°°(Rn), we have

( I / * Φλv) IΊ g * U v ) W v £ - £c\\f \\l\\ g \\l.

This follows from the argument about a Carleson measure. For this
argument see Stein [16, § 6].

10. Estimate for /. We begin the proof of Theorem 2. Set dt =
dί/(ίiί2) Then by integration by parts we obtain

I = - Σ ί KokKni+lΛφ)dydt + Σ ( KQkKjkwjor'(v)dydt
k J j,k J

= -I, + I2, say ,

where (and hereafter) j and k run through {1, •• ,w1} and {1, •• ,w 2 h

respectively. For 0 < δ < 1/4, we have

I h I ̂  δ \ ( Σ Kfk)φ)dydt + c ( ( Σ K2,kw%)s{v)dydt

= δl + c/3 , say ,

where s is a C°°-function on R1 such that

(1 if u ^ α3

(0 if u ^ ax

^ cs(%) for all % e R1 .

(For α : and α3fsee § 9.)
Integration by parts gives

Ji = Σ ( K,kt(-ΪLκΛr{v)dydt

- Σ S [Xi(», e-1, «r(^(2/, ε"1, ί2)) - KZk{y9 ε, t2)r(i;(i/, ε,
k J

- Σ j t^-^-K^KotrWdydt + Σ \ Ko\r\v)wni+1,odydt

= 74 - I, + J 5 , say .

Note that
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/„ = - Σ ( 2KΰkKίkr\v)wjadydt + Σ ί Kϊkr"(v)w%dydt

Consequently

|/.l ^dl + cl3.

Thus

This implies that

/ ^ c / . + c|/

In the following, we will prove that

(10.1)

(10.2)

uniformly in ε. By Lemma 11 and (9.1), this proves Theorem 2.

11. Estimate for /3. By integration by parts we obtain

/3 = - Σ ( FK0f7l2+1w%s(v)dydt - Σ ( 2FK0kwd0wίks(v)dydt

FKokw%s\v)wokdydtΣ
j,k

= — Ji — J2 + J3 , say .

We first estimate J^ Integration by parts gives

Ji = Σ ( ^ 2 ( ^ -

= :Σ \ [F\y, tlt e-Wdv. tu ε-ι)8(v(y, tu e"1))

- F\y, tu ε)w%(y, tu ε)s(v(y, tu ε))]dy^-

- J, - Σ \ 2F*wjlίwj,n2+ιs(v)dydt + Σ \ F2w%s'(v)w0,ni+1dydt

= Lt — Jλ — L2 + L%, say .

By Lemma 10 clearly we have

I i l l ^ e Σ ί {w%{y, tu ε-1) + w%(y, tu ε)}dy^- .

Using the Plancherel theorem on the right hand side of the above
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inequality, we find \Lλ\ ^
Next we estimate L2.

L2 = 2 Σ \ ^ ; o ( Σ Tξ-'d

= - Σ 4 ( FKokwjowjks(v)dydt - Σ 2 \ F2w2

jks(v)dydt
j,h J j,k J

+ Σ 2 ( F2wj0wjkw0ks\v)dydt

= —Mi — M2 + Mz, say .

It is easy to see that

lAfil ^ δ/3 + c Σ ( wj*d»dί ^ δ/3 +

and

By Lemma 12, we have

|Λf8| ^ c Σ ( j wjowo*dydi)1/2(j w2

jkdydtj/2 £

Thus

|L 2 | ^ IMJ + \M2\ + |M3 | ^ δIB + c\ZE\ .

In order to estimate L3, note that

3 Σ ( W W ( Σ
3 J \ιc—1

Thus by integration by parts we have

L5 = - Σ 2 ( FKQkw%s'(v)wokdydt - Σ 2 (F2wjowjks'(v)wokdydt

+ Σ ( F2w%s'\v)wlhdydt

= —M 4 — M5 + MQ, say .

We est imate Λf4, Λfβ, ikfβ as follows.

w%wlkdydt ^ δ/3 + c|C-E| ,

ί w%dydtj/2 ^

^ Σ c ( w%wlkdydt ^
3' i™ J
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This implies that

\L.\£\MA\ + \M,\ + \M9

Therefore

I Jx\ rg hL,\ + -ί|Lt| + -ί
Lt LA Li

It is easy to obtain the following estimates for J2 and J3:

IΛI £δl9 + Σc\w2

jkdydt ^ dlz + c\{,E\ ,

l /βl ̂  δJ3 + Σ c \ w%w2

0kdydt ^ δ/8 + c\ZE\ .

Consequently

1/βi^iJχi + \jι\

Thus

which proves (10.1).

12. Estimate for I4. Set

A; J

Then by integration by parts we have

U1] = Σ ( (Tξ^dFTξΨW
k J ί2

= -\FK0,n2+ιr(v)dy4k + Σ ί FKΰkr'(v)wokdy^
J 2 ί 2 * J ί2

= —J4 + J 6 , say .

We estimate J4. Integration by parts gives

J, = \ F^-Fr{v)dydt2

/, e, e"ι)r(v(y, ε, ε"1)) - F\y, ε, ε)r(v(y, ε, ε))]dy

= L4 — J4 + L 5 , say .

Clearly
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|L 4 | ^ c \ {N(F)AlYdy .

Next we estimate L6.

Le = \ FΨ(v) Σ {Tξ-
J fc—1

= - Σ 2 ( FKokwokr'(v)dy^ + Σ S F2wlkr"(v)dyψ-
& J ί 2 fc J ί2

= -ikf7 + Λf8, say .

It is easy to see that

\M7\ ̂  δl4

(1) + c

This implies that

| L 5 | ^ | M 7 |

Consequently

IΛI ^ γ l ^ l + γlL.1 ^ δJ4

ω + c j

Since

fc J i^2

we have

J4

l l ) ^ IJ 4 I + IΛI ̂  2δ/4

( 1 ) + c

Thus

If we set

I? = Σ j iζ?*(», e-1, tMv(y, ε-\ t2))dyψ ,

then in the same way as above, we obtain

ψ ^ c J {N{F)/\iγdy .
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Thus

\I*\ ^ W + U2) tZ c\{N(F)ΛiYdy ,

which proves (10.2).

13. Proof of Theorem 3. Let Kιt) be the same as in Theorem 3
and suppose that Pt is diagonal. Let ζΌeC°°{Rι) be such that

(1 if u<l

Set

KH)(xM) = Kw(xu))ζo(apU)(xH))) (α > 0) ,

K = Kω

£. = X « ' x ^ » (e = (elf e2), s, > 0) .

On account of a theorem of Stein [15], which generalizes an indirect
method of Kolmogoroff [12], Theorem 3 follows from the next lemma.
(The constant a in the definition of KU) will be determined depending on
the sets A and B. See [9, p. 138].)

LEMMA 13. If f is a function on Rn with compact support and
satisfies

j / ( x ω , x{2))dxa) = 0 for all x

\ f(xω, x(a)dxω = 0 for all x

then we have sups | / * ^ ε(*) | < oo for almost every x.

We begin the proof of Lemma 13. Let φH) e S^(Rnt) be such that
φH)^0, supp0(<>c{<BK>:!0H)(»K))^l} and set φ = φωxφω. To estimate
/ * Kε, we use the following lemmas.

LEMMA 14. There is σt > 0 such that

\K%(xli>) - Kw's * φ$(x{t))\ ^ csr r ί(l + s^p^ix™))-**-"' if 2δ<ε(.

LEMMA 15. Let τ}we^(R^) and supp57(<)c{x(1): jθ(i)(a;(i)) ^ 1}. Given
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L > 0, there exists M > 0 such that if

(13.1) \ ηu\x{i))x{i)adx(i) = 0

/or all multi-indices a satisfying \a\ ^ M, then we have

c(l + ^ ( α ^ ) ) - * ,is S:(fl ' ( i j ; r ' ( ϊ ω - yw))7]U)(yH))dyw

where e is independent of tt and δ.

When g is a function on Rn, set

Mωg(xω, xw) = sup trn \ (i) f |fiί(2/(1',

M /Ύ^Ύ* A«'2)Λ ___ O1ΊTΛ "f

where B4(x
(i>, g = {yw\ ρH)(xH> - yw) < Q. Then if / satisfies the assump-

tions of Lemma 13, by arguing as in [9] and by using Lemma 14 we have

sup 1/ * Ke I ̂  cM(2)(sup|/ *(1) R* |) + cilίω(sup|/ *
ε « « (2)

+ cMωilί (2)/ + liminf(sup|/ * Kίd) * φ.\) ,

where the symbol *(<) denotes the operation of convolution in RnK It is

clear that MωMωf< oo a .e . since ί |/|log(2 + \f\)dx < «>.

We next note that if F(y, t) = / * ̂ (l/), then ( NP0(F)dx < oo for
some Po with 0 < p0 < 1. (This follows from a direct estimate for N(F).)
Thus to prove liminf3_0(supε|/* Kiδ) * φε\) < oo a.e., it is sufficient to show
that

(13.2) sup J sup|/ * K{δ) * 0, |W(te ^ c \ Np°(F)dx .

Now we prove (13.2). Let rju) e^(Rnή and suvvηu)c:{x{i): pw(xw) ^
1}. Suppose also that Ύ){i) satisfies the condition (13.1) for sufficiently large
M and the condition:

pl^WYOI >0
ίί>0 l

Set ff<«(y, ί) = / * κw *ηt * vM (v = yωχv{2)), J(v, t) = / * vAv) T h e n

by Theorem 1 we have

sup|/ * ^ ( s ) * ίί£ \*°dx ^ c

Using Lemma 6, Lemma 8 and Lemma 15 (for sufficiently large L), we
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obtain

\ Sp»(H{δ))dx ^ c \ Sp°(J)dx ,

where c is independent of δ. By the corollary to Theorem 2, we have

\ SPQ(J)dx ^ c \ N*»{F)dx .

Combining the above inequalities, we obtain (13.2).
To prove M ( 2 ) (supJ/ *(1) K™ |) < °o a .e . , note that

M ( 2 )(sup|/ *(1) K™ I) ^ cM{2)Mωf + cM{2\Ω) ,
e l

where Ω — liminfδ_o(supej/ *(1) K
a)}δ *(1) φ™ |) (this follows from Lemma 14).

Since M{2)Mωf is finite almost everywhere, we only have to prove
M{2)(Ω) < oo a.e. Let V be a compact set in Rn. Then since M{2) is of
weak type (1, 1), we have

(13.3) ( {M{2\Ω)}qdx ^ c + c \ Ωdx (0 < q < 1)
Jv JW

for some compact set W in R\ If F(1)(2/(1), ίx) = (φ% * ( 1 )/( , aj(2)))(2/(1)) for
fixed xω, then we can prove directly

\Nω(Fω)dxω ^ c + c\ \f(xω, a;(2))|log(2 + \f(xω, x{2))\)dxω .

Thus the finiteness of the integral on the right hand side of (13.3) follows
from the equivalence of Sω and Nω if we argue as in the proof of (13.2).
This proves the almost everywhere finiteness of Mω(Ω), which completes
the proof of the fact that ikf(2)(sup6j/ *(1) K£ |) < oo a.e. The almost
everywhere finiteness of j|f(1)(sup,2|/ *(2) Kεf |) is proved similarly. This
completes the proof of Lemma 13.
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